
572 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 5, MAY 1993

Balanced Parallel Sort on Hypercube Multiprocessors
Bulent Abali, Fusun Ozguner, Member, IEEE, and Abdulla Bataineh, Member, IEEE

Abstract-A parallel sorting algorithm for sorting n elements
evenly distributed over Z d = p nodes of a d-dimensional hyper-
cube is presented. The average running time of the algorithm
is O((n log n)/p + p log2 n). The algorithm maintains a perfect
load balance in the nodes by determining the (kn/p)th elements
(k = 1,. . . , (p - 1)) of the final sorted list in advance. These
p - 1 keys are used to partition the sorted sublists in each node
to redistribute data to the nodes to be merged in parallel. The
nodes finish the sort with an equal number of elements (n / p)
regardless of the data distribution. A parallel selection algorithm
for determining the balanced partition keys in O(p log2 n) time
is presented. The speed of the sorting algorithm is further en-
hanced by the distanced communication capability of the iPSC/2
hypercube computer and a novel conflict-free routing algorithm.
Experimental results on a 16-node hypercube computer show
that the new sorting algorithm is competitive with the previous
algorithms, and faster for skewed data distributions.

Index Tem-Hypercube, multiprocessing, parallel algorithms,
selection, sorting.

I. INTRODUCTION
ORTING is one of the most used and fundamental of S all computer operations. With increasing database sizes,

parallelism must be exploited to obtain acceptable sorting
times. Optimal sequential sorting algorithms that use binary
comparisons are known to sort n elements in O (n 1 o g n)
time [l]. Therefore an optimal p-processor parallel sorting
algorithm would sort n elements in O((n log n) / p) time.
In this paper, we present a load balanced parallel sorting
algorithm, balanced-sort, that runs in O((n log n) /p+p log2 n)
average time for randomly distributed data on a hypercube
multiprocessor.

A d-dimensional hypercube multiprocessor (Fig. 1) is an
MIMD (multiple instruction multiple data) machine with 2d
processing elements (nodes) connected to form a Boolean
d-cube. Each processing element has its own memory, and
processing elements communicate by exchanging messages.
The delay incurred by interprocessor message communication
is due to two components: the message setup time T s ~ and the
actual transfer time N x TB, where N is the number of bytes
transferred and TB is the one-byte transfer time. In most of
the commercially available message passing multiprocessors
Tsu >> TB.

The balanced-sort algorithm assumes that the n distinct
elements to be sorted are initially distributed evenly over

Manuscript received August 29, 1989; revