
724 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL 8, NO. 5 , OCTOBER 1996

A Logic Programming Framework
for Modeling Temporal Objects

F. Nihan Kesim, Member, /€E€ Computer Society, and Marek Sergot

Abstract-We present a general approach for modeling temporal aspects of objects in a logic programming framework. Change is
formulated in the context of a database which stores explicitly a record of all changes that have occurred to objects and thus
(implicitly) all states of objects in the database. A snapshot of the database at any given time is an object-oriented database, in the
sense that it supports an object-based data model. An object is viewed as a collection of simple atomic formulas, with support for an
explicit notion of object identity, classes and inheritance. The event calculus is a treatment of time and change in first-order classical
logic augmented with negation as failure. The paper develops a variant of the event calculus for representing changes to objects,
including change in internal state of objects, creation and deletion of objects, and mutation of objects over time. The concluding sections
present two natural and straightforward extensions, to deal with versioning of objects and schema evolution, and a sketch of
implementation strategies for practical application to temporal object-oriented databases.

Index Terms-Object-oriented databases, object versioning, deductive databases, temporal databases, temporal reasoning, event
calculus, logic programming.

1 INTRODUCTION
HE object-oriented and deductive approaches have T generated considerable interest in the database and

programming language fields. In databases, one of the
main driving forces behind the recent interest in object-
oriented languages is their support of a rich collection of
data modeling and manipulation concepts. Another feature
of the approach is the promise it shows in overcoming the
so called impedance mismatch between programming lan-
guages used to code applications and database languages
used to retrieve data. In parallel, the deductive approach
has gained popularity as a candidate to solve this mismatch
problem, since logic can be used as a computational for-
malism as well as a database specification and query lan-
guage. A substantial amount of recent research has aimed
at integrating these two paradigms to provide a single
powerful framework for future database systems. Although
there is still no general agreement on how this integration
should be carried out-some authors even argue that one
cannot have a system that is both truly deductive and truly
object-oriented because of the conceptual mismatch be-
tween value-oriented logic programming and the notion of
object as imported from object-oriented programming-
there have been some promising developments, especially
in the emergence of logics for objects with identity and
complex internal structure. Existing proposals are summa-
rized in Section 2.

Most of this work, however, has ignored dynamic aspects,

F.N. Kesim is with the Department oflnternational Relations, Bilkent

M . Sergot is with the Department ofcomputing, Imperial College of Sci-
University, Bilkent, Ankara 06533, Turkey. E-mail: nihan@bilkent.edu.tr.

ence, Technology, and Medicine, University of London, 180 Queen's Gate,
London S W 7 2BZ, United Kingdom. E-mail: mjs@doc.ic.ac.uk.

Manuscript received Feb. 22,1995.
Fou information on obtaining uepyints of this article, please send e-mail to:
transkdeQcomputer.org, and refevenre IEEECS Log Numbeu K96060.

that is to say, the complications that arise when objects
evolve over time or mutate into objects with different internal
structure. Work on the representation of temporal phenom-
ena, on the other hand, has tended not to involve any explicit
notion of 'object.' In temporal databases, research is domi-
nated by approaches based on the relational model, although
there are some exceptions. Some references are provided at
the end of this section. Outside the database field, in AI in
particular, there is extensive work on temporal reasoning, but
here again 'fluents'-the propositions whose truth value
varies over time-are typically represented as ground terms
of some first-order language.

In this paper, we address the representation of temporal
information in object-oriented databases. We do this by
developing a variant of the event calculus [281, which we
call Object-based Event C a l c u l u s (or OEC in short), for de-
scribing and reasoning about changes to objects in a logic
programming framework.

The event calculus was introduced in [281 as a general
logic programming treatment of time and change. Events,
which are taken as the primitive temporal notion, mark the
occurrence of change, and initiate and terminate periods of
time for which facts hold. Given a record of events that
have happened or that may happen, the event calculus can
be used to determine what facts hold at any given time, or
to compute the periods-the maximal intervals of time-for
which a fact holds continuously. In the standard versions
these time-varying facts are represented as (ground) first-
order terms. From the database perspective, they can be
seen as tuples of relations: the event calculus is then a
method of deriving, for every such tuple, the periods of
time for which it holds (the 'lifespan' of the tuple in the
terminology of 1151). A snapshot of what holds at any time
has the form of a relational database.

The timestamping of relational tuples with intervals is a

1041-4347/96$05.00 0 1 9 9 6 IEEE

mailto:mjs@doc.ic.ac.uk
http://transkdeQcomputer.org

KESIM AND SERGOT: A LOGIC PROGRAMMING FRAMEWORK FOR MODELING TEMPORAL OBJECTS 725

common technique in many temporal database systems.
The main difference in the event calculus is that these inter-
vals are not inserted and modified explicitly but are de-
rived from the record of event occurrences as required: the
events effectively give some semantic structure to the end-
points of intervals. A similar idea, expressed in terms of an
extended relational algebra, has recently been proposed in
[43]. The record of event occurrences is there called a
'journal.' Operators are proposed to derive what holds at
intermediate times: A 'history' operator converts event data
to intervals, and a 'snapshot' operator determines what
holds at a given point in time.

The event calculus is also intended to contribute to the
treatment of database updates (see in particular [26]). This
is not an aspect that we shall discuss in this paper, how-
ever. Similarly, the event calculus has been extended and
applied to the construction of temporal databases that sup-
port both 'valid time' and 'transaction time' [39]; again this
is a further development we do not undertake.

In this paper we construct a version of the event calcu-
lus-the OEC-for dealing with changes to objects. As in
the original (relational) event calculus, the changing world
is described in terms of a record of events (a 'journal'), from
which the OEC can reconstruct and access the states of ob-
jects at any time. We get a database in which all states of
objects are stored (implicitly). A snapshot of this database
at any given time is an object-oriented database-'object-
oriented' in the sense that it supports an object-based data
model. For reasons explained later, we shall adopt the view
of an object as a collection of simple atomic formulas with a
standard first-order semantics.

This paper is an expansion and further development of
our previous presentation [19] where we discussed the
evolution of objects using the event calculus. We now de-
velop the basic idea and explore other temporal aspects of
objects as well.

The paper has three main components:

Since an object, however understood, is a more com-
plicated structure than a collection of relational tu-
ples, several different kinds of change can be identi-
fied, each requiring its own treatment. We examine
the main kinds of change in detail-in sufficient detail
that the resulting formulation can be executed di-
rectly, as a Prolog program, say. The same problems
arise whatever representational formalism is em-
ployed. The formulations proposed could be recon-
structed, if preferred, in some other representational
formalism, such as the situation calculus.
In common with much current usage, the term
'database' is used in this paper to refer to a wide,
loosely defined class of applications, not just to large-
scale database systems, narrowly understood. In the
first instance, the OEC is intended to be used in the
construction of 'database' or 'knowledge-base' appli-
cations where the problems of scale and performance
associated with large-scale database systems are not a
major factor. Some examples are mentioned in the
text. However, it is also our aim to develop the OEC
as a basis for practical, large-scale temporal database
systems. In this last respect we shall be concerned

with explaining how previously proposed imple-
mentational strategies in the temporal database lit-
erature may be adapted for use with the OEC.

3) The OEC's mechanism for maintaining the state his-
tory of objects leads to the vevsionzng of objects as a
natural and straightforward development. Event de-
scriptions can be used to keep parallel histories of
objects, and these can be used to model multiple ver-
sions of the same object at a time.

The paper is organized as follows. Section 2 presents a
brief survey of the existing work on reasoning with com-
plex objects for the purpose of identifying, in Section 3, the
basic data model that will be supported by our object-based
variant of the event calculus. The OEC itself is presented in
three separate sections. In Section 4, we present the basic
formulation and discuss how it can be applied to describe
changes in objects. In Section 5, we address the mutation of
objects, where objects ,Ire allowed to change their classes
during their evolution. And in Section 6, we extend the
formulation to incorporate some other object-oriented fea-
tures, specifically multivalued attributes and methods for
derived attributes. We also show how the OEC can be
adapted in a natural way to deal with versioning of objects
and schema evolution. Section 7 discusses practical consid-
erations and implementation strategies for temporal data-
bases based on the OEC.

The literature on temporal reasoning and temporal data-
bases is very extensive and we do not attempt a full survey
here. Comparisons of the event calculus with situation cal-
culus are provided in [27]. For temporal databases, [25]
provides a recent bibliography of work in this area together
with pointers to previous bibliographies. The collection 1411
gives an excellent overview of the main approaches and
discusses many of the issues that are studied in this field.
As already mentioned, most work in temporal databases
has been undertaken in the context of the relational model.
Exceptions include [loll, [18], [33], [401, [44]. Comparisons
with other proposals and references to specific points are
given as they arise in the text.

2 COMPLEX OBJECTS

The purpose of this section is to identify and motivate the
choice of data model we have adopted for the OEC.

Although there has been much confusion and contro-
versy about the meaning of object-orientation in general
and object-oriented databases in particular, a -number of
concepts have emerged as characteristic of this approach.
Several papers [4], [3] have now proposed a set of base
features for object-oriented databases, that is, databases
which support an object-oriented data model. There is no
single standard model, but there is a set of basic concepts
common to all object-oriented programming and knowl-
edge representation languages.

A great number of attempts have been made to use logic
in establishing a formal semantics for object-oriented con-
cepts. Some of the existing works take deductive databases
as the basis and extend the existing systems with the con-
cept of a structured object. Most of the work in this ap-
proach follows the research on non-1NF relations, in order

726 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 8, NO. 5, OCTOBER 1996

to extend the data structures of logic programming with
sets and complex terms [l], [81, [29], [46]. Others attempt to
formalize the basic object-oriented concepts by developing
a new logic to support various features of complex objects
[51, 171, [231, [30]. There is also another stream of work
which approaches the problem from a programming lan-
guage perspective. Here the aim is to extend the logic pro-
gramming languages with some object-oriented features
such as methods and message passing 191, [131, [311, [451.
These proposals are of less interest in the context of this
paper since their primary concern is with programming
constructs.

When we compare the existing work, we see that the
semantics of a complex object differs widely. In the propos-
als which extend deductive databases with sets and com-
plex terms a complex object is viewed as a tuple in a higher-
order relation. In object logics a complex object is either an
element in some partially ordered domain or a collection of
simple atomic formulas. Below we summarize these differ-
ent semantics of objects and assess them according to their
ability to support the representation of changes to objects.

