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O N E  OF THE GREATEST DIFFI- 
culties in developing an expert system is 
knowledge acquisition, the process of build- 
ing the knowledge base. A knowledge base 
might be incomplete or inconsistent from 
the start, since human experts are not pre- 
pared to provide all the knowledge needed 
in one complete and consistent chunk. There 
might be cases that the expert has not 
considered, or items (rules, for example) 
that need to be rephrased. Even after the 
knowledge base has been built, its mainte- 
nance usually requires a complete valida- 
tion if any item is modified, removed, or 
added. Therefore, validation is considered 
a mandatory step in developing knowl- 
edge-based systems.' 

An expert system cannot be tested, even 
on simple cases, until much of its knowl- 
edge base is encoded. Regardless of how 
an expert system is developed, its builders 
can profit from a systematic check of the 
knowledge base without having to gather 
extensive data for test runs, even before the 
full reasoning mechanism is functioning. 
This verification can be achieved by devel- 
oping a program to check the knowledge 
base for consistency and completeness.2 

Our proposed method for verifying 
knowledge bases is based on the unifica- 
tion of rules.' One characteristic that 

T H i s  METHOD CHECKS MVOWLEDGE BASE 
SYSTEMS FOR COMPLETENESS AND 

CONSISTENCY BY GENERATlNG INFERRED R U U S  
AND THEN CONSlDERlNG THEIR EFFECTS IN A 

distinguishes our approach from other ver- 
ification tools is that it infers some of the 
rules that are not explicitly given in the rule 
base and considers their effect in the veri- 
fication process. Our method can deter- 
mine conflicting, redundant, subsumed, 
circular, and dead-end rules; redundant If 
conditions in rules; and cycles and contra- 
dictions within rules. We have implement- 
ed our method in acomputer program called 
UVT (for unification-based verification 
tool) and tested it on sample knowledge 
bases. 

Rules for knowledge 
representation 

When planning an expert system, de- 
velopers must decide on a knowledge 
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representation scheme that is most suitable 
to the application. We chose a rule-based 
representation scheme because of the mod- 
ularity it provides and the simple, uniform 
interpretive procedure that is often suffi- 
cient in rule-based systems. Rule-based 
representation is also easy to learn and use. 

Our method assumes that the knowledge 
base rules have only one literal in their 
consequents and aconjunctionofliterals in 
their antecedents. A literal is either a pred- 
icate or the negation of a predicate. A 
predicate has a name and a finite number of 
arguments, which can be variables or con- 
stants. Although most expert systems use 
certainty factors associated with rules to 
handle uncertainty, our method does not 
depend on certainty factors. Our verifica- 
tion method is also independent of the 
inference mechanism to be used with the 



works (?debice-y) & connecied (?device-y, L iv ing- room-o~t~et j  

connected (?device-x, Living-room-outlet) & works (?device-y) 
works (?device-z) & connected (?device-t, Living-room-outlet) 
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Figure 1. Conjunctions that might occur as the antecedents of rules in the domain of the 
diagnosis of household electrical devices and wiring systems. 

Table 1. Relationships between the example Conjunctions in knowledge bases KB, and KB2. 

KB1 KB2 
EXAMPLE INSTANTIATION OF VARIABLES EOIJIVALENT INSTANTIATION OF VARIABLES EQUIVALENT 

1 ?device-x = Iron 

2 ?device-x = Iron, 
?device-y = Iron 

3 ?device-x = Iron, 
?device-y = Iron 

4 ?device-x = Iron, 
?device-y = Iron, 
?device4 = Iron, 
?device-z = Iron 

Yes ?device-x = Lamp No 

Yes ?device-x = Lamp, Yes 
?device-y = Lamp 

Yes ?device-x = Lamp, No 
?device-y = Iron 

Yes ?device-x = Lamp, Yes 
?device-y = Iron, 
?device-t = Lamp, 
?device-z = Iron 

rule base. However, as we show later, some 
types of problems are specific to  the infer- 
ence mechanism used. 

