
#or Knowledawe

Faruk Polat, University of Minnesota
H. Altay Guvenir, Bilkent University

O N E OF THE GREATEST DIFFI-
culties in developing an expert system is
knowledge acquisition, the process of build-
ing the knowledge base. A knowledge base
might be incomplete or inconsistent from
the start, since human experts are not pre-
pared to provide all the knowledge needed
in one complete and consistent chunk. There
might be cases that the expert has not
considered, or items (rules, for example)
that need to be rephrased. Even after the
knowledge base has been built, its mainte-
nance usually requires a complete valida-
tion if any item is modified, removed, or
added. Therefore, validation is considered
a mandatory step in developing knowl-
edge-based systems.'

An expert system cannot be tested, even
on simple cases, until much of its knowl-
edge base is encoded. Regardless of how
an expert system is developed, its builders
can profit from a systematic check of the
knowledge base without having to gather
extensive data for test runs, even before the
full reasoning mechanism is functioning.
This verification can be achieved by devel-
oping a program to check the knowledge
base for consistency and completeness.2

Our proposed method for verifying
knowledge bases is based on the unifica-
tion of rules.' One characteristic that

T H i s METHOD CHECKS MVOWLEDGE BASE
SYSTEMS FOR COMPLETENESS AND

CONSISTENCY BY GENERATlNG INFERRED R U U S
AND THEN CONSlDERlNG THEIR EFFECTS IN A

distinguishes our approach from other ver-
ification tools is that it infers some of the
rules that are not explicitly given in the rule
base and considers their effect in the veri-
fication process. Our method can deter-
mine conflicting, redundant, subsumed,
circular, and dead-end rules; redundant If
conditions in rules; and cycles and contra-
dictions within rules. We have implement-
ed our method in acomputer program called
UVT (for unification-based verification
tool) and tested it on sample knowledge
bases.

Rules for knowledge
representation

When planning an expert system, de-
velopers must decide on a knowledge

VERlFlCATlON PROCESS. "w

representation scheme that is most suitable
to the application. We chose a rule-based
representation scheme because of the mod-
ularity it provides and the simple, uniform
interpretive procedure that is often suffi-
cient in rule-based systems. Rule-based
representation is also easy to learn and use.

Our method assumes that the knowledge
base rules have only one literal in their
consequents and aconjunctionofliterals in
their antecedents. A literal is either a pred-
icate or the negation of a predicate. A
predicate has a name and a finite number of
arguments, which can be variables or con-
stants. Although most expert systems use
certainty factors associated with rules to
handle uncertainty, our method does not
depend on certainty factors. Our verifica-
tion method is also independent of the
inference mechanism to be used with the

works (?debice-y) & connecied (?device-y, L iv ing- room-o~t~et j

connected (?device-x, Living-room-outlet) & works (?device-y)
works (?device-z) & connected (?device-t, Living-room-outlet)

I
4

I
Figure 1. Conjunctions that might occur as the antecedents of rules in the domain of the
diagnosis of household electrical devices and wiring systems.

Table 1. Relationships between the example Conjunctions in knowledge bases KB, and KB2.

KB1 KB2
EXAMPLE INSTANTIATION OF VARIABLES EOIJIVALENT INSTANTIATION OF VARIABLES EQUIVALENT

1 ?device-x = Iron

2 ?device-x = Iron,
?device-y = Iron

3 ?device-x = Iron,
?device-y = Iron

4 ?device-x = Iron,
?device-y = Iron,
?device4 = Iron,
?device-z = Iron

Yes ?device-x = Lamp No

Yes ?device-x = Lamp, Yes
?device-y = Lamp

Yes ?device-x = Lamp, No
?device-y = Iron

Yes ?device-x = Lamp, Yes
?device-y = Iron,
?device-t = Lamp,
?device-z = Iron

rule base. However, as we show later, some
types of problems are specific to the infer-
ence mechanism used.

In this article, variables start with a
question mark, predicate names start with
lower case letters, and constants are cap-
italized and may be of type integer, real, or
string. For example, the following fact could
appear in an expert system designed to
diagnose household electrical devices and
wiring systems:

the symbol “-” denotes the negation of a
predicate. This rule states that if there is a
TV set whose temperature is high and it is
not functioning, we can conclude this de-
vice is broken.

Unification

Knowledge base rules with commonpred-
icates might be related. During verifica- ’ tion, UVT compares the literals to deter-

~ mine therelationships between them. These
temperature (Heater, High)

This fact states that the temperature of the
heater is high. An example rule is

if type (?device, TV-set) &
temperature (?device, High) &
- works (TV-set)

then state (?device, Broken) ;

where ?device is a variable, “TV-set,”
“High,” and “Broken” are constants, “type,”
“temperature,” “works,” and “state” are
predicate names, “&” means “and,” and

common predicates might be equivalent
even though they are not exactly equal.
The predicates in conjunctions can be in
any order, although there might be some
restrictions imposed by a substitution list.
T o determine the equivalence of common
predicates, we use a technique called uni-
fication.“5

The conjunctions in Figure 1 might oc-
cur as the antecedents of rules in the exam-
ple electrical-device domain mentioned
earlier. In the first set of conjunctions,

suppose there is no restriction imposed by
a substitution list; that is, the variable ?de-
v ice-x in the first conjunction has not yet
been instantiated. We can easily see that if
variable ?device-x takes the value Iron,
these two conjunctions are equivalent; how-
ever, we cannot be sure whether the infer-
ence engine will instantiate the variable
?device-x to the constant Iron.

In the second example in Figure 1, we
can make a definite judgment about the
conjunctions’ equivalence, because ?de-
vice-x can be unified with ?device-y (as-
suming both are uninstantiated) before the
matching begins. The conjunctions in the
third example pair are not definitely equiv-
alent, because the order of predicates is
different and the constants that will be
provided by the inference engine for vari-
ables ‘device-.w and ?device-y might not
always be the same.

Although the order of predicates in the
fourth pair is different, the conclusion about
the conjunctions’ equivalence is definite
assuming the four variables are uninstanti-
ated before matching begins.

Let’s assume that the inference engine
matches predicates with knowledge base
facts from top to bottom. T o see why the
equivalence of two conjunctions of predi-
cates might not b e definite, consider the
following sets of facts in knowledge bases
KB, and KB2:

KB1:
connected (Iron, Living-room-outlet)
works (Iron)
connected (Lamp, Living-room-outlet)
works (Lamp)

KB2:

connected (Lamp, Living-room-outlet)
connected (Iron, Living-room-outlet)
works (Iron)
works (Lamp)

Table 1 compares the relationships be-
tween the conjunctions in Figure l , taking
into account the facts in KB, and KB,.

This example shows that the ordering
of data can affect the instantiations to the
variables. The conjunctions in examples
2 and 4 are equivalent no matter in what
order the facts are derived. On the other
hand, the conjunctions in examples 1 and
3 are not equivalent in the case of KB,,
although they are in the first knowledge
base . T h i s l e a d s to uncer ta in t ies in

IEEE EXPERT

detecting some types of knowledge base
anomalies.

Inferred rules

Before testing, we must find the rules
that are inferred by the knowledge base,
because they might contradict other rules
or cause circular chains. However, com-
puting all the inferred rules is infeasible;
there are just too many.

We use the term “inferred rules” for the
rules that can be obtained using the transi-
tivity property of rules. W e find them by
computing the transitive closure of the rules.
A new rule can be inferred from two rules
if the literal in the consequent of one rule is
unifiable with a literal in the antecedent of
another. In that case, the inferred rule’s
antecedent will be the conjunction of the
initial rules’ antecedents, excluding the
literal that causes transitivity, and the con-
sequent will be the second rule’s conse-
quent after applying the substitution ob-
tained by the unification. For example,
given

R40: i f type (?device-x, Heating) &
temperature (?device,x, High)

then getspower (?device-X)

R41: if getspower (?appliance) &
-works (?appliance)

then needs-diagnosis (?appliance)

we can infer

Rnew: if type (?appliance, Heating) &
temperature (?appliance, High) &
-works (?appliance)

then needs-diagnosis (?appliance)

In forming an inferred rule’s antecedent,
UVT eliminates all the duplicate literals in
the antecedent. In case two literals cause a
tautology, UVT cannot infer a new rule,
but informs the knowledge engineer about
the potential problem that might be caused
by the two rules. If the rules have certainty
factors, UVT computes the inferred rules’
certainty factors and then discards the rules
whose certainty factor is below a given
threshold.

Suppose we have the following set of
rules from the domain of household elec-
trical devices:

R1: i f type (?device, Iron) &

then works (?device)
temperature (?device, High)

R2: if works (?device)
then state (?device, OK)

R3: if state (?device, OK)
then -problem (?device)

R4: if type (?device, Iron) &

then problem (?device)
temperature (?device, High)

CONSZSTENCY CHECKING
TESTS WHETHER A SYSTEM
PRODUCES SIMILAR ANSWERS
TO SlMlLAR QUESTIONS.
COMPLETENESS CHECKING
TESTS WHETHER IT ANSWERS
ALL REASONABLE SlTUATlONS
IN ITS DOMN OF EXPERTISE.

Using transitivity, we can infer

11: if type (?device, Iron) &

then state (?device, OK)
temperature (?device, High)

12: if works (?device)
then -problem (?device)

13: if type (?device, Iron) &

then -problem (?device)
temperature (?device, High)

I1 is inferred from R1 and R2,12 from R2
and R3, and I3 from R1, R2, and R3.
Without considering the inferred rules, it is
hard to see that the original set of rules
contains a contradiction. However, it is
clear that R4 and the inferred rule I3 conflict.

To find the inferred rules, UVT uses a
recursive algorithm3 to compute the transi-
tive closure of the initial rule base. The
worst-case time complexity of the algo-
rithm is O(N3) , where N is the number of
rules in the rule base. Most rule-based
systems d o not have long rule chains; in-
stead, they have many short chains.

The knowledge base
problems detectable by UVT

After finding and appending the inferred
rules to the knowledge base, UVT checks
the rules against two requirements: consis-
tency and completeness. Consistency check-
ing includes testing whether the system
produces similar answers to similar ques-
tions. Inconsistencies in a knowledge base
might appear as conflicts, redundancies, or
subsumptions. Two rules conflict with each
other if they succeed in the same situation
but result in contrary conclusions. They
are redundant if they succeed in the same
situations and result in the same conclu-
sions. A rule is subsumed by another rule if
it has the same conclusions but only a
portion of the antecedents of the other rule
as its antecedents. Completeness checking
includes testing whether the system an-
swers all reasonable situations within its
domain of expertise. When a system is
complete, everything that can be derived
from the data is derived. Completeness can
be achieved by identifying and removing
knowledge gaps in a knowledge base.

In this discussion, we’ll ignore certainty
factors and assume that the inference mech-
anism processes the conditions in a rule’s
antecedent from left to right.

Redundant rules. Redundant rules are
those that succeed in the same situation
and have the same result. In other words,
when two rules’ antecedents are equiva-
lent, their consequents are also equivalent.
Two antecedents are equivalent when they
can be unified and have an equal number of
literals; two consequents are equivalent if
they can be unified. For example, consider

R5: if connected (?device, ?point) &
works (?device)

then hasPower(?point)

R6: if connected (?appliance,
?plug-out) &
works (?appliance)

then hasPower(?plug-out)

R 5 and R6 are redundant no matter which
inference mechanism (backward or for-
ward chaining) is used, because the num-
ber of literals in the antecedents is equal,
and the antecedents and the consequents
are unifiable with substitutions (Puppli-
ancel?device, ?plug-outl?point) to the first

Related work

The first attempt to automate knowledge
base debugging was the Teiresias’.’ pro-
gram, developed in the context of the My-
cin medical expert system.’ Teiresias i b an
interactive program that lets an expert judge
whether a Mycin diagnosis is correct, track
down the errors in the knowledge base that
led to inconsistent conclusions, and alter,
delete, or add rules in order to fix these errors.

The Rule Checker Program3 for verifying
consistency and completeness was developed
to be used with Oncocin.’.3 a rule-based ex-
pert system for clinical oncology. RCP deter-
mines completeness and missing rules
through combinatorial enumeration. It
hypothesizes missing rules by assuming
there is a rule for each possible combination
of values of attributes that appear in the
antecedent.

Check4 is a knowledge ba5e verification
tool for LES. Lockheed’s rule-based expert
system shell. Check assumes that rules are
naturally separated by subject categories. It
identifies inconsistencies in the knowledge

rule. However, if the antecedents of one of
these rules is swapped, the redundancy
would not be certain, since the unified
variables might have been instantiated to
different values. On the other hand, consider

R4: if type (?device, Iron) &

then problem (?device)
temperature (?device, High)

R7: if type (?device, ?any-type) &
temperature (?device, High)

then problem (?device)

R 4 and R 7 might be redundant. The reason
for uncertainty is that the value that will be
provided for ?any-type in the second rule
might or might not be Iron. Therefore,
UVT reports that R4 and R7 might be
redundant.

Redundancies can cause serious prob-
lems. They might cause the same informa-
tion to be counted several times. leading to
erroneous increases in the certainty factors
of their conclusions. Redundancies d o not
cause problems in systems where certainty
factors are not involved and the first suc-
cessful rule is the one to succeed. Redun-
dant rules are not required to have the same
certainty factors. In other words, rules with
different certainty factors might still be
redundant. This is also true for conflicting

base by looking for redundant, conflicting,
and subsumed rules, unnecessary If condi-
tions, and circular rule chains. The program
uses dependency charts to detect rule chains.

The Expert System Checker5 is a deci-
sion-table-based checker for rule-based sys-
tems. ESC first constructs a master decision
table for the entire knowledge base, then
automatically splits i t into subtables. checks
each subtable for completeness and consis-
tency, and reports missing rules.

Preece, Shinghal, and Batarekh surveyed
the work on verification of expert-system
knowledge bases that are based on first-order
logic.6 Their overview compares five verifi-
cation programs. including RCP and Check.

References

I . B.G. Buchanan andE.H. Shortliffe,Rule-
Rrrsed Expert Systems. Addison- Wesley,
Reading, Mass., 1985.

2. R. Davis. “InteractiveTranaferof Exper-

rules, subsumed rules,
dundant If conditions.

and rules with re-

Conflicting rules. Conflicting rules suc-
ceed in the same situation but produce
conflicting results; that is, their anteced-
ents are equivalent but their consequents
conflict. For example, rules R 4 and 13
definitely conflict with each other because
they are unifiable and their conclusions are
conflicting. On the other hand, consider

R1: if type (?device, Iron) &
temperature (?device, High)

then works (?device)

R8: if type (?device, ?any-type) &
temperature (?device, High)

then -works (?device)

These rules might or might not conflict:
They conflict only when the variable
?anj-t?;/7e in R 8 is instantiated to the value
Iron.

Subsumed rules. If two rules’ conse-
quents are equivalent, and one rule’s ante-
cedent consists of the antecedents of the
other and some additional literals, we say
that the more restrictive rule (the one hav-
ing more predicates in its antecedent) is
subsumed by the other. When the more
restrictive rule succeeds, the less restric-

tise: Acquisition ofNew Inference Rules,”
Arrifciullntelligence, Vol. 12, 1979, pp.
121-157.

3. M. Suwa, A.C. Scott, and E.H. Short-
liffe, “An Approach to Verifying Com-
pleteness and Consistency in a Rule-
Based System.” AI Maguzine, Vol. 3,
No. 4, 1982, pp 16-21.

4. T.A. Nguyen et al.. “Knowledge Base
Verification,” A I Mugazine, Vol. 8. No.
2, Summer 1987, pp 69-75.

5. B. Cragun and H.J. Steudel, “A Deci-
sion-Table-Based Processor for Check-
ing Completeness and Consistency in
Rule-Based Expert Systems,” Inr ’I .I.
Man-Muchine Studies, Vol. 26. No. 5 ,
1987, pp. 633-648.

6. A.D. Preece, R. Shinghal, and A. Ba-
tarekh, “Principles and Practices in Ver-
ifying Rule-Based Systems,’’ Knowledge
Eng. Rei,iew, Vol. 7, No. 2. 1992, pp.
115-141.

tive one will also succeed. For example,
consider

R8 if type (?device, ?any-type) & I

temperature (?device, High)
then -works (?device)

R9 if temperature (?device, High) I
then -works (?device)

R8 is subsumed by R9 because R 9 needs
only d portion of information required by
R8 to conclude that the device 15 not in
working condition In other words, when
R8 succeeds, R 9 also wcceeds

Redundant If conditions. Some rules
contain unnecessary If conditions that can
be removed without affecting the rule’s
effect. Such conditions make the inference
engine d o unnecessary work. T w o types of
unnecessary If conditions are possible. The
first type occurs when a literal in one rule’s
antecedent conflicts with a literal in the
other rule’s antecedent and all the remain-
ing literals in both the antecedents and the
consequents of the rules are equivalent.
For example, consider

R I if type (?device Iron) &

then works (?device) I
temperature (?device High)

RIO: if type (?device, Iron) &
~

-temperature (?device, High)
then works (?device)

The predicate “temperature” in these rules
is unnecessary because it cannot affect the
conclusions of R I and R10. These rules can
be reduced semantically into a single rule:

RX : if type (?device, Iron)
then works (?device)

The second type of redundant If condi-
tion occurs when two rules’ consequents
are equivalent, and one rule’s antecedent
contains a single literal that conflicts with
a literal in the other rule’s antecedent:

R I : if type (?device, Iron) &

then works (?device)
temperature (?device, High)

I
R11: if -temperature

(?electronic-device, High)
then works (?electronic-device)

W e can combine these rules with a logical
Or operation after unification through the
substitution (?dei~ice/?electronic_device] :

RX: if -temperature (?device, High) Or
temperature (?device, High) &
type (?device, Iron)

then works (?device)

Using the distribution property of Or over
And operators, we can rewrite RX as

RX: if (-temperature(?device, High) Or
temperature (?device, High)) &
(-temperature (?device, High) Or
type (?device, Iron))

then works (?device)

W e can then simplify RX by removing the
tautology:

RX: if (-temperature (?device, High) Or

then works (?device)
type (?device, Iron))

Now. we can separate RX into two rules.

R X I : if type (?device, Iron)
then works (?device)

RX2: if -temperature (?device, High)
then works (?device)

RX2 is equivalent to the original rule
RI I , whereas RXI is the same as R1
except for the redundant If condition
“temperature(?device, High).”

Dead-end rules. In backward-chainlng
systems, subgoals are created from the rules
whose consequents match the current goal
Each subgoal must match a fact whose truth
value is provided by the user, or the conse-
quent of a knowledge base rule, otherwise, It

JUNE 1993
~~~~ 

- ~ ~~ ~~ ~~ 

is unreachable. A rule with unreachable 
antecedents is called a dead-end rule. W e  
locate these rules by doing a completeness 
check on the knowledge base, that is, by 
identifying gaps in the knowledge base. 
We can then fix these gaps by adding the 
missing rules or marking the related facts 
as “askable.” For instance, the rule 

R12: if type (?device, Lamp) & 

then works (?device) 
lit (?device) 

is a dead-end rule if there are no rules with 
consequent ‘lit,’ or if ‘lit’ is not set to be an 

L-J 
Figure 2. The dependency between rules 
causes a cycle (shown with heavier arrows). 

askable predicate. 

Cycles and contradictions within a rule. 
A cycle within a rule can be detected when 
the same predicate occurs in both its ante- 
cedent and consequent. For example, the 
predicate “haspower” in R I 3  might cause 
a cycle: 

R13: if connected (?point-x, ?point-y) & 
haspower (?point-x) 

then haspower (?point-y) 

Contradictions occur when one literal 
conflicts with another in the same rule. 
This can happen in two ways. First, both 
conflicting literals can be in the rule’s 
antecedents: 

R14: if connected (?device-x, ?point) & 
connected (?device-y, ?point) & 
works (?device-x) & 
-works (?device-y) 

then state (?device-y, Broken) 

Here, the third and fourth literals might 
contradict each other, since the variables 
?device-x and ’device-? might be instanti- 

develop algorithms to check for cycles, but 
the existing algorithms in practice take too 
much time. There is no way to quickly 
check for cycles statically, so most verifi- 
cation and validation tools do  this dynam- 
ically, Since our approach finds problems 
in the rule set before the expert system is 
used, UVT can only find potential inde- 
pendent cycles. Consider 

R2: if works (?device) & 
then state (?device, OK) 

R I  6: if state (?device, OK) & 
connected (?device, ?point) & 
haspower (?point) 

then works (?device) 

T o  see how dependencies cause cycles, 
suppose that our goal is to find out if the 
steam iron works, that is, to try to satisfy 
“works(Iron).” A backward-chaining in- 
ference engine might choose R 16 as rele- 
vant to this goal. Three subgoals are creat- 
ed from the antecedent of RI 6, as shown in 

ated to the same device. Figure 2. The first subgoal is to determine 

rule occurs when one conflicting literal ~ determining the State of a device i s  rule R2. 

other in its consequent. For example, ’ quires that the steam iron works, which is 
1 the initial goal, and the inference engine 

-works (?device) & , enters into a cycle. This scenario is quite 
’ likely to occur in a large rule base, so then -state (?device, OK) 

R15’s consequent and the first literal of its ~ detecting such cycles is a crucial job  of a 
antecedent certainly contradict each other. 1 knowledge base verification tool. 
However, some forward-chaining systems 
use this kind of rule to switch from one 1 
situation to another. 

The second Of contradiction in  a 1 the state of Iron. The first rule relevant to 

antecedent and the ’ Unfortunately, the antecedent of R2 re- appears in the 

R15: if state (?device, OK) & 

UVT implementation 
~ 

Dependencies between rules. Rules with 
common predicates in their antecedents 
and consequents might be naturally related, 
but these dependencies can lead to cycle 
problems. It is not theoretically hard to 

UVT is implemented in C and runs on 
Sun workstations. The tool starts by com- 
puting all the inferred rules and adding 
them to the rule base. 

The next step is to find the relationships 

~ 

, ’ 

~ 

I 



Table 2. The contents of entries Rule_relation[5,6] and Rule-relation[l,8] in the 
Rule-relation table. 

TABLE ENTRY R5 vs. R6 RI vs. R8 
T o  detect possible problems within the Consequent-relation Equivalent Conflicting 

Equivalent-count 2 2 rules, UVT also examines each rule indi- 
Conflicting-count 0 0 vidually. T o  detect cycles in a rule, UVT 
Type Definite May-be compares each literal in the antecedent to 

the literal in the consequent. If they are the Substitution list (?appliance/?device, (Iron/?any-type) 

same, a cycle is reported. T o  detect contra- 
?plug-out/?point) 

IAnte(k))l = IAnte(R,)I = 

then RI and R, are redundant 
Rule_relation[i,f .equivalent_count 

where IAnte(Rj)l represents the number 
of l i t e ra l s  i n  Ri’s an tecedent .  T h a t  i s ,  
if the rules’ consequents are equivalent 
and the number of literals in the rules’ 
antecedents equals the number of literals 
found to be equivalent, then Ri and Rj are 
redundant. 

UVT identifies Ri and Ri as conflicting 

between rules and store them in two 2D 
tables. The Rule-relation[ij] table con- 
tains the relational information obtained 
by comparing pairs of consequents and 
antecedents using unification. UVT com- 
pares the consequents first: They are either 
equivalent (unifiable), conflicting (nega- 
tion of one is unifiable with the other), or 
different. If they are equivalent or conflict- 