2.1 Higher-Order Relations
One way of incorporating complex objects is to extend
predicate calculus to a higher-order logic so that the value
of an argument of a predicate can also be a relation built by
using tuple and set constructors. Several higher-order ex-
tensions of logic programming, such as LDL [8] and COL
[I] have been proposed. They view a complex object as a
tuple in a higher-order relation. For example the COL
statement:

person(john, 38, "London",
{chess, tennis}, {tom, sue}) .

describes information about a person and his hobbies and
children. Sets can be represented either explicitly as in this
example or by data functions. In LDL, a grouping construct
is used to construct a set by using a rule. For example, the
rule

children(X, <Y>) t parent-of (X, Y) .
groups together all the children of each person. Here < > is
the grouping operator.

These proposals can be characterized as attempts to in-
corporate some notions from the object-oriented para-
digm, without compromising the goal of having the rela-
tional model as the basis of the extended model. Thus
they are often said to be value based. Although higher-
order logic provides a formal framework for nested rela-
tions and complex objects, it also has some disadvantages.
The higher-order semantics of sets presents severe se-
mantic problems for logic programs in these languages,
and it is difficult to develop an efficient query evaluation
in these approaches.

Another disadvantage is that representing a complex
object by a nested tuple is practically not very convenient.
Because of syntactical limitations (e.g., fixed arity) these
languages do not provide access to substructures of com-
plex objects in a homogeneous way. They are unsuitable for
deductive retrieval at arbitrary levels. In the above exam-
ple, to find the age of the person john's child t o m , one must

start from the top predicate person and then continue
down to the substructures where the required information
can be found. In the case of updates, semantic problems
also arise. For example, if john develops a new hobby,
adding the new information will yield a completely differ-
ent tuple which does not have any semantic relationship
with the original one. Omitting the information about ad-
dress will produce a tuple of a completely different type.

2.2 Object Logics
The other main stream of work aims at developing a new
logic to support various features of complex objects. It is
argued that just as for relational databases, a logical frame-
work can be established for object-oriented databases also.
The underlying logic must be different from first-order
predicate logic because most features of object-orientation
require higher orderness. On the other hand it is desirable
to have a logic with first-order properties: following the
terminology of [6] the language (syntax) of an object model
must be higher order to be able to manipulate such con-
cepts while the semantics must be restricted enough to sat-
isfy first orderness. A number of such object logics have
been proposed.

The first work, influenced by the fpterms of LOGIN [21
was Maier's 0-logic [30] which was later extended by a
number of proposals, namely C-logic [7] and F-logic 1231.
From the object-oriented world these logics acquire the no-
tion of object identities, complex objects, a mechanism for
object classification and a structure for property inheri-
tance. From the logic programming world they absorb the
concepts of unification, answer substitution and a strategy
for deductive query processing.

In these logics, an object is represented as a complex
term in the language. For instance in F-logic [23], the per-
son object illustrated in the previous section can be repre-
sented by a complex term as follows:

person: john [age+28,
address 3 'I London",
hobbies*{chess,tennis},
childrend{person:tom,person:sue}]

Here person is the class name, john is the object identity
and the labels denote attributes.

The syntax of these complex terms is influenced by the
language LOGIN but their semantics is different. In LOGIN
complex terms denote types and inheritance is incorporated
into the unification algorithm. In the object logics, complex
terms are formulas in their own right: written as a formula,
a complex term asserts that an individual object with that
structure exists. More complex formulas are built by com-
bining object terms using the usual truth-functional con-
nectives and quantifiers.

Although the syntax and the informal reading of com-
plex terms are quite similar in the object logics, the precise
semantics given to the complex terms varies. F-logic views
an object term as an element in a partially ordered domain.
Partial orderings on class names and object identities are
defined and using these orderings a partial ordering over
complex object terms is obtained and used to capture sub-
object or sub-type relationships.

KESlM AND SERGOT A LOGIC PROGRAMMING FRAMEWORK FOR MODELING TEMPORAL OBJECTS 727

The major disadvantage of this approach is that the logic
becomes more complicated as more features, such as meth-
ods and inheritance, are introduced. A natural concern is
whether there might be an efficient evaluation procedure
for queries. Another important concern, directly related to
the main topic of this paper, is the ability of this approach
to model the dynamic behavior of objects. This question is
not addressed in the current literature, and many of the
difficulties seem not to have been anticipated. For instance,
some common types of change would seem to require
changes to the partial ordering on class names and object
identities, and hence effectively to the language itself. It is
difficult to see how such changes could be accommodated
smoothly, and no suggestions on these points have ap-
peared, to our knowledge.

C-logic [7] takes a different approach. Here, complex
object descriptions are considered as collections or con-
junctions of atomic properties. Each attribute label is
viewed as a binary predicate and each class symbol as a
unary predicate. An object with several labels can then be
described as a conjunction of several atomic formulas. For
example the term

j3[name + "John Smith", age =3 281

or as
j3[name "John Smith"] A j3[age + 281

or as
name(j3, "John Smith") A age(j3, 28)

in first-order logic.
This formula approach makes it possible to understand

the semantics of complex objects within the predicate logic.
Chen and Warren give a semantics to C-logic directly, and
also by transformation to an equivalent first-order formula
which uses unary predicates for types and binary predi-
cates for attributes. This makes proof procedures and asso-
ciated computational developments in first-order logic
readily available for complex objects.

One advantage of the formula approach taken by C-logic
is that it allows information about an entity to be specified
and accumulated piecewise, which facilitates the update of
subparts of an object independently of others. The explicit
notion of object identity also makes sharing and updates
easier. Adding new information about an object is just a
matter of adding one or more binary predicates. The sub-
parts of an object can be retrieved by using the identity of
the object and the attribute name describing the subpart.

3 THE DATA MODEL
In this section, we present the data model that the OEC will
support.

The data model provides a basic set of features associ-
ated with structural object orientation: object identity, com-
plex objects with both single-valued and multivalued at-
tributes, methods for derived attributes, classes, class hier-

archies, and inheritance. This is the set of features identified
as the essential ingredients of object-oriented data models
in [31, to which we have added derived attributes since they
are useful in applications and can be supported straight-
forwardly. The treatment we adopt follows the formula
approach exemplified by C-logic [7] as summarized in the
previous section.

We view an object as a named collection of object-
attribute-value triples. Every object is abstracted by a unique
identity which distinguishes it from other objects. Follow-
ing Kifer and Wu [23] we use individual terms to denote
object identities. A term representing the object identity is
composed of function symbols, constants and variables in
the usual way. (We use the standard Prolog convention for
constants and variables throughout the paper: strings be-
ginning with an upper-case letter are variables.) For exam-
ple john, X, child:ren(john, mary), path(X, Y)
can all be terms denoting identities. The set of all ground
identity terms plays a role analogous to that of the Her-
brand Universe in classical logic. Function symbols are
used to construct new object identities out of existing ones.
The objects have attributes whose values can be other ob-
jects (or more precisely itheir identities).

Objects are organized into class hierarchies, defined ex-
plicitly by asserting i si-a relationships among classes. A
class denotes a set of object identities. Each class has a
unique name to distinguish it from other classes. The class-
subclass relation (is-a) is to be read as the subset relation:
the set of objects represented by a class includes all the ob-
jects belonging to the subclass(es) of that class.

The relation between a class and its instances is repre-
sented by the instance-of relation. The set of instances of
a class changes as new objects are created and cease to exist.
This time-dependent behavior of the instance-of relation
will be discussed in Section 4.5.

A class describes the internal structure of its instances
by attribute names. This structure is asserted by the
predicate attribute. .A subclass inherits the structure of
its superclass(es).

A s an example consider the class hierarchy shown in
Fig. 1. Classes student and employee are subclasses of
person. The attributes common to all persons (i.e., name,
address) are defined in the class person and are inherited
by the subclasses. The subclasses also define additional
(more specific) attributes. The class hierarchy is described
as follows:

is-a (student, person) .
is-a (employee, person) .
attribute(person, name).
attribute(person, address).
attribute (student, section) -

728 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 8, NO. 5, OCTOBER 1996

person
(attributes: name, address)

student employee
(attributes: section, supervisor) (attributes: dept, r a n k)

Fig. 1. A simple class hierarchy

For the purposes of this example, we have assumed that
all attributes are single-valued. As will be shown in the next
section, the functionality constraint of such attributes is
satisfied within the formulation of the OEC. The extension
to allow multivalued attributes in addition is straightfor-
ward but for explanatory purposes we leave this aside, to-
gether with methods for derived attributes, until
Section 6.

In order to formulate the inheritance of attribute names
by the subclasses we define the predicate attribute-of in
the following way:

attribute-of(Class, X) t
attribute(Class, X).

attribute-of(Sub, X) t
is-a (Sub, Class),
attribute-of(Class, X).

This formulation for objects and classes allows a very
simple form of inheritance. It is limited to the subset rela-
tion between classes and monotonic inheritance of attribute
names. Multiple inheritance without overriding can also be
expressed by the is-a predicate. This simple type of mul-
tiple inheritance causes no additional difficulty and is not
mentioned again.

4 THE OBJECT-BASED EVENT CALCULUS

In this and the following two sections we shall present the
OEC, a version of the event calculus that supports the data
model described in the previous section. Given a descrip-
tion of event occurrences (changes in the world) the OEC
can reconstruct the state of any object in the database at any
point in time. It can also be used to compute the periodb)
of time for which an object 'exists' (its 'lifespan' [15]) and
the periods of time for which given attributes of objects
have given values. For simplicity we shall assume for the
time being that all attributes are single-valued and we shall
ignore methods for derived attributes. These features of the
data model will be reintroduced in Section 6.

The OEC is based on a simplified, asymmetric case of the
event calculus, where facts are assumed to persist forwards
in time until they are terminated by some subsequent event.
Correspondingly, the assimilation of events into the data-
base is assumed to keep step with the occurrence of
changes in the world. This is in contrast to the original for-
mulation of the event calculus [281 which treats past and
future symmetrically and can deal with the case where
events are not necessarily recorded in the same order in
which they actually occur.

This simplified version of the event calculus corresponds
closely to updates in conventional databases [261. It blurs
the distinction between an event occurrence (a change in
the world) and the recording of that event in the database.
Accordingly, the database that is maintained by the OEC
can be seen either as a historical or 'valid time' database
recording the evolution of some set of objects in the world,
or as a system in which all past states of an object-oriented
database are accessible. (And if valid times and transaction
times are distinguished but are exactly correlated, then it
can be seen as a 'degenerate bitemporal' database [17].)

It would be possible to construct a version of the OEC
without these assumptions following the symmetrical
treatment of past and future of the original event calculus
[28]. It would also be possible to extend the treatment to
support both 'valid time' and 'transaction time' as done by
Sripada [39] for the relational versions. We do not attempt
these further developments in this paper. Similarly, al-
though it is only the relative ordering of events that is sig-
nificant in the event calculus we shall assume that the times
of all event occurrences are given since this is often useful
in practice.