In this article, variables start with a 
question mark, predicate names start with 
lower case letters, and constants are cap- 
italized and may be of type integer, real, or 
string. For example, the following fact could 
appear in an expert system designed to 
diagnose household electrical devices and 
wiring systems: 

the symbol “-” denotes the negation of a 
predicate. This rule states that if there is a 
TV set whose temperature is high and it is 
not functioning, we can conclude this de- 
vice is broken. 

Unification 

Knowledge base rules with commonpred- 
icates might be related. During verifica- ’ tion, UVT compares the literals to deter- 

~ mine therelationships between them. These 
temperature (Heater, High) 

This fact states that the temperature of the 
heater is high. An example rule is 

if type (?device, TV-set) & 
temperature (?device, High) & 
- works (TV-set) 

then state (?device, Broken) ; 

where ?device is a variable, “TV-set,” 
“High,” and “Broken” are constants, “type,” 
“temperature,” “works,” and “state” are 
predicate names, “&” means “and,” and 

common predicates might be equivalent 
even though they are not exactly equal. 
The predicates in conjunctions can be in 
any order, although there might be some 
restrictions imposed by a substitution list. 
T o  determine the equivalence of common 
predicates, we  use a technique called uni- 
fication.“5 

The conjunctions in Figure 1 might oc- 
cur as the antecedents of rules in the exam- 
ple electrical-device domain mentioned 
earlier. In the first set of conjunctions, 

suppose there is  no  restriction imposed by 
a substitution list; that is, the variable ?de-  
v ice-x  in the first conjunction has not yet 
been instantiated. We can easily see that if 
variable ?device-x takes the value Iron, 
these two conjunctions are equivalent; how- 
ever, we cannot be sure whether the infer- 
ence engine will instantiate the variable 
?device-x to the constant Iron. 

In the second example in Figure 1, we 
can make a definite judgment about the 
conjunctions’ equivalence, because ?de-  
vice-x can be unified with ?device-y  (as- 
suming both are uninstantiated) before the 
matching begins. The conjunctions in the 
third example pair are not definitely equiv- 
alent, because the order of predicates is  
different and the constants that will be 
provided by the inference engine for vari- 
ables ‘device-.w and ?device-y  might not 
always be the same. 

Although the order of predicates in the 
fourth pair is different, the conclusion about 
the conjunctions’ equivalence is definite 
assuming the four variables are uninstanti- 
ated before matching begins. 

Let’s assume that the inference engine 
matches predicates with knowledge base 
facts from top to bottom. T o  see why the 
equivalence of two conjunctions of predi- 
cates might not b e  definite, consider the 
following sets of facts in knowledge bases 
KB,  and KB2: 

KB1: 
connected (Iron, Living-room-outlet) 
works (Iron) 
connected (Lamp, Living-room-outlet) 
works (Lamp) 

KB2: 

connected (Lamp, Living-room-outlet) 
connected (Iron, Living-room-outlet) 
works (Iron) 
works (Lamp) 

Table 1 compares the relationships be- 
tween the conjunctions in Figure l ,  taking 
into account the facts in KB,  and KB,. 

This example shows that the ordering 
of data can affect the instantiations to  the 
variables. The  conjunctions in examples 
2 and 4 are equivalent no  matter in what 
order the facts are derived. On the other 
hand, the conjunctions in examples 1 and 
3 are not equivalent in the case of KB,, 
although they are in the first knowledge 
base .  T h i s  l e a d s  to  uncer ta in t ies  in 
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detecting some types of knowledge base 
anomalies. 

Inferred rules 

Before testing, we must find the rules 
that are inferred by the knowledge base, 
because they might contradict other rules 
or cause circular chains. However, com- 
puting all the inferred rules is infeasible; 
there are just too many. 

We use the term “inferred rules” for the 
rules that can be obtained using the transi- 
tivity property of rules. W e  find them by 
computing the transitive closure of the rules. 
A new rule can be inferred from two rules 
if the literal in the consequent of one rule is 
unifiable with a literal in the antecedent of 
another. In that case, the inferred rule’s 
antecedent will be the conjunction of the 
initial rules’ antecedents, excluding the 
literal that causes transitivity, and the con- 
sequent will be the second rule’s conse- 
quent after applying the substitution ob- 
tained by the unification. For example, 
given 

R40: i f  type (?device-x, Heating) & 
temperature (?device,x, High) 

then getspower (?device-X) 

R41: if getspower (?appliance) & 
-works (?appliance) 

then needs-diagnosis (?appliance) 

we can infer 

Rnew: if type (?appliance, Heating) & 
temperature (?appliance, High) & 
-works (?appliance) 

then needs-diagnosis (?appliance) 

In forming an inferred rule’s antecedent, 
UVT eliminates all the duplicate literals in 
the antecedent. In case two literals cause a 
tautology, UVT cannot infer a new rule, 
but informs the knowledge engineer about 
the potential problem that might be caused 
by the two rules. If the rules have certainty 
factors, UVT computes the inferred rules’ 
certainty factors and then discards the rules 
whose certainty factor is below a given 
threshold. 

Suppose we have the following set of 
rules from the domain of household elec- 
trical devices: 

R1: i f  type (?device, Iron) & 

then works (?device) 
temperature (?device, High) 

R2: if works (?device) 
then state (?device, OK) 

R3: if state (?device, OK) 
then -problem (?device) 

R4: if type (?device, Iron) & 

then problem (?device) 
temperature (?device, High) 

CONSZSTENCY CHECKING 
TESTS WHETHER A SYSTEM 
PRODUCES SIMILAR ANSWERS 
TO SlMlLAR QUESTIONS. 
COMPLETENESS CHECKING 
TESTS WHETHER IT ANSWERS 
ALL REASONABLE SlTUATlONS 
IN ITS DOMN OF EXPERTISE. 

Using transitivity, we can infer 

11: if type (?device, Iron) & 

then state (?device, OK) 
temperature (?device, High) 

12: if works (?device) 
then -problem (?device) 

13: if type (?device, Iron) & 

then -problem (?device) 
temperature (?device, High) 

I1 is inferred from R1 and R2,12 from R2 
and R3, and I3 from R1, R2, and R3. 
Without considering the inferred rules, it is 
hard to see that the original set of rules 
contains a contradiction. However, it is 
clear that R4 and the inferred rule I3 conflict. 

To find the inferred rules, UVT uses a 
recursive algorithm3 to compute the transi- 
tive closure of the initial rule base. The 
worst-case time complexity of the algo- 
rithm is O(N3) ,  where N is the number of 
rules in the rule base. Most rule-based 
systems d o  not have long rule chains; in- 
stead, they have many short chains. 

The knowledge base 
problems detectable by UVT 

After finding and appending the inferred 
rules to  the knowledge base, UVT checks 
the rules against two requirements: consis- 
tency and completeness. Consistency check- 
ing includes testing whether the system 
produces similar answers to similar ques- 
tions. Inconsistencies in a knowledge base 
might appear as conflicts, redundancies, or 
subsumptions. Two rules conflict with each 
other if they succeed in the same situation 
but result in contrary conclusions. They 
are redundant if they succeed in the same 
situations and result in the same conclu- 
sions. A rule is  subsumed by another rule if 
it has the same conclusions but only a 
portion of the antecedents of the other rule 
as its antecedents. Completeness checking 
includes testing whether the system an- 
swers all reasonable situations within its 
domain of expertise. When a system is 
complete, everything that can be derived 
from the data is derived. Completeness can 
be achieved by identifying and removing 
knowledge gaps in a knowledge base. 

In this discussion, we’ll ignore certainty 
factors and assume that the inference mech- 
anism processes the conditions in a rule’s 
antecedent from left to right. 

Redundant rules. Redundant rules are 
those that succeed in the same situation 
and have the same result. In other words, 
when two rules’ antecedents are equiva- 
lent, their consequents are also equivalent. 
Two antecedents are equivalent when they 
can be unified and have an equal number of 
literals; two consequents are equivalent if 
they can be unified. For example, consider 

R5: if connected (?device, ?point) & 
works (?device) 

then hasPower(?point) 

R6: if connected (?appliance, 
?plug-out) & 
works (?appliance) 

then hasPower(?plug-out) 

R 5  and R6 are redundant no matter which 
inference mechanism (backward or for- 
ward chaining) is used, because the num- 
ber of literals in the antecedents is equal, 
and the antecedents and the consequents 
are unifiable with substitutions (Puppli- 
ancel?device, ?plug-outl?point) to the first 



Related work 

The first attempt to automate knowledge 
base debugging was the Teiresias’.’ pro- 
gram, developed in  the context of the My- 
cin medical expert system.’ Teiresias i b  an 
interactive program that lets an expert judge 
whether a Mycin diagnosis is correct, track 
down the errors in the knowledge base that 
led to inconsistent conclusions, and alter, 
delete, or add rules in order to fix these errors. 