ing, UVT stores the unification’s substitu- 
tion list. Using this same list, UVT then 
compares the antecedents and finds the 
equivalent, conflicting, and different liter- 
als and whether each relationship is defi- 
nite or not. UVT identifies each possible 
relationship between rules as definite if 
every variable in the substitution list is 
unified with another variable, and if all 
variable pairs are instantiated in the pred- 
icates in which they are unified. In this 
process, the substitution list might be aug- 
mented, since there might be variables in 
the antecedents’ literals that do  not occur 
in the consequents but that can unify. 

Each entry in the Rule-relation[ij] table 
contains the following information: 

consequent-relation: Equivalent, Con- 
flicting, or Different 
equivalent-count: the number of equiv- 
alent literals in the antecedents 
conflicting-count: the number of con- 
flicting literals in the antecedents 
type: whether the possible relationship 
is Definite or May-be 
substitution list: the substitutions used 
in the unification 

T a b l e  2 s h o w s  the  en t r ies  of the  
Rule-relation table corresponding to the 
rule pairs RYR6 and Rl lR8.  

U V T  examines  e a c h  en t ry  of the  
Rule-relation table to detect redundant, 
conflicting, and subsumed rules, and  
rules having redundant If conditions. If it 
identifies a problem between rules R, 
and RJ, UVT issues a warning message if 
Rule_relation[ij].type = May-be, or an 
error message otherwise. 

match, the rule is identified as dead-end. 
T h e  second tab le  in UVT,  ca l led  

If-then[ij], is used to detect potential cy- 
cles due to the dependencies between rules. 
Eachentrystoresinformationaboutwhether 
R,’s consequent occurred in R;’s anteced- 
ent. For example, if the entry If_then[2,16] 
has the value Equivalent, this indicates that 
one of the antecedents of R2 is the same as 
t h e  consequent  of  R16. S imi la r ly ,  
If_then[l6,2] has the value Equivalent, as 
well. On the other hand, if If-then[ 1,4] has 

diction in a rule, UVT compares the ante- 
cedent’s literals to each other and to the 
literal in the consequent. If the compared 
literals are conflicting, a contradiction is 

The following rule determines if rules Ri 1 reported. T o  detect a dead-end rule, UVT 
I checks all the literals in the rule’s anteced- and Ri are redundant: 

Rule_relation[i,~],equivalent_count 
then R, and R, are conflicting 

if Rule-relation[i,~].consequent-relation 
= Equivalent and 

IAnte(R,)I > IAnte(R,)I & 
IAnte(R,)I = 

then RI is subsumed by R, 

UVT identifies rules R, and R~ as having 
redundant If conditions using these rules: 

~ u ~ e ~ r e ~ a ~ ~ o n ~ ~ , , ~ , e q u ~ v a ~ e n ~ _ c o u n ~  

if Rule_relation[i,~].consequent~relation to see whether they match Some fact Or 

rule. If at least one literal does not have a = Eauivalent & 

’ involved in the cycles. 
UVT spends most of its time finding 

inferred rules. The larger the number of 
interrelated rules (with common predicates 
in their antecedents and consequents), the 
longer it takes to find inferred rules. A s  the 
program builds the relationship tables, it 
compares each rule with the others. The 
time spent on building the tables and de- 
tecting the Problems have complexity 
O(M2),  where M is the number of rules (N) 

- 
if Rule_relation[i,/].consequent_relation ents Of is the Same as the ‘Onsequent 

= Conflictina & R4. Using this table, UVT reports possible 

First type of redundancy: 
if Rule_relation[~,/].consequent_relation 

= Equivalent & 
IAnte(R,)I = IAnte(R,)I & 
Rule_relation[i,~],conflicting_count = 

I &  
IAnte(R,)I = 

Rule~relation[~,~].equivalent~caunttl 

conditions 
then RI and R, have redundant If 

Second type of redundancy: 1 

plus the number of inferred rules. 
To  reach conclusions, UVT takes into 

1 account the dependencies between literals 
in a rule, the relationships between rules, 
and the way unification occurs. It then 
generates two types of messages in the 
form of warnings and errors, using the 
word “may” when it cannot identify defi- 
nite problems. 

‘ A  COMMON PRACTICE IN BUILD- 

if Rule-relation[i,j].consequent-relation 
= Equivalent & 

(IAnte(R,) = 1 & 
iAnte(h,)i > I or IAnte(Ri)I = 1 & 1 ing knowledge-based systems is to avoid 
IAnte(d,)l > 1 )  & 
Rule-relation[i,/].conflicting-count = 1 

conditions 

1 potential conflicting situations through 
analysis and consistency checking of the i knowledge base during development. This 

then RI and R, have redundant If 



is costly, especially as the amount and 
diversity of knowledge increases. Gather- 
ing diverse knowledge from different sourc- 
es, resolving knowledge incompatibility 
problems, and dividing domain knowledge 
into smaller, internally consistent collec- 
tions are all difficult problems. 

Recently, autonomous distributed knowl- 
edge-based systems have gained much at- 
tention. In domains such as distributed 
sensing, medical diagnosis, and air traffic 