We present the OEC in stages. We begin with the sim-
plest kind of change, which is change to an existing object's
internal state.

4.1 Change of Internal State
The state of an object is determined by the values assigned
to its attributes. Change in internal state corresponds to
changing the value of any of the attributes. The basic idea
in dealing with the evolution of an object over time is to
parametrize its attributes with times at which these attrib-
utes have various values. Formulation of this idea within
the spirit of the event calculus is straightforward. Events
initiate and terminate periods of time for which a given
attribute of a given object takes a particular value. Fig. 2
shows the history of an employee object. Here john is the
identity of the object and rank, dept, age, address are the
attributes that are initiated to different values at different
times. The object-based event calculus constructs such a
state history of objects

john

1 r a n k I I I I

r l r2 r3

28 29 30 31 32

a 1

age I I I I I

address t _ _ _ -

etc.

Fig. 2. State history

The effects of events are described by the predicates
initiates and terminates by means of assertions (or
more generally rules) of the form:

initiates(EventType, Obj, Attrib, Value).

KESlM AND SERGOT: A LOGIC PROGRAMMING FRAMEWORK FOR MODELING TEMPORAL OBJECTS 729

(and similary for terminates). For example an event of
type ’promote employee x to new rank R’ initiates a period
of time for which employee x holds rank R and terminates
whatever rank x held at the time of the promotion:

initiates(promote(X, R) , X, rank, R) .
Here promote (x, R) is a term representing the type of the
event. Since we are dealing with single-valued attributes it
is not necessary to specify explicitly that the old rank is
terminated. The details are shown in a moment.
Given a fragment of data:

happens(promote(jim, assistant), 1986).
happens(promote(jim, lecturer), 1988).
happens(promote(jim, professor), 1991).

the OEC can be used to compute values of attributes of ob-
jects at given times, as in the following two queries:

? - holds-at(jim, rank, R, 1989).
? - holds-at (jim, Attr, Val, 1989).

The formulation of holds-at in terms of initiates, ter-
minates and happens is shown presently.

The OEC can also compute the periods of time for which
an object’s attributes have particular values. In the example,
for instance, the query

would generate the answers

? - holds-for(jim, rank, R, Period) .

R = assistant,Period = 1986-1988;
R = lecturer, Period = 1988-1991;
R = professor, period = since(l991).

A term of the form Ts-Te denotes a time interval (closed on
the left and open on the right) with start and end points TS
and Te, respectively; since (Ts) denotes an open-ended
interval, the set of time points later than or equal to Ts.
Time points need not be years, as in this example. Notice
that we do not include in the time line any distinguished
time point ‘now’ or ’unchanged‘ as seems to be common in
many temporal database systems (see for example the col-
lection of papers [411).

The following is the basic formulation of the OEC to de-
rive the value of an attribute of an object at a specific time:

holds-at(Obj, Attr, Val, T) t
happens(Ev, Ts) , Ts 5 T,
initiates (Ev, Obj, Attr, Val),
not broken(Obj, Attr, Val, Ts, T).

broken(Obj, Attr, Val, Ts, T) t
happens(Ev*, T*),

terminates(Ev*, Obj, Attr, Val).

Informally, these clauses may be read procedurally as fol-
lows: in order to find the value Val of an attribute Attr of
an object Ob j at a time T, find an event EV which happened
before time T and initiated the value of that attribute; and
then check that no other event which terminates that value
has happened in the meantime. The interpretation of not as
negation by failure in the last condition for holds-at gives
a form of default persistence: the value of an attribute is
assumed to hold at all times after its initiation by event EV
unless there is information to the contrary.

The constraint that attributes are single-valued implies

TS < T* I T,

that the value of an attrnbute is terminated if an event initi-
ates it to another value. This is represented by adding the
following general rule:

terminates(Ev*, Obj, Attr, -) t
initiates(Ev*, Obj, Attr, -) .

(The use of the anonymous Prolog variable ‘-’ in this clause
is just to cover the unlikely case that an event is specified to
reinitialize an attribute to its existing value.)

The computation of periods of time is obtained by the
following:

holds-for(Obj, Attr, Val, Ts-Te) t
happens(Ev, Ts:) ,
initiates (Ev, Obj, Attr, Val),
terminated(Obj, Attr, Val, Ts, Te) .

terminated(Obj, A.ttr, Val, Ts, Te) t
happens(Ev, Te), Ts < Te,
terminates(Ev, Obj, Attr, Val),
not broken(Ob1, Attr, Val, Ts, Tel.

We require another clause to deal with periods that have no
end-point (i.e., for the case where the value of an attribute is
initiated but there is no subsequent event which terminated
the value):

holds-for (Obj, Attr, Val, since (Ts)) t
happens (Ev, TE:) ,
initiates(Ev, Obj, Attr, Val),
not terminated-later(Obj,Attr,Val,Ts).

terminated-later(Obj, Attr, Val, Ts) t
happens (Ev, TE!) , Ts < Te,
terminates(Ev, Obj, Attr, Val).

Given a set of events, the object-based event calculus can
be used to answer queries such as finding out the value of
an attribute of an object at a specific time, or the period of
time for which an attribute of an object has a given value.
We can determine the state of an object at any time by
finding out the values of all its attributes.

Of course execution of this event calculus, in Prolog say,
does not yield an object-oriented style of computation. But
conceptually, in object-oriented terminology, we could con-
sider events as messages to modify object states. The speci-
fication of how events affect the state of objects would then
correspond to methods, and the predicates initiates and
terminates would be the system primitives by which the
methods are implemented.

So far we have discussed how event calculus can be used
to describe changes to the internal states of objects, i.e., to
values of attributes of objects. Apart from the events that
cause changes of state of existing objects, there are other
kinds of events which cause the creation of new objects or
deletion of objects. Before moving on to present other kinds
of changes, we wish to rnake a remark about the represen-
tation of events.

4.2 Digression: Representation of Events
In the formulation of the OEC we have adopted C-logic’s
formula approach for the treatment of objects in the data
model. In this paper we also use C-logic syntax as a con-
venient shorthand for describing events. The transforma-

730 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 8, NO. 5, OCTOBER 1996

tion of C-logic to Prolog (see Section 2) allows us to mix
C-logic and standard Prolog syntax freely, and this is par-
ticularly convenient when describing events. For example,
an event which is described in Prolog by the following
assertions

event (el) .
act (el, promote) .
object (el, jim) .
newrank(e1, prof).
happens(e1, 1989).

can be written equivalently and more concisely using
C-logic syntax as follows:

event :el [act =$ promote,

happens (el, 1989).
object * jim, newrank * p r o f] .

We could also write, for example,
happens (event :el [act =$ promote,

object 3 jim,
newrank + prof], 1989).

Generally we prefer to separate the structure of the event
from the record of its occurrence (happens), as in the first
C-logic version above. Whichever formulation is chosen,
the C-logic to Prolog transformation makes all of them
equivalent.

It is important to note that the C-logic representation of
events is not essential to the main theme of the paper. We
are primarily concerned with the treatment of changes to
objects, and for this we have followed C-logic's formula
approach for the semantics of complex objects. It is of minor
importance that we have also chosen to use C-logic syntax
for the representation of events. To put it another way, the
C-logic representation of events could just as well be em-
ployed to reformulate the original (relational) event calcu-
lus, but that would not alter the nature of the data model
supported by that version of the event calculus.

4.3 Creation of Objects
Creation of a new object of a given class means adding new
information about an entity to the database. We can think
of describing object creation by events-birth of a person,
manufacturing a vehicle, hiring a new employee-whose
specifications provide the necessary information about the
i'nitial state of the object.

In object-oriented databases, classes provide an instan-
tiation mechanism for creating their new instances. lnstan-
tiation is performed by calling on a class to create a new
object based on the information given in the class. This ob-
ject is then initialized by giving each of the attributes an
appropriate initial value.

In the context of temporal databases, objects are not cre-
ated and destroyed. What changes is whether an object
with a given identity exists or not. But since every object in
our framework belongs to a class, it is unnecessary to intro-
duce a separate exists predicate: instead we make class
membership, instance-of, a time-varying relationship. In
other words, to determine whether an object x of class C
'exists' at time t , we determine whether x is an instance of
class C at time f. The 'creation' of an object is then a matter
of assigning it to a chosen class and specifying its initial

state. We handle creation of objects by specifying which
events assign objects to which classes, employing for this
purpose a new predicate assigns. We use the same event
description to initialize the state of the object. As an exam-
ple consider registration of a student. The description of a
specific registration event might be as follows:

event:e23[act + register, object ali,

bob].
section + lp, supervisor+

The rules that specify the effects of such registration events
are:

assigns(event:Ev[act 3 register,
object + Obj], Obj, student).

initiates(Ev, Obj, section, S) t
event:Ev[act =$ register,
object 3 Obj, section * SI.

initiates(Ev, Obj, supervisor, S) t
event:Ev[act + register,
object * Obj, supervisor 3 SI.

The assigns statement is used to assign the identity of the
object Obj to the class student; the initiates statements
are used to initialize the object's state. In initializing the
state of the object, not all attributes need to be assigned to
values. Some attributes may not have any values or they
may have "undefined" as a value. The occurrence of the
specific registration event described above i s recorded by:

happens (e23, 1991) .
There is one further point of detail. Assimilation of new

event descriptions into the database will generally require
introducing one or more new object identities (e23 and pre-
sumably ali in the above example). In a practical imple-
mentation, generation of unique new identities can be left
to the system. But notice that generation of object identities
is not the same problem as 'creation' of new objects.

Recall from our presentation of the basic data model that
instances of a class are also instances of all the superclasses.
It is therefore necessary to arrange that any new instance of
a class should automatically become a new instance of the
superclasses. There are several ways of arranging for this,
of which the simplest is to include the following rule:

assigns(Ev, Obj, Class) t
is-a(Sub, Class), assigns(Ev, Obj, Sub).

For the time being we assume that once an object is as-
signed to a class, it remains an instance of this class through-
out its lifetime. That is, objects exists (i.e., they are in the
database) or cease to exist at various times. Their existence
is described by assigning their identities to their class. Once
an object is assigned to a class it remains as an instance of
that class during its lifetime and never changes class.

4.4 Deletion of Objects
Deletion of objects can also be described by events. There
are two kinds of deletions that we are going to discuss in
this paper. One is absolute deletion of an object where the
object is removed from the database: more precisely, since
we are dealing with temporal databases, the object ceases to
exist, or rather, ceases to be an instance of any class. The
other form of deletion deletes an object from its class but

KESIM AND SERGOT: A LOGIC PROGRAMMING FRAMEWORK FOR MODELING TEMPORAL OBJECTS 73 1

keeps it as an instance of another class, possibly one of the
superclasses. The second case is related to mutation of ob-
jects over time, which will be discussed in Section 5.

For the purposes of this section, we assume that when an
object is ’deleted’ not only does it cease to belong to the set
of instances of its class and superclasses, but also all of its
attribute values are terminated. The reason is that attributes
represent the internal structure of an object. If an object
ceases to exist then it is no longer meaningful to speak of its
internal structure.

We use another new predicate destroys to specify
events that ’delete’ objects. The rule:

t.erminates(Ev, Obj, Attr, -) t
destroys (Ev, Obj) .

has the effect that all attributes defined in the class of the
object and also those inherited from superclasses are auto-
matically terminated when the object ceases to exist.

There is one point to consider when deleting objects in
object-oriented databases. If we delete an object x, there
might be other objects that have stored the identity of x as a
reference. The deletion therefore can lead to ’dangling ref-
erences’ [47]. We eliminate dangling references by adding
another general rule for the terminates predicate:

terminates(Ev, Obj, Attr, ValObj) t
destroys(Ev. ValObj).

The effect is that the value ValObj of the attribute Attr is
terminated by any event which destroys the object ValObj .

4.5 Class Membership
As objects are created and deleted/destroyed, the instances
of a class change in time. This temporal behavior of class
membership can be handled by parametrizing the in-
stance-of relation with times. We now have events that
initiate and terminate periods of time for which an object 0
is an instance of a class C. The instance-of relation is af-
fected when a new object is assigned to a class or when an
object is destroyed. By analogy with holds-at, the fol-
lowing finds the instances of a class at a specific time:

instance-of(Obj, Class, T) t
happens(Ev, Ts), Ts 5 T,
assigns (Ev, Obj, Class),
not removed(Obj, Class, Ts, T) .

removed(Obj, Class, Ts, T) t
happens(Ev*, T*),
Ts < T* 4 T,
destroys(Ev*, Obj).

With this time-variant class membership we can ask queries
to find instances of a class at a specific time. For
example:

? - instance-of(Obj, employee, 1980).

We can also write the analogue of holds-for (i.e., in-
stance-of) to compute the periods of time for which an
object belongs to a class (or ’exists’). Note that an object can
have several distinct periods of membership (or ’existence’).
We omit the details of instance-for since they can be
reconstructed straightforwardly by comparison with the
earlier formulation of holds-f or.

4.6 Discussion and Related Work
We have introduced two separate sets of predicates, one for
dealing with change in internal state of objects and one for
creation/deletion of ob;jects. The internal states of objects
are derived by use of the predicates holds-at and
holds-for. These are defined in terms of predicates ini-
tiates and terminates which specify the effects of
events on objects’ internal states. The temporal class mem-
bership is derived by the predicates instance-of and in-
stance-for; predicates assigns and destroys are used
to specify how events affect class membership. The formu-
lation of these two sets of predicates are direct analogues of
one another. We could combine them into one set of predi-
cates, with one general formulation, and thereby dispense
with one set of predicate names altogether. We have not
done so because we want to emphasize the conceptual dif-
ference between changes in an object’s state on the one
hand and changes to class membership on the other.

The treatment of change formulated in the OEC is ap-
propriate under the assumption that facts and properties of
objects persist over time-that, once initiated, each fact
continues to hold without interruption until it is terminated
by some subsequent event. Such facts have been termed
’stable’ or, perhaps more perspicuously, ’stepwise constant’
I341 in the literature on temporal databases. The OEC can
be extended to accommodate other kinds of time-varying
behavior by incorporating various extensions that have
been developed for the original, relational event calculus. In
particular continuous change can be treated using the
’trajectories’ of [351. We do not present the details here. The
treatment can be imported from the relational versions
without modification, and is actually slightly more con-
venient to formulate within the OEC, since it is continuous
change of values of attributes that is of interest; it is difficult
to imagine what continuous change of membership of a
class would correspond to. Other extensions, such as al-
lowing for different grainularities of time within the same
data model 1121 could also be adapted straightforwardly.

In the database field, the modeling of temporal informa-
tion has been dominated by approaches based on the rela-
tional model. There are exceptions (see [371 for a compara-
tive survey). These proposals differ in the range of model-
ing features they provide. More significantly, they differ
also in their general approach to the representation of tem-
poral information, and to the notion of ’object’ itself. We
select here two example:s, each of which is intended to be
representative of a general class of approaches.

The first example is the extended entity-relationship
model described in [lo]. This has many features in common
with the data model supported by the OEC. It has entities,
time-invariant identities (called ’surrogates’ for entities),
attributes, and time-varying membership of classes and
subclasses. The temporal extension records a ’lifespan’ with
each entity, with each attribute-value, and with each class
membership instance. These lifespans correspond exactly to
the time periods computed by the instance-for and
holds-for predicates of the OEC. The model of [lo] also
supports relationships between entities, a feature not pro-
vided by the OEC. A corresponding extension of the OEC,
discussed briefly in [191,. could be obtained by combining

732 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL 8, NO. 5 , OCTOBER 1996

the OEC with the relational version of the event calculus,
but this is something we have not undertaken yet.

The crucial difference between the OEC and the tempo-
ral entity-relationship model of [lo] lies in their respective
treatments of lifespans/periods and their treatments of up-
dates. In [lo] updates are treated as operations on the data-
base, and the system provides a number of basic operations
for this purpose: to create new entities of a given type, to
insert and delete entities from classes, and to modify attrib-
ute values. In each case, the corresponding lifespan must be
manipulated explicitly. The main motivation for the OEC,
in contrast, as in the original event calculus, is to provide
some semantic structure for updates and for the computa-
tion of ’lifespans.’ Updates, corresponding to assimilation
of information about changes in the world, are treated by
adding an appropriate event description to the ’journal’ stored
in the database. The effects on the objects and their attrib-
utes are not modeled as operations on the database but are
derived from the event descriptions via the specifications
given by the initiates-terminates and assigns-
destroys predicates. We should note, however, that other
kinds of change, such as corrections of mistakes, are sup-
ported directly by the OEC and must be treated as modifi-
cations of the ‘journal’. A more powerful and general
treatment would require the introduction of a separate
transaction time dimension. As already mentioned, this has
been done for versions of the relational event calculus [39]
but not yet for the OEC.

The second representative is the temporal object-
oriented system described in [44]. That system, however,
places considerable emphasis on encapsulation and abstract
data types. These are object-oriented programming features
that are generally not mimicked directly in logic-based
treatments of objects. (See the discussion in
Section 2.) The proposal in [44] also treats time points and
intervals as abstract data types, which we do not attempt.

To avoid any misunderstanding, we should perhaps
state explicitly that we are not claiming in this paper to
have introduced or invented some new modeling concept-
temporal or object-oriented-that is not already found in
the literature. Conversely: our intention is to show how a
base set of object-oriented features may be provided in a
natural fashion in an integrated temporal/deductive
framework; to demonstrate that this framework can be
further extended to provide a wider range of features, some
of which we present in detail; and to indicate that the re-
sulting system can be used as it stands for the construction
of practical small-medium applications and has the pros-
pect of further development to large-scale database appli-
cations. We want to emphasize that it is the general frame-
work that is the basis for meaningful comparisons with
other work, and not the list of features currently supported
by the OEC.

5 MUTATION OF OBJECTS: CHANGING THE CLASS

We have so far assumed that objects exist, cease to exist in
the database, but never change class. However in the real
world it is common that objects evolve over time. Consider

the representation of an employee instance again. We have
represented the rank of an employee object by including an
attribute rank whose value can change over time:

employee: j im [.. . rank + lecturer, . . . I
employee:mary[... rank + professor, ... I

But suppose that instead of using the attribute rank, we had
chosen to divide the class of employees into various distinct
subclasses:

employee

Then employees of different ranks would be considered as
different clauses, represented using is-a:

is-a(lecturer, employee).
is-a(professor, employee).

The choice between the two representations is a data
modeling issue. If employees have different additional at-
tributes according to their ranks then it is appropriate to
represent different ranks as subclasses. However, even if
the structure of all ranks is identical, the choice between the
two representations can become significant, if we consider
the dynamics of the ’promotion’ event. In the first repre-
sentation, values of the rank attribute can be changed
straightforwardly to model the effects of promotion. In the
second representation, modeling a promotion from lecturer
to professor requires destroying the lecturer object and
creating a new professor object. But then how do we re-
late the new professor and the old lecturer, and how
should we preserve the values of unaffected attributes
common to all employees?

5.1 Classes and Types
The ability to change the class of an object provides support
for object evolution. It lets an object change its structure
and behavior, and still retain its identity. In [47], a type
system which allows this kind of evolution is presented. An
object x can have a set of types, and the change from one
type to another is a process of selectively adding and de-
leting types to the set of types of x. The notion of typing is
retained whilst allowing some flexibility in system
evolution.

In our present framework there is no notion of type. We
support the grouping of objects according to common struc-
ture and properties by means of class, which is a dynamic
notion. This gives more flexibility for representing class
changes. However there are other advantages to be gained
from having a type system in addition. A further typing
mechanism could be added as an extension to our basic data
model. There is a tendency in the literature to use the terms
’type’ and ’class’ interchangeably. For us they are distinct
notions: one (type) is a static, syntactic feature of the repre-
sentation language; the other (class) is a dynamic grouping of
objects according to their structure and properties.

KESIM AND SERGOT: A LOGIC PROGRAMMING FRAMEWORK FOR MODELING TEMPORAL OBJECTS 733

5.2 Realization
We deal with the evolution of objects by allowing events
that change an object’s class, and some or all of its attrib-
utes. For example, graduation causes a student to change
class. The effects can be described by removing the student
object from class student and terminating those attributes
he has by virtue of being a student; attributes he has by
virtue of belonging to class person should however be re-
tained. The selective termination of attributes is obtained by
using schema information. In order to deal with this type of
class change we introduce another predicate removes in
place of destroys. Again, new predicate names are used in
order to emphasize conceptual differences.

oerson Derson person

student employee student employee student employee

Fig. 3. Class changes.

Consider Fig. 3. A graduation event causes ali to move
up the class hierarchy. When the student ali graduates, he
is removed from student and becomes an instance of the
person class only. His attributes by virtue of being a stu-
dent are also terminated. The effects of the graduation
event are described by the following rule:

removes(event:Ev[act + graduate,

There is in addition a general rule, that removing an ob-
ject from a class terminates all attributes specific to in-
stances of that class:

student + SI, S, student).

terminates(Ev, Obj, Attr, -) t
removes (Ev, Obj, Class),
attribute(Class, Attr).