The Rule Checker Program3 for verifying 
consistency and completeness was developed 
to be used with Oncocin.’.3 a rule-based ex- 
pert system for clinical oncology. RCP deter- 
mines completeness and missing rules 
through combinatorial enumeration. It 
hypothesizes missing rules by assuming 
there is a rule for each possible combination 
of values of attributes that appear in the 
antecedent. 

Check4 is a knowledge ba5e verification 
tool for LES. Lockheed’s rule-based expert 
system shell. Check assumes that rules are 
naturally separated by subject categories. It 
identifies inconsistencies in the knowledge 

rule. However, if the antecedents of one of 
these rules is  swapped, the redundancy 
would not be certain, since the unified 
variables might have been instantiated to 
different values. On the other hand, consider 

R4: if type (?device, Iron) & 

then problem (?device) 
temperature (?device, High) 

R7: if type (?device, ?any-type) & 
temperature (?device, High) 

then problem (?device) 

R 4  and R 7  might be redundant. The  reason 
for uncertainty is that the value that will be 
provided for ?any-type in the second rule 
might or might not be Iron. Therefore, 
UVT reports that R4 and R7 might be 
redundant. 

Redundancies can cause serious prob- 
lems. They might cause the same informa- 
tion to be counted several times. leading to 
erroneous increases in the certainty factors 
of their  conclusions. Redundancies d o  not 
cause problems in systems where certainty 
factors are not involved and the first suc- 
cessful rule is  the one to  succeed. Redun- 
dant rules are not required to have the same 
certainty factors. In other words, rules with 
different certainty factors might still be  
redundant. This is also true for conflicting 

base by looking for redundant, conflicting, 
and subsumed rules, unnecessary If condi- 
tions, and circular rule chains. The program 
uses dependency charts to detect rule chains. 

The Expert System Checker5 is a deci- 
sion-table-based checker for rule-based sys- 
tems. ESC first constructs a master decision 
table for the entire knowledge base, then 
automatically splits i t  into subtables. checks 
each subtable for completeness and consis- 
tency, and reports missing rules. 

Preece, Shinghal, and Batarekh surveyed 
the work on verification of expert-system 
knowledge bases that are based on first-order 
logic.6 Their overview compares five verifi- 
cation programs. including RCP and Check. 
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tive one will also succeed. For example, 
consider 

R8 if type (?device, ?any-type) & I 

temperature (?device, High) 
then -works (?device) 

R9 if temperature (?device, High) I 
then -works (?device) 

R8 is subsumed by R9 because R 9  needs 
only d portion of information required by 
R8 to  conclude that the device 15 not in 
working condition In other words, when 
R8 succeeds, R 9  also wcceeds 

Redundant If conditions. Some rules 
contain unnecessary If conditions that can 
be removed without affecting the rule’s 
effect. Such conditions make the inference 
engine d o  unnecessary work. T w o  types of 
unnecessary If conditions are possible. The  
first type occurs when a literal in one rule’s 
antecedent conflicts with a literal in the 
other rule’s antecedent and all the remain- 
ing literals in both the antecedents and the 
consequents of the rules are equivalent. 
For example, consider 

R I  if type (?device Iron) & 

then works (?device) I 
temperature (?device High) 



RIO:  if type (?device, Iron) & 
~ 

-temperature (?device, High) 
then works (?device) 

The predicate “temperature” in these rules 
is unnecessary because it cannot affect the 
conclusions of R I and R10. These rules can 
be reduced semantically into a single rule: 

RX : if type (?device, Iron) 
then works (?device) 