control, knowledge is inherently spatially 
distributed. Development-time verification 
approaches can be used to detect and re- 
solve inconsistencies and incompleteness 
in individual KBSs, but inconsistencies 
between systems must also be resolved. 
We can avoid these problems by allowing 
participating systems to generate conflict- 
ing solutions to subproblems and then 
resolving them at runtime. Strategies such 
as backtracking, compromise negotiation, 
integrative negotiation, constraint relax- 
ation, case-based and utility reasoning 
methods, and multiagent truth mainte- 
nance6-I0 can be used to resolve conflicts. 
Most systems for runtime conflict resolu- 
tion use either centralized approaches or 
bilateral negotiation techniques. A new 
approach could be to develop a negotiation 
paradigm that  a l lows  mult iple  sys t ems  
t o  reconcile their differences and resolve 
inconsistencies. 

References 
1, T.J. O’Leary et al., “Validating Expert Sys- 

tems,” IEEE Expert, Vol. 5, No. 3, June 
1990, pp. 51-58. 

2. M. Suwa, A.C. Scott, and E.H. Shortliffe, 
“An Approach to Verifying Completeness 
and Consistency in a Rule-Based Expert 
System,”AIMagazine, Vol. 3, No. 4,1982, 
pp 16-21. 

3. F. Polat and H.A. Guvenir, “Knowledge 
Base Verification in anExpert System Shell,” 
Proc. Fourth Int’l Symp. on Computer and 
Information Sciences, Vol. 2, METU, 
Ankara, Turkey, 1989, pp. 889-898. 

4. N.J. Nilsson, Principles of Artificial Intel- 
ligence, Tioga Publishing, Palo Alto, Ca- 
lif.. 1980. 

5 .  J.H. Siekmann, “An Introduction to Unifi- 
cation Theory,” in Formal Techniques in 
Art~ciallntel1igence:A Source Book, R.B. 
Banerji, ed., Elsevier North-Holland, Am- 
sterdam, 1990, pp 369-409. 

6. M.N. Huhn and D.M. Bridgeland, “Multia- 
gent Truth Maintenance,” IEEE Truns. Sys- 
tems, Man, and Cybernetics, Vol. 21, NO. 
6, Nov./Dec. 1991, pp. 1,437-1.445. 

7. M. Klein and S.C.Y. Lu, “Conflict Resolu- 
tion in Cooperative Design,” Artificial In- 1 
telligerrce in Engineering, Vol. 4, No. 4, 
1989, pp. 168-180. 

8. S. Lander and V.R. Lesser, “Conflict Res- 
olution Strategies for Cooperating Expert 
Agents,” Int ‘1 Con$ on Cooperating Knowl- 
edge-Based Systems, Springer-Verlag, New 
York, 1990, pp. 183-198. 

9. F. Polat and H.A. Guvenir, “A Conflict- 
Resolution-Based Cooperative Distributed 
Problem-Solving Model,” Proc. AAAI ‘92 
Workshop on Cooperation among Hetero- 
geneous Intelligent Agents, AAAI, Menlo 
Park, Calif., 1992, pp. 106-1 15. 

10. K.P. Sycara, “Negotiation Planning: An AI 
Approach,” European J .  of Operational 
Research, Vol. 46, No. 2, 1990, pp. 216- 
234. 

nesota, Minneapolis, for 1 
I the 1992-1993 academic year. His research in- 

terests include knowledge-based systems, knowl- 
edge base verification, and distributed artificial 
intelligence. He received his BS in computer 
engineering from the Middle East Technical 1 
University, Ankara, in 1987 and his MS degree 
in computer engineering and information sci- 1 
ence from Bilkent University in 1989. I 

H. Ahoy Guvenir is an 
assistant professor of 
computer engineering 
and information science 
at Bilkent University. 
His research interests in- 
clude expert systems, 
machine learning, and 
computational linguis- 
tics. He received his MS 
in electrical engineering 

from Istanbul Technical University in I98 I and 
his PhD in computer science from Case Western 
Reserve University in 1987. He is a member of 
AAAI, ACM, ACM SIGArt, and the Interna- 
tional Association of Knowledge Engineers. 

Readers can reach the authors at Bilkent Uni- 
versity, Dept. of Computer Engineering and In- 
formation Sciences, 06533 Bilkent, Ankara, 
Turkey; e-mail, polat@trbilun.bitnet or 
guvenir@ trbilun.bitnet 

I ~- 

--A JUNE 1993 

Computer- Aided 
Software 

Engineering (CASE) 
2nd Edition 

edited by Elliot Chikofsky 

This new edition of the popular 
technology series on CASE describes 
new information on its technology, its 
background, and its evolution. The 
papers presented in its text illustrate 
the present state of CASE, how its 
concepts have fared over time, and 
how it looks as a technology for the 
future. 

The second edition features more 
than 35% new papers and combines 
the latest key papers in the field with 
background articles that allow the 
reader to see how the field is evolving. 
It is also updated with current material 
on: 

# integrated Environments 
# Tools and Assessment Evaluation 
# Process-Based Integration 
# Learning Curve 
# CASE Adoption Pitfalls 
# I-CASE 

Sections: CASE Environments and 
Tools: Overview, Evolution of 
Software Development Environment 
Concepts, Role of Data Browsing 
Technology in CASE, Role of 
Assistants and Expert System 
Technology in CASE, Role of 
Prototyping in CASE, Tailoring 
Environments, Issues of Evaluating 
Tools and Managing CASE. 

184 pages. January 1993. Softcover. 

Catalog # 3590-05 -$35.00 Members $25.00 
ISBN 0.8 186-3590-8. 

Order toll- free 
1 -800-CS-BOOKS 

0rFa~(714)821-4010 
(in California call (714) 821-8380) 