The overall effect of a graduation event for ali is that,
for times after the graduation, it is no longer possible to
derive instance-of (ali, student), nor values for any
of his student-specific attributes since these are all termi-
nated automatically by the graduation event.

Now consider hiring ali as an employee. This will cause
his class to be changed from person to employee. Since the
class employee has some additional attributes (dept ,
rank), the specification of this event will include values to
initiate these attributes. Thus the effects of the hiring event
are described by assigning him to the class employee, and
initiating his employee-specific attributes. The description
of such an event might be:

event:e2l[act + hire, object a ali,
dept * cs, rank d lecturer]

The effects of hiring events in general can be specified as
follows:

assigns(event:Ev[act d hire,
person + PI, P, employee).

initiates(event:Ev[act + hire, person + P,
dept + D], P, dept, D).

initiates (event:Ev[act hire, person P,
rank RI, P, rank, R).

Note that in changing ali’s class first from student to
person then from person to employee, ali has not been
removed from the class person and has retained all his
person-specific attributes. More importantly the identity of
the changing ali object remains the same throughout.

We have described rnoving an object up and down the
class hierarchy by two separate event occurrences. We can
also imagine a single event which would cause an object to
change its class from student to employee directly (’hire-
student’ say). The effect of this type of event could be speci-
fied as follows:

removes(event:Ev[:act =$ hire-student,

assigns(event:Ev[act + hire-student,
student -3 SI, S, student).

student =+ SI, S, employee).

As in the case of two s’eparate events, we do not lose the
values of the person-specific attributes, and we do not re-
move the object from class person.

The question naturally arises of what happens to attrib-
ute values as the object moves across the hierarchy. In our
framework, the relationships between old and new values
in the sibling classes, if any, can be specified explicitly using
initiates statements, just as in the specification of the
initial state of a newly ’created’ object (e.g., ’hiring’ above).
There is nothing special about class-changing events in this
respect. We do not believe that any useful general rules can
be formulated, even for the case where the sibling classes
contain attributes with the same name. It might be sup-
posed that in such a case the values of the common attrib-
utes should remain unchanged. We believe this would be a
mistake. If the common attribute has a different intended
meaning in the two classes, then there is no reason why the
two values should be the same, except by coincidence. In
the case where the common attribute does have the same
intended meaning in both classes (e.g., if an attribute age
indicates the age of a student and also the age of an em-
ployee), then this suggests an inadequacy in the modeling
scheme itself. If we want such attributes to retain their val-
ues during a class change, then they should belong to a
common superclass of the two classes involved. (In the ex-
ample, age should be an attribute of person and not of the
more specialized subclasses student and employee sepa-
rately.) The whole point is that common attributes should
be defined as part of the structure of a general class, with
each sub-class further introducing the additional attributes
specific to its instances.

We have illustrated tlhree kinds of simple class change:
changing from a class C to a direct superclass of C, chang-
ing from C to a direct subclass of C and changing from C to
a sibling class of C in the hierarchy. In the general case,
changing an object from class CZ to class C2 involves
finding a path in the class hierarchy and using rules similar
to the preceding ones to move along this path.

5.3 Remarks
In general, class changing events affect both the internal
state of objects and also the class membership relation. The
holds-at and holds-for clauses for deriving internal

734 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 8, NO. 5, OCTOBER 1996

states of objects require no modification, since the effect is
accommodated by making terminates dependent on re-
moves as shown already. However we do need to modify
the clauses for instance-of (and instance-for) to take
removes into account. The modified formulation of in-
stance-of is as follows:

instance-of(Obj, Class, T) t
happens(Ev, Ts), Ts 5 T,
assigns(Ev, Obj, Class),
not removed(Obj, Class, Ts, T).

removed(Obj, Class, Ts, T) t
happens (Ev*, T*) ,
Ts < T* T,
removes (Ev*, Obj, Class) .

removes(Ev, Obj, -) t destroys(Ev, Obj).

The last clause states that if an event destroys an object,
then that event also removes the object from all its classes.

There are two details left, one comparatively trivial and
one more substantial. We take them in order.

In the formulation as we have presented it, the general
recursive rule for assigns, which describes the subset re-
lation (see Section 4.3), causes the assignment of an object to
a class redundantly when there are also other more specific
assigns statements present. For instance when hiring per-
son x as an employee, a new period of time for the fact in-
stance-of (x, person) is initiated even though this fact
is already current (x is already an instance of person when
the hiring takes place). This duplication of periods occurs
with every class-changing event for which an assigns
statement assigns an object to a subclass of its current class.
The problem manifests itself when the database is queried
about the instance-for relation because then several dif-
ferent but overlapping periods of time can be generated as
answers. There are various solutions to this problem. The
simplest is to take into account the possibility of these dif-
ferent time periods in the formulation of instance-for so
that all these separate periods are amalgamated into one.
(This requirement has been termed coalescing in the tempo-
ral database literature [15].)

The second point is more substantial. Allowing objects to
change their class presents a potential problem which is
analogous to dangling references. The problem arises when
an object, which is the value of an attribute Attr of some
other object, changes class in such a way that it can no
longer be regarded as a meaningful value for attribute
A t t r . For example, assume that the staff instances have an
attribute student which takes a student as a value. Further
assume that the student ali is a student of the staff mem-
ber john. When ali graduates and changes class to em-
ployee, the student attribute of john is not valid any longer
and should be terminated. The graduation, which is de-
fined as a class-changing event, takes care of terminating
and initiating attributes of the student, but the other objects
referring to this object as a student are not changed. This
problem, sometimes called the dangling domain pvoblem [47],
would be a type violation in a typed system. In our present
framework the problem can be avoided by writing event
specifications appropriately, but this obviously requires

that all 'dangling domain' problems are identified and ac-
counted for explicitly. This is clearly unsatisfactory. The
natural solution is to refine the schema so that the type (or
perhaps class) of the value of an attribute is specified as
well. In principle, this additional schema information
would allow for a reformulation of the OEC so that attrib-
utes affected by the 'dangling domain' are terminated
automatically in the same kind of way that 'dangling refer-
ences' are eliminated. However, the details turn out to be
quite complicated, and we have not yet explored all the
possibilities.

6 FURTHER CONSIDERATIONS
For the purpose of focusing attention on the different kinds
of changes to objects and how they can be formulated, we
have presented a simplified form of the OEC so far. In this
section we sketch how the OEC is modified to provide
other features which are required for practical applications.
The two main extensions to the basic data model are to al-
low multivalued as well as single-valued attributes, and to
support a wider range of methods than those introduced so
far, specifically for deriving new information from the ex-
isting states of objects. We also describe how versioning of
objects and the schema can be accommodated within the
OEC framework.

6.1 Multivalued Attributes
Multivalued attributes are supported straightforwardly in
our framework, since it is actually single-valued attributes
that are the special case and that impose additional re-
quirements. We do not attempt to support spt-valued
attributes.

A multivalued attribute denotes a one-to-many relation
which maps the identity of an object to one or more objects.
Such a relation can be thought of as a set of binary predi-
cates, as in C-logic [71, for example. Indeed in C-logic all
attributes are multivalued, since an attribute in that lan-
guage is semantically the same as a binary predicate. Thus
the C-logic term

person: john[children ==+ {tom, sue, mary}] .
is just a shorthand notation for the complex term

person: john[children d tom,
children + sue,
children + maryl .

which is semantically equivalent to the following set of as-
sertions in first-order logic:

children(john, tom).
children (john, sue) .
children(john, mary) .
This notion of multivalued attribute should be con-

trasted with approaches where (single-valued) attributes
are allowed to take sets of objects as values. Set-valued
attributes provide increased expressive power (they are
no longer just first-order) but at the cost of introducing
the very severe semantical and computational problems
associated with sets and set unification [29]. As argued

~

735 KESlM AND SERGOT: A LOGIC PROGRAMMING FRAMEWORK FOR MODELING TEMPORAL OBJECTS

in 171, the simpler notion of multivalued attribute al-
ready satisfies most of the practical and expressive re-
quirements of set-valued attributes, at enormously re-
duced complexity.

The reformulation of the object-based event calculus to
allow for multivalued attributes requires just a slight gen-
eralization of what has been presented in the previous sec-
tions. The main adjustment is a refinement of the clause
which is used to implement the functionality constraint for
single-valued attributes, viz:

terminates(Ev, Obj, Attr, -) t

If we wanted to support only multivalued attributes
then it would be sufficient to delete the 'functionality'
clause altogether and retain the rest without change. Since
we want to support both single and multivalued attributes
in one system, the obvious solution is to make the clause
above applicable to single-valued attributes only. For this it
is necessary to extend the schema information so that it also
specifies whether an attribute (in a given class) is single-
valued or not. A third argument is therefore added to the
predicate attribute to specify the kind of the attribute:
single or multi.

The clause implementing the functionality constraint
now requires an extra condition so that it does not apply to
multivalued attributes. Since the kind of an attribute
(single or multi) may depend on class as well as the at-
tribute name, it is necessary to include the class name as an
additional argument in the initiates and terminates
predicates. The modified clause is:

initiates (Ev, Obj, Attr, -) .

terminates(Ev, Class, Obj, Attr, -) t
attribute-of(Class, Attr, single),
initiates (Ev, Class, Obj, Attr, -) .

Including the class name as an argument in the init i -
ates and terminates predicates makes it necessary to
specify the class of an object at query time. Moreover, the
clauses of the object-based event calculus presented earlier
all need to be adjusted to take the presence of this new class
argument into account. This is a very simple modification
that raises no additional questions and so we do not show
the whole modified version of the OEC again.

6.2 Derived-Attribute Methods
111 object-oriented systems, methods are operations to de-
scribe the behavior of objects. This includes both modifica-
tion and manipulation of the state of objects. We have so far
considered only methods that modify the state of objects.
Now we want to extend the kind of methods that are sup-
ported to include also methods which can derive new in-
formation from the existing state of objects. We call such
methods derived-attribute methods or sometimes just rules.
For instance the age of a person can be derived from the
date of birth; the boss of an employee can be derived from
the manager of his department, and so on.

Derived-attribute methods are included in the schema
definition according to the classes. There have been numer-
ous proposals for how to define and implement such meth-
ods in a logic programming framework (e.g., 191, [13]). Rep-
resenting methods as deductive rules is the most common

approach in the existing languages and the one we follow
here.

The definition of derived-attribute methods can be given
in a syntax similar to C-logic or other object-logic lan-
guages. For instance, in F-logic 1231, the boss of an em-
ployee is defined by the following rule:

Erboss + MI t
E: employee [dept * D:dept [manager * MI]

stating that the boss is the manager of the department in
which the employee works. This kind of syntax can be
translated straightforwairdly into an internal form which is
manipulated by the object-based event calculus. The head
of the rule contains the name of the derived attribute and
the body contains the object-attribute-value information.
Each rule is associated with a class. We employ the follow-
ing representation in order to index methods by the class
names:

method(Class, Obj, AttrName, Value, Body).

The first argument, Class, refers to the name of the class
for which the method is defined. Obj is the identity of the
object for which the method is invoked. The third argu-
ment, AttrName, is the name of the derived attribute (in the
object-oriented terminology this corresponds to the mes-
sage used to invoke the method). The fourth argument,
Value, denotes the value returned as the result of the
method. And finally, Body is the translated form of the
body of the rule.

For the purposes of this paper we assume that the body
of a derived-attribute method is a conjunction of complex
object terms (i.e., object-attribute-value information). Again
following C-logic [7], the relational semantics for complex
object terms allows every such term to be decomposed into
a conjunction of atomic object terms, and so the body of a
rule can always be expressed as a conjunction of conditions
of the form o-term(Class, Obj, Attr, Val). Hence
the example above would be translated into the form:

method(emp1oyee. 13, boss, M,
[o-term(employee, E, dept, D) ,

Note that conjunctions are here represented as lists.
Given such a representation, we now require the ability to
compute not only the conclusions that are derivable from
the rules, but also the time periods for which such conclu-
sions hold.

In its full generality, temporal reasoning with derived in-
formation raises a number of unresolved questions which
are the subject of much current research (see [391 for a de-
tailed treatment). The usual solution, and the simplest, is to
distinguish between base and derived information and treat
these separately. The effects of changes (here, events) are
then described by specifying only how they affect base in-
formation. The effects on derived information are obtained
indirectly, because derived information is computed from
the base information when it is required.

This is the approach that we follow also. We do not
specify how events affect derived attributes directly. Values
of derived attributes at any given time are determined by
finding the corresponding method in the schema definition

o-term(dept, D, manager, M) I) .

736 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 8, NO. 5, OCTOBER 1996

and then solving each condition of the rule body at the
specified time instant. This is accomplished by adding an-
other clause to the definition of holds-at :

holds-at(Class, Obj, Attr, Val, T) t
method(Class, Obj, Attr, Val, Body),
solve-at (Body, T) .

Here solve-at (Body, T) is a 'mefa-interpreter' which
executes the Body at the specified time T. More general
forms of rules for derived attributes can be accommodated
by allowing other kinds of conditions in the body of the
rules. It is also possible to derive the period of time for
which a derived attribute takes a particular value (see [22]
for details).

6.3 Versioning of Objects
In this section we describe how versioning of objects can be
formulated within the OEC. The formulation of the OEC pre-
sented so far provides us with the state history of objects, and
already supports the simplest kind of versioning. Check-
pointing and parallel versioning can also be accommodated
in the object-based event calculus with some modifications to
the original. These various modifications are presented and
discussed in more detail elsewhere [20]; here we summarize
the modifications for parallel versioning only.

Versions are objects which are derived from existing ob-
jects as a result of some requirements and modifications.
Versions are closely related to their parent versions, but
they are still different objects and they must be uniquely
identifiable. Also, as versions share some of their properties
with the object from which they are derived, there must
exist an easy way of finding the previous version. For this
purpose we introduce a naming convention that uniquely
identifies the versions. Suppose we have an object with the
identity o and we create versions of this object. One way of
distinguishing these versions is to number them. The first
version of o will be v(o,l), the second v(0,2), the nth
v (0, n) and so on. When versions of versions are created,
the same naming convention can be used to identify the
new versions. The first version of the object v (o , ~) for ex-
ample, will be named as v (v (0,1) ,I), the second will be
v(v(o,l),2) andsoon.

The basic idea to represent an object having several ver-
sions at a time is to keep parallel histories for the object
where each history is identified by a version identity. Each
version has its own history starting from its creation time.
Once a version is created it is treated in the same way as
other objects in the database: it can be updated, deleted or
versioned. Meanwhile its parent object can be directly up-
dated, even after one or more versions have been derived
from it: the derived versions will not be able to see the up-
dates in the parent object.

Creation of a version is described by events. In parallel
versioning only certain events can cause the creation of
identifiable versions. Some attributes can be classified as
version-significant attributes, whose update would force
the creation of a new version bearing the modified value of
that attribute. Events that are specified as having effects on
these attributes can be defined to be version-creating
events. The effects of version creating events are specified

by the predicate creates-version which is used to mark
the occurrences of such events in the object's history and
also to generate a unique identity for the version.

For example consider the design of a VLSI chip. Differ-
ent versions of the chip may be derived every time the user
performs a "reconfigure" operation. This can be achieved by
the following rule:

creates-version(Ev, v(C,N)) t
event:Ev[act + reconfigure,

chip 3 C, number 3 NI.

The functional term v (c , N) is the identity of the new ver-
sion where c denotes the parent object, and N is an integer
denoting the version number.

Versions are made instances of the class to which their
parent version belongs by using the assigns predicate.
The version objects can be changed like any other object.
Reasoning with the changing state of versions is done by
similar axioms, but now the time of creation of the version
is taken into account as well. The values of the attributes
which are not changed at the creation time or later are de-
rived using the parent version.

Consider Fig. 4 which shows a section of an object's ver-
sion derivation history. Here Vid is a version identifier and
Oid is the object from which it is derived. Oid can be an-
other version or the initial object. TC denotes the creation
time of the version Vid, T denotes the time at which we
query its state. The history of Vid starts at TC and at that
time Vid as its initial state has the same state as Oid has as
of time Tc. At any time after its creation, say at T*, the ver-
sion's state can be changed by an event. If no such event
happens between TC and T, then the state of the version at
time T is the same as the state of the object Oid at time TC.
However, if there are some events that have happened after
TC and have changed the values of one or more attributes
of the version, then we have to consider the effects of these
events as well. The reader is referred to [20] for the modi-
fied formulation of holds-at to reason with the state of
objects and versions.

6.4 Schema Evolution
In this section, we look at the problem of changes in class
definitions (i.e., the database schema). We address the
problem of maintaining consistency between a set of objects
and a set of class definitions that can change.

Oid

I

t t
Fig. 4. A section of an object derivation hierarchy.

KESIM AND SERGOT: A LOGIC PROGRAMMING FRAMEWORK FOR MODELING TEMPORAL OBJECTS 737

6.4.1 Problem Definition
There have been several proposals for supporting schema
evolution in object-oriented database systems. (See e.g., [321
for a bibliography.) Most of the existing works support sin-
gle schema modification. That is, at every time instant,
there exists only one logical schema that can be used to
view the objects. Past states of the schema are not retained.
There are two shortcomings to single schema modification.
One is that it does not allow the history of modification of
objects to be preserved. For example if an attribute of a
class is dropped, the values of the attribute in existing in-
stances are irretrievably lost; even if the attribute is added
later, it will be treated as a different attribute and the old
values of the attribute cannot be seen. Another shortcoming
is that it does not prevent a schema change by one user
from impacting all other users' views of the database. For
example, once any user deletes an attribute or changes the
superclass/subclass relationship between a pair of classes,
all other users will see the changes.

There is also another dimension to the schema evolution
problem: schema versioning, where all states of the schema
are accessible. In this case the system will manage more
than one logical schema for one common database and pre-
sent different views of the database through different ver-
sions of the schema. Schema versioning removes the short-
comings of single schema modification. For example, if a
user wishes to drop an attribute from a class in one version
of the schema, he may create a new version of the schema.
The user will not see the values of an attribute in existing
instances of the class. However if the user later chooses to
access the class through the previous version of the schema,
he will be able to see the values of the attribute in all in-
stances of the class that existed before he created the new
version of the schema.

We have extended the OEC to describe changes to the
schema so that we can keep all states of the schema as well
as the object states. This leads us to model schema version-
ing in a deductive framework. Our approach is different
from the existing approaches since we develop the idea of
having time-dependent views of the database.

6.4.2 Realization in the Event Calculus
We now have two levels of data that change: schema and
objects. We use the OEC to describe changes at both levels.
The object state history is described by a set of real world
events and the schema state history is described by a set of
system events. This provides us with schema versioning.

When we allow schema modifications, we have to con-
sider a time-dependent i s-a relationship and time-
dependent class definitions. Schema changing events initi-
ate and terminate periods of time for which a class is a sub-
class (isa-at) of another class or a class has a certain at-
tribute or method. We introduce time arguments to the
is-a and attribute relations to model this time-varying
behavior:

attribute-at (Class, Attr, Type, T) :
Attr is an attribute (single or multi)
of Class at time T.

method-at (Class, Obj, Mesg, Val, Body, T) :
Mesg is a method valid €or Class at time T.

isa-at (Class, Super, T) :
Super is a superclass of Class at time T.

With these predicates it is possible to keep the history of
the class hierarchy and class definitions. In the following,
the clauses for is-a aire presented. We have omitted the
clauses for the other two predicates which are similar.

isa-at(Class, Super, T) t
shappens ('Ev, Ts) , Ts I T,
adds(Ev, Class, Super),
not dropped(Class, Super, Ts, T) .

dropped(Class, Super, Ts, T) t
shappens(Ev, T*), TS I T* < T,
drops (Ev, Class, Super).

The occurrence of a schema event is recorded by the predi-
cate shappens; a new predicate is introduced in order to
avoid unnecessary seairch of real world events (recorded
with happens) when the schema information is derived.
The role of the predicates adds and drops is analogous to
that of the predicates initiates and terminates
respectively.

Having two time dimensions gives the user the ability of
querying the state of an object at time T according to the
schema at time TS. Thutj a query:

? - holds-at(Class, Obj, Attr, Val, T, Ts) .
asks for the state of an object Ob j at time T according to the
schema at time TS. The period of time for which an object
holds a particular state (can be queried in a similar fashion:

? - holds-for(Class, Obj, Attr, Val, P, Ts).

In these queries the schema time TS can be seen as a filter-
ing mechanism for viewing the state of objects. The facts
about an object are visible only if the definition of the class of
the object exists in the schema version at the specified time.