The second type of redundant If condi- 
tion occurs when two rules’ consequents 
are equivalent, and one rule’s antecedent 
contains a single literal that conflicts with 
a literal in the other rule’s antecedent: 

R I :  if type (?device, Iron) & 

then works (?device) 
temperature (?device, High) 

I 
R11: if -temperature 

(?electronic-device, High) 
then works (?electronic-device) 

W e  can combine these rules with a logical 
Or  operation after unification through the 
substitution ( ?dei~ice/?electronic_device] : 

RX: if -temperature (?device, High) Or 
temperature (?device, High) & 
type (?device, Iron) 

then works (?device) 

Using the distribution property of Or over 
And operators, we can rewrite RX as 

RX: if (-temperature(?device, High) Or 
temperature (?device, High)) & 
(-temperature (?device, High) Or 
type (?device, Iron)) 

then works (?device) 

W e  can then simplify RX by removing the 
tautology: 

RX: if (-temperature (?device, High) Or 

then works (?device) 
type (?device, Iron)) 

Now. we can separate RX into two rules. 

R X I :  if type (?device, Iron) 
then works (?device) 

RX2: if -temperature (?device, High) 
then works (?device) 

RX2 is equivalent to the original rule 
RI  I ,  whereas RXI is the same as R1 
except for the  redundant If condition 
“temperature(?device, High).” 

Dead-end rules. In backward-chainlng 
systems, subgoals are created from the rules 
whose consequents match the current goal 
Each subgoal must match a fact whose truth 
value is provided by the user, or the conse- 
quent of a knowledge base rule, otherwise, It 
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is unreachable. A rule with unreachable 
antecedents is called a dead-end rule. W e  
locate these rules by doing a completeness 
check on the knowledge base, that is, by 
identifying gaps in the knowledge base. 
We can then fix these gaps by adding the 
missing rules or marking the related facts 
as “askable.” For instance, the rule 

R12: if type (?device, Lamp) & 

then works (?device) 
lit (?device) 

is a dead-end rule if there are no rules with 
consequent ‘lit,’ or if ‘lit’ is not set to be an 

L-J 
Figure 2. The dependency between rules 
causes a cycle (shown with heavier arrows). 

askable predicate. 

Cycles and contradictions within a rule. 
A cycle within a rule can be detected when 
the same predicate occurs in both its ante- 
cedent and consequent. For example, the 
predicate “haspower” in R I 3  might cause 
a cycle: 

R13: if connected (?point-x, ?point-y) & 
haspower (?point-x) 

then haspower (?point-y) 

Contradictions occur when one literal 
conflicts with another in the same rule. 
This can happen in two ways. First, both 
conflicting literals can be in the rule’s 
antecedents: 

R14: if connected (?device-x, ?point) & 
connected (?device-y, ?point) & 
works (?device-x) & 
-works (?device-y) 

then state (?device-y, Broken) 

Here, the third and fourth literals might 
contradict each other, since the variables 
?device-x and ’device-? might be instanti- 

develop algorithms to check for cycles, but 
the existing algorithms in practice take too 
much time. There is no way to quickly 
check for cycles statically, so most verifi- 
cation and validation tools do  this dynam- 
ically, Since our approach finds problems 
in the rule set before the expert system is 
used, UVT can only find potential inde- 
pendent cycles. Consider 

R2: if works (?device) & 
then state (?device, OK) 

R I  6: if state (?device, OK) & 
connected (?device, ?point) & 
haspower (?point) 

then works (?device) 

T o  see how dependencies cause cycles, 
suppose that our goal is to find out if the 
steam iron works, that is, to try to satisfy 
“works(Iron).” A backward-chaining in- 
ference engine might choose R 16 as rele- 
vant to this goal. Three subgoals are creat- 
ed from the antecedent of RI 6, as shown in 

ated to the same device. Figure 2. The first subgoal is to determine 

rule occurs when one conflicting literal ~ determining the State of a device i s  rule R2. 

other in its consequent. For example, ’ quires that the steam iron works, which is 
1 the initial goal, and the inference engine 

-works (?device) & , enters into a cycle. This scenario is quite 
’ likely to occur in a large rule base, so then -state (?device, OK) 

R15’s consequent and the first literal of its ~ detecting such cycles is a crucial job  of a 
antecedent certainly contradict each other. 1 knowledge base verification tool. 
However, some forward-chaining systems 
use this kind of rule to switch from one 1 
situation to another. 

The second Of contradiction in  a 1 the state of Iron. The first rule relevant to 

antecedent and the ’ Unfortunately, the antecedent of R2 re- appears in the 

R15: if state (?device, OK) & 

UVT implementation 
~ 

Dependencies between rules. Rules with 
common predicates in their antecedents 
and consequents might be naturally related, 
but these dependencies can lead to cycle 
problems. It is not theoretically hard to 

UVT is implemented in C and runs on 
Sun workstations. The tool starts by com- 
puting all the inferred rules and adding 
them to the rule base. 

The next step is to find the relationships 

~ 

, ’ 

~ 

I 



Table 2. The contents of entries Rule_relation[5,6] and Rule-relation[l,8] in the 
Rule-relation table. 

TABLE ENTRY R5 vs. R6 RI vs. R8 
T o  detect possible problems within the Consequent-relation Equivalent Conflicting 

Equivalent-count 2 2 rules, UVT also examines each rule indi- 
Conflicting-count 0 0 vidually. T o  detect cycles in a rule, UVT 
Type Definite May-be compares each literal in the antecedent to 

the literal in the consequent. If they are the Substitution list (?appliance/?device, (Iron/?any-type) 

same, a cycle is reported. T o  detect contra- 
?plug-out/?point) 

IAnte(k))l = IAnte(R,)I = 

then RI and R, are redundant 
Rule_relation[i,f .equivalent_count 

where IAnte(Rj)l represents the number 
of l i t e ra l s  i n  Ri’s an tecedent .  T h a t  i s ,  
if the rules’ consequents are equivalent 
and the number of literals in the rules’ 
antecedents equals the number of literals 
found to be equivalent, then Ri and Rj are 
redundant. 

UVT identifies Ri and Ri as conflicting 

between rules and store them in two 2D 
tables. The Rule-relation[ij] table con- 
tains the relational information obtained 
by comparing pairs of consequents and 
antecedents using unification. UVT com- 
pares the consequents first: They are either 
equivalent (unifiable), conflicting (nega- 
tion of one is unifiable with the other), or 
different. If they are equivalent or conflict- 
ing, UVT stores the unification’s substitu- 
tion list. Using this same list, UVT then 
compares the antecedents and finds the 
equivalent, conflicting, and different liter- 
als and whether each relationship is defi- 
nite or not. UVT identifies each possible 
relationship between rules as definite if 
every variable in the substitution list is 
unified with another variable, and if all 
variable pairs are instantiated in the pred- 
icates in which they are unified. In this 
process, the substitution list might be aug- 
mented, since there might be variables in 
the antecedents’ literals that do  not occur 
in the consequents but that can unify. 

Each entry in the Rule-relation[ij] table 
contains the following information: 

consequent-relation: Equivalent, Con- 
flicting, or Different 
equivalent-count: the number of equiv- 
alent literals in the antecedents 
conflicting-count: the number of con- 
flicting literals in the antecedents 
type: whether the possible relationship 
is Definite or May-be 
substitution list: the substitutions used 
in the unification 

T a b l e  2 s h o w s  the  en t r ies  of the  
Rule-relation table corresponding to the 
rule pairs RYR6 and Rl lR8.  

U V T  examines  e a c h  en t ry  of the  
Rule-relation table to detect redundant, 
conflicting, and subsumed rules, and  
rules having redundant If conditions. If it 
identifies a problem between rules R, 
and RJ, UVT issues a warning message if 
Rule_relation[ij].type = May-be, or an 
error message otherwise. 

match, the rule is identified as dead-end. 
T h e  second tab le  in UVT,  ca l led  

If-then[ij], is used to detect potential cy- 
cles due to the dependencies between rules. 
Eachentrystoresinformationaboutwhether 
R,’s consequent occurred in R;’s anteced- 
ent. For example, if the entry If_then[2,16] 
has the value Equivalent, this indicates that 
one of the antecedents of R2 is the same as 
t h e  consequent  of  R16. S imi la r ly ,  
If_then[l6,2] has the value Equivalent, as 
well. On the other hand, if If-then[ 1,4] has 

diction in a rule, UVT compares the ante- 
cedent’s literals to each other and to the 
literal in the consequent. If the compared 
literals are conflicting, a contradiction is 