Existing proposals in the literature provide different ap-
proaches to schema versioning. For example, in 1361 each
class, rather than the entire schema, is treated as a version-
able object. Since the schema itself is not versioned, a
'virtual' version of the schema is constructed as a lattice of
versioned class objects, having only one version of a class
object included in any 'virtual' version of the schema. In
[24], the entire schema is viewed as a versioned object. Any
number of new versions of schema may be derived at any
time from any existing schema version. The access scope of
a schema version is the set of objects created under that
version and those objects in the inherited access scopes of
the ancestor schema versions. Thus, it is possible to view
and manipulate different sets of objects under different ver-
sions of schema.

We have presented a different approach for dealing with
versions of schema. We keep the history of the database
schema by recording every event that causes a change in
the schema. Thus it is possible to access different states of
the schema at different times. The access scope of each
schema version is the subset of all objects in the database
whose classes are defined by the schema version. All up-

738 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 8, NO. 5, OCTOBER 1996

dates to objects under one schema version will become
visible to all schema versions which include the definition
of the classes of the objects.

7 IMPLEMENTATION ISSUES

The OEC presented in the preceding sections can be im-
plemented in different ways. It can be executed as a Prolog
program, by transcribing the clauses given into Prolog
syntax, although for reasons identified below the perform-
ance of the resulting program is likely to be poor, even in
small examples. For practical applications we make use of a
Prolog implementation that incorporates an additional
'tabulation' or 'lemma generation' mechanism, described
presently. The OEC could also be implemented in one of
the object-oriented logic programming languages now
available (see Section 2) in order to provide the kind of
'clustering,' normally associated with object-oriented im-
plementations; we have conducted some preliminary ex-
periments using L&O [31] as an implementation language.
Or the OEC as presented could be seen as an (executable)
specification and suitable algorithms constructed to per-
form the same tasks in a procedural language.

We have employed the OEC in a number of small-
medium applications, of which the most developed is a
database dealing with the activities of a university depart-
ment (from which the examples in this paper have been
taken). To give some indication of size, object instances in
these applications are numbered in hundreds and event
occurrences in thousands. We have recently embarked on
the reconstruction of an application in cardio-vascular
medicine originally constructed using the standard
(relational) event calculus [38].

The purpose of this section is to summarize the imple-
mentation techniques used in these applications. As indi-
cated in the introduction to the paper, our aim is also to
employ the OEC as the basis of large-scale temporal data-
base systems; in this regard, we wish to explain why im-
plementation techniques under development for temporal
databases can be adapted for use with the OEC.

7.1 Current Implementations
The problems encountered in the efficient execution of the
OEC can be illustrated by reference to the execution of
holds-at queries. Exactly similar points can be made for
more general holds-at queries, for holds-for, and for
the class membership analogues instance-of and
instance-f or.

Obviously, there is the problem of searching efficiently for
relevant candidate events that could initiate or terminate the
value of the attribute in question, for which some form of
indexing is required. But the main factor affecting perform-
ance of the OEC (and of the standard relational versions of
the event calculus) is the need to determine what the effects
of each such candidate event are (what it initiates and ter-
minates). In general, this is not just a matter of looking up
the happens assertions (the 'journal' of event occurrences),
since to determine whether an event actually does initiate
or terminate a value for a given attribute may require some
further computation; and in a naive implementation this in

turn may generate re-computation of the same facts over
and over again, whenever initiates or terminates
statements are context-dependent, that is, in the case
where the value initiated or terminated by an event at
time t depends on what other values are current at time
t. In these circumstances naive execution of the event cal-
culus clauses can lead to very severe redundancies in the
computation, significantly affecting performance even in
small applications.

Dramatic improvements can be obtained by adding a
bottom-up component to the evaluation mechanism, by in-
corporating some form of 'lemma generation.' This is a stan-
dard technique in logic programming, and in deductive da-
tabases where it is often referred to as 'tabulation' [42]. For
the OEC implementation, all facts regarding the states of ob-
jects and the time periods initiated and terminated by the
recorded events are stored as they are deduced. We shall
refer to these tabulated facts as the Object DataBase (ODB)
for convenience. The ODB can be generated bottom-up when
a new event is assimilated into the database, or-as we pre-
fer-by tabulation during top-down query evaluation. How-
ever it is produced, the ODB contains all the information
about objects: their states, their classes and the necessary in-
formation to derive the time periods for which these hold.
When a query is posed to the system only the contents of the
ODB are accessed without searching all the events again.

The obvious set of 'lemmas' or 'tabulated results' to
store in the ODB are all the time periods, analogously to
the scheme proposed in [39] for (relational) temporal da-
tabases based on the event calculus. However we prefer
an alternative which is much more flexible and easier to
maintain: for each tuple of the form (O b j , Attr, Val)
we record the starting time(s) at which that tuple is initi-
ated, and, separately, a record of the time(s) at which the
tuple is terminated by another event. The time periods for
which the tuple holds are easily derived from these start
and end points as required. Similarly the class(es) to
which an object belongs in time are stored as tuples of the
form (Obj, Class) together with the start and end times
for each. A Prolog implementation with this mechanism
and a simple form of indexing gives quite acceptable per-
formance for the applications mentioned above. The table
in Fig. 5 gives some sample timings. The queries were
executed on a database of the kind used as the source of
examples in this paper, containing approximately 10,000
events (1,000 objects). These timings are just intended to
be indicative of performance. Further details regarding
implementation techniques are provided elsewhere 1211.

7.2 Future Work
One of our longer term aims is to develop the OEC so that it
can support database applications proper. More sophisti-
cated indexing techniques will then be required. We do not
want to give the impression that we underestimate the dif-
ficulty of the task, but we do want to indicate why we be-
lieve this is not an unrealistic ambition. The point is that
implementation techniques being developed for temporal
(relational) databases are not incompatible with use of the
OEC; many can be adapted, or even applied directly.

739 KESlM AND SERGOT: A LOGIC PROGRAMMING FRAMEWORK FOR MODELING TEMPORAL OBJECTS

II Querv 1 Net time ~"

(all solutions) j (plain OEC) t holds-at(managerl,name,N,lOO) 1 219.66
holds-at(managerl,A,V,lOO)
instance-of(managerl,C,100)
instance-of(O,person, 100)
holds_for(student5,address,A,P)
holds_for(student5,A,V,P)

1679.20
207.33

5755.85
26415.00

1.797e+05
152.34

millisec)
(with ODB)

1.434
1 3 165
0.783

46.085
8.333

64.500
13.432

The database contains approx. 10,000 events (1000 objects)
(Quintus Prolog Release 3.1.1 on a SUN Spare worlcslation)

F i g 5 Some sample timings

For example, the techniques described in [16] for imple-
menting 'backlogs' can be applied directly. Although these
techniques are designed for the implementation of tuansac-
tion-time databases, the feature on which they rely is the
'stepwise-constant' nature of the time-varying data. Since
this is also the kind of change supported by the OEC, the
same techniques are applicable for implementation of the
ODB: indeed, the structures we store in the ODB have
(almost exactly) the form of backlogs.

Indexing methods, such as the B+-tree techniques de-
scribed in [I ll, can also be applied, with some modification,
to the ODB, or more directly, to provide indexing on the
record of event occurrences (the 'journal'). Indeed, a very
rudimentary form of this idea is the basis of an event cal-
culus implementation described in [14]. Development of
these ideas, and of associated query optimization tech-
niques, remain topics for future work, however.

In addition to temporal indexing, some form of struc-
tural indexing-some method of storing the objects and
events so that search is restricted to the potentially relevant
candidates-is also required. At present all information in
the 'journal' of event occurrences and in the ODB takes the
form of relational tuples. (In the Prolog-based implementa-
tion simple forms of indexing these tuples have proved
adequate.) Beyond some preliminary experiments with the
L&O language 1311, as mentioned above, we have not ad-
dressed the question of how to provide indexing methods
that reflect the object-oriented structuring at the imple-
mentational level.

8 CONCLUSIONS
The integration of deductive and object-oriented ap-
proaches presents many open questions and issues to be
overcome. The main p.roblem is caused by the opposition
between a value based approach and an identity based ap-
proach. After an analysis of existing proposals, we were
attracted by the virtues of the simplest approaches where a
framework for complex objects is built within first-order
logic. The formula approach, exemplified by C-logic, gives
a semantics to an object by viewing it as a named collection
of atomic formulas. Based on this approach we presented
an object-based data model with support for object identi-
ties, single-valued and multivalued attributes, class hierar-
chies, and derived-attribute methods.

The main contribution of this paper is the detailed de-
velopment of the Object-based Event Calculus (OEC),
which is intended as a general approach for representing
and manipulating temporal objects in a logic programming
framework. We have shown how the OEC may be used to
represent and manipulate complex objects in a natural and
descriptive way. We are not aware of any other work which
deals with the different kinds of changes to objects in a sin-
gle logical framework. We are also not aware of any other
work which incorporates temporal information to the object
states in a deductive framework.

From the representational point of view, there are some
benefits offered by the OEC over the standard relational
versions of the event calculus. Organizing the specification
of events by the class of object affected gives more structure
to the representation, which can be of significant value in
practical applications. Other benefits arise because the
structure of objects, attributes, values and classes is richer
than that of the relational data model, and this structure can
be exploited. For example, the use of single-valued attrib-
utes and their treatment within the OEC reduces the need
for general forms of integrity constraint, which otherwise
are required for use with the event calculus. Similarly,
much of the detail in the formulation of the OEC is con-
cerned with the indirect effects of creating and deleting
objects which themselves may be the values of attributes of
other objects. As a result, the grouping of objects into
classes and subclasses gives a comparatively simple device
for dealing with some of the more common types of indi-
rect change, or 'ramification,' a problem which in its gen-
eral form is a topic of much current research in temporal
reasoning.

From the point of view of temporal databases, we have
presented an approach to the construction of historical
('valid time') databases in which all states of objects are
stored (implicitly) and are accessible (by deduction). We
addressed several different kinds of change that can be
identified in the context of an object-based data model, and
we proposed a general approach for modeling these
changes in a declarative way. For practical application, we
were particularly concerned to explain how the first-order
semantics of objects allows implementations of the OEC to
take advantage of indexing and other implementational
techniques that are being developed for (relational) tempo-
ral databases.

740 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 8, NO. 5, OCTOBER 1996

ACKNOWLEDGMENTS
The bulk of this work was completed while Nihan Kesim
was supported by the Scientific and Technical Research
Council of Turkey (TUBITAK). The authors would like to
thank an anonymous referee for suggesting a number of
useful references to recent work in temporal databases and
for many helpful suggestions which have improved the
presentation of the paper.