The following rule determines if rules Ri 1 reported. T o  detect a dead-end rule, UVT 
I checks all the literals in the rule’s anteced- and Ri are redundant: 

Rule_relation[i,~],equivalent_count 
then R, and R, are conflicting 

if Rule-relation[i,~].consequent-relation 
= Equivalent and 

IAnte(R,)I > IAnte(R,)I & 
IAnte(R,)I = 

then RI is subsumed by R, 

UVT identifies rules R, and R~ as having 
redundant If conditions using these rules: 

~ u ~ e ~ r e ~ a ~ ~ o n ~ ~ , , ~ , e q u ~ v a ~ e n ~ _ c o u n ~  

if Rule_relation[i,~].consequent~relation to see whether they match Some fact Or 

rule. If at least one literal does not have a = Eauivalent & 

’ involved in the cycles. 
UVT spends most of its time finding 

inferred rules. The larger the number of 
interrelated rules (with common predicates 
in their antecedents and consequents), the 
longer it takes to find inferred rules. A s  the 
program builds the relationship tables, it 
compares each rule with the others. The 
time spent on building the tables and de- 
tecting the Problems have complexity 
O(M2),  where M is the number of rules (N) 

- 
if Rule_relation[i,/].consequent_relation ents Of is the Same as the ‘Onsequent 

= Conflictina & R4. Using this table, UVT reports possible 

First type of redundancy: 
if Rule_relation[~,/].consequent_relation 

= Equivalent & 
IAnte(R,)I = IAnte(R,)I & 
Rule_relation[i,~],conflicting_count = 

I &  
IAnte(R,)I = 

Rule~relation[~,~].equivalent~caunttl 

conditions 
then RI and R, have redundant If 

Second type of redundancy: 1 

plus the number of inferred rules. 
To  reach conclusions, UVT takes into 

1 account the dependencies between literals 
in a rule, the relationships between rules, 
and the way unification occurs. It then 
generates two types of messages in the 
form of warnings and errors, using the 
word “may” when it cannot identify defi- 
nite problems. 

‘ A  COMMON PRACTICE IN BUILD- 

if Rule-relation[i,j].consequent-relation 
= Equivalent & 

(IAnte(R,) = 1 & 
iAnte(h,)i > I or IAnte(Ri)I = 1 & 1 ing knowledge-based systems is to avoid 
IAnte(d,)l > 1 )  & 
Rule-relation[i,/].conflicting-count = 1 

conditions 

1 potential conflicting situations through 
analysis and consistency checking of the i knowledge base during development. This 

then RI and R, have redundant If 



is costly, especially as the amount and 
diversity of knowledge increases. Gather- 
ing diverse knowledge from different sourc- 
es, resolving knowledge incompatibility 
problems, and dividing domain knowledge 
into smaller, internally consistent collec- 
tions are all difficult problems. 

Recently, autonomous distributed knowl- 
edge-based systems have gained much at- 
tention. In domains such as distributed 
sensing, medical diagnosis, and air traffic 
control, knowledge is inherently spatially 
distributed. Development-time verification 
approaches can be used to detect and re- 
solve inconsistencies and incompleteness 
in individual KBSs, but inconsistencies 
between systems must also be resolved. 
We can avoid these problems by allowing 
participating systems to generate conflict- 
ing solutions to subproblems and then 
resolving them at runtime. Strategies such 
as backtracking, compromise negotiation, 
integrative negotiation, constraint relax- 
ation, case-based and utility reasoning 
methods, and multiagent truth mainte- 
nance6-I0 can be used to resolve conflicts. 
Most systems for runtime conflict resolu- 
tion use either centralized approaches or 
bilateral negotiation techniques. A new 
approach could be to develop a negotiation 
paradigm that  a l lows  mult iple  sys t ems  
t o  reconcile their differences and resolve 
inconsistencies. 
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