REFERENCES
111

151

161

t71

I111

1171

[181

1201

S. Abiteboul and S. Grumbach, “COL: A Logic-Based Language
for Complex Objects,” Proc. Int’l Conf. Extending Database Technol-
ogy-EDBT ’88, pp. 271-293, Venice, Italy, Mar. 1988.
H. Ait-Kaci and R. Nasr, ”Login: A Logic Programming Language
with Built-In Inheritance,” J. of Logic Programming, 1986.
M. Atkinson, et al., ”The Object-Oriented Database System Mani-
festo,” Proc. First Int’l Conf. Deductzve and Object-Oriented Data-
bases, pp. 40-57,1989.
F. Bancilhon, “Object-Oriented Database Systems,” Proc. Seventh
ACM-SIGACT-STGMOD-STGAXT Symp. Principles of Database Sys-
tems, pp. 152-162, Austin, Texas, Mar. 1988.
C. Beeri, ”Formal Models for Object Oriented Databases,” Proc.
First Int’l Conf. Deductive and Object-Oriented Databases, Kyoto, Ja-
pan, Dec. 4-6,1989.
W. Chen, M. Kifer, and D.S. Warren, ”Hilog: A First-Order Se-
mantics for Higher-Order Logic Programming Constructs,” North
Amevican Conf. Logic Pvogramming, Oct. 1989.
W. Chen and D. Warren, “C-Logic of Complex Objects,” Proc.
Eighth A C M SIGACT-SIGMOD-SIGART Symp. Principles of Data-
base Systems, 1989.
D. Chimenti, R. Gamboa, R. Krishnamurthy, S. Naqvi, S. Tsur,
and C. Zaniolo, ”The LDL System Prototype,” IEEE Trans. Knozul-
edge and Data Eng., vol. 2, no. 1, pp. 78-90, Mar. 1990.
M. Dalal and D. Gangopadhyay, ”OOLP: A Translation Approach
to Object-Oriented Logic Programming,” Proc. First Int’l Conf. De-
ductive and Object-Oriented Databases, pp. 555-568, Kyoto, Japan,
Dec. 4-6,1989.
R. Elmasri, G.T.J. Wuu, and V. Kouramajian, “A Temporal Model
and Query Language for EER Databases,” A. Tansel et al., eds.,
Temporal Databases: Theory, Design, and Implementation, chapter 9.
BenjamidCummings, 1993.
R. Elmasri, G.T.J. Wuu, and V. Kouramajian, ”The Time Index
and the Monotonic B+ Tree,” A. Tansel et al., eds., Temporal Data-
bases: Theory, Design and Implementation, chapter 18, pp. 433-456.
BenjamidCummings, 1993.
C. Evans, ”The Macro-Event Calculus: Representing Temporal Granu-
larity,” Proc. Pacific Rim Int’l Conf. M, pp. 36S368, Nagoya, Japan, 1990.
K. Fukunaga and S. Hirose, ”An Experience with a Prolog-Based
Object-Oriented Language,” OOPSLA ’86 Proc., pp. 224-231, 1986.
R.V. Indiketiya, ”Event Calculus Based Temporal Database Man-
agement System,” Master’s thesis, Imperial College, 1992.
C.S. Jensen, J. Clifford, R. Elmasri, S.K. Gaida, 1’. Hayes, and S.
Jajodia, “A Glossary of Temporal Database Concepts,” SIGMOD
Record, vol. 23, no. 1, Mar. 1994.
C.S. Jensen and L. Mark, ”Differential Query Processing in Trans-
action-Time Databases,” A. Tansel et al., eds., Temporal Databases:
Theory, Design, and fmplementation, chapter 19. Benja-
min/Cummings, 1993.
C.S. Jensen and R.T. Snodgrass, ”Unifying Temporal Data Models
Via a Conceptual Model,” I E E E Information Systems, vol. 19, no. 7,
pp. 513-547,1994.
W. Kaefer, N. Ritter, and H. Schoening, ”Support for Temporal
Data by Complex Objects,” Proc. 16th Ini’l Conf. Very Large Data
Bases, Brisbane, Australia, 1990.
F.N. Kesim and M. Sergot, “On the Evolution of Objects in a Logic
Programming Framework,” Proc. Int’l Conf. Fifth Generation Com-
puter Systems, vol. 2, June 1992.
F.N. Kesim and M. Sergot, ”Versioning of Objects in Deductive
Databases,” Proc. Third Int’l Conf. Deductive and Object-Oriented
Databases, Dec. 1993.

I211 F.N. Kesim and M. Sergot, ”Implementing an Object-Oriented
Deductive Database Using Temporal Reasoning,” Technical re-
port, Bilkent Univ., Dec. 1994.

[221 F.N. Kesim, ”Temporal Objects in Deductive Databases,” PhD
thesis, Dept. of Computing, Imperial College, 1993.

1231 M. Kifer and G. Lausen, ”F-Logic: A Higher-Order Language for
Reasoning about Objects, Inheritance, and Scheme,” Proc. Eighth
A C M SIGACT-SIGMOD-SIGART Symp. Principles of Database Sys-
tems, pp. 134-146,1989.

1241 W. Kim and H.T. Chou, ”Versions of Schema for Object-Oriented Data-
bases,” Proc. 14th Int’l Conf. VLDB, pp. 14S159, Los Angeles, 1988.

[25] N. Kline, ”An Update of the Temporal Database Bibliography,”
SIGMOD Record, vol. 22, no. 4, Dec. 1993.

[26] R.A. Kowalski, ”Database Updates in the Event Calculus,” T. of

1271

1301

1311

[321

t331

1341

[351

1361

1371

1381

1391

1401

1411

1421

1431

1441

1451

1461

. ,
Logic Programming, vol. 12, pp. 121-146, 1992.
R.A. Kowalski and F. Sadri, ”The Situation Calculus and Event
Calculus Compared,” Proc. Int’l Symp. Logic Programming, pp.
539-553, MIT Press, 1994.
R.A. Kowalski and M. Sergot, ”A Logic-Based Calculus of
Events,” New Generation Computing, vol. 4, pp. 67-95,1986.
G.M. Kuper, ”Logic Programming with Sets,” Proc. Sixth A C M -
SIGACT-SIGMOD-SIGART Symp. Principles of Database Systems,
San Diego, 1987.
D. Maier, ”A Logic for Objects,” Proc. Workshop Foundations of
Deductive Databases and Logic Programming, pp. 6-26, Washington
D.C., Aug. 1986.
F.G. McCabe, ”Logic and Objects: Language Application and
Implementation,” PhD thesis, Dept. of Computing, Imperial Col-
lege, 1988.
J. Roddick, “Schema Evolution in Database Systems-An Anno-
tated Bibliography,” SIGMOD Record, vol. 21, pp. 3540, Dec. 1992.
E. Rose and A. Segev, ”TOODM-A Temporal Object-Oriented
Data Model with Temporal Constraints,” Proc. 20th Int’l Conf. on
the Entity-Relationship Approach, pp. 205-229,1991.
A. Segev and A. Shoshani, ”A Temporal Data Model Based on
Time Sequences,” A. Tansel et al., eds., Temporal Databases: Theory,
Design and Implementation, chapter 11, pp. 248-270. Benja-
min/Cummings, 1993.
M.P. Shanahan, “Representing Continuous Change in the Event
Calculus,” Proc. ECAI-90, Stockholm, Sweden, 1990.
A.H. Skarra and S.B. Zdonik, ”Type Evolution in an Object-
Oriented Database,” B. Shriver and P. Wegner, eds., Research Direc-
tions in Object-Oriented Programming, pp. 393413, MIT Press, 1987.
R.T. Snodgrass, ”Temporal Object-Oriented Databases: A Critical
Comparison,” W. Kim, Modern Database Systems: The Object Model,
Interoperability and Beyond, chapter 9. Addison-Wesley/ACM
Press, 1994.
P. Soper, G. Abeysinghe, and C. Ranaboldo, ”A Temporal Model
for Clinical and Resource Management in Vascular Surgery,”
Proc. Int’l Conf. Database and Expert Systems Applications, pp. 549-
552, Berlin, 1991.
S.M. Sripada, ”Temporal Reasoning in Deductive Databases,”
PhD thesis, Dept. of Computing, Imperial College, 1991.
J. Su, ”Dynamic Constraints and Object Migration,” Proc. Conf.
Very Large Data Bases, Barcelona, Spain, 1991.
A. Tansel et al., eds., Temporal Databases: Theory, Design, and Im-
plementation. BenjamidCummings, 1993.
D.S. Warren, “Memoing for Logic Programs,” Comm. A C M , vol.
35, no. 3, pp. 94-111,1992,
C . Wiederhold, S. Jajodia, and W. Litwin, “Integrating Temporal
Data in a Heterogeneous Environment,” A. Tansel et al., eds.,
Temporal Databases: Theory, Design, and Implementation, chapter 22.
BenjamidCummings, 1993.
G.T.J. Wuu and U. Dayal, ”A Uniform Model for Temporal and
Versioned Object-Oriented Databases,” A. Tansel et al., eds., rem-
poral Databases: Theory, Design, and Implementation, chapter 10.
Benjamin/Cummings, 1993.
C. Zaniolo, ”Object-Oriented Programming in Prolog,” Proc. 2984
Int’l Symp. Logic Programming, Atlantic City, New Jersey, Feb. 1984.
C. Zaniolo, ”The Representation and Deductive Retrieval of
Complex Objects,” Pro;. Very Large Databases, pp. 458, Stockholm,
Sweden, 1985.
S.B. Zdonik, ”Object-Oriented Type Evolution,” F. Bancilhon and
P. Buneman, eds., Advances in Database Programming Languages,
pp. 277-288. ACM Press, 1990.

KESIM AND SERGOT: A LOGIC PROGRAMMING FRAMEWORK FOR MODELING TEMPORAL OBJECTS 741

F. Nihan Kesim received the BS degree in
computer engineering from the Middle East
Technical University, Ankara, Turkey, in 1986;
the MS degree in computer science from Bilkent
University, Ankara, in 1988, and the PhD degree
in computer science from Imperial College, Uni-
versity of London, in 1993. She is currently an
assistant professor at Bilkent University. Her
research interests include deductive databases,
object-oriented databases, logic programming,
data modeling, and knowledge representation.

Dr. Kesim is a member of the IEEE Computer Society.

Marek Sergot is Reader in Computational
Logic at the Department of Computing, Imperial
College, University of London He graduated in
mathematics at Trinity College, Cambridge, in
1973; completed a postgraduate course in ap-
plied mathematics at Cambridge in 1974, and
worked in mathematical modeling before joining
the Logic Programming Section in the Depart-
ment of Computing at Imperial College in 1979
His research is in the use of logic and logic pro-
gramming techniques in artificial intelligence

and databases, and in the formal specification of computer systems
His particular interests are iii temporal reasoning, legal reasoning, and
formal theory of organizations.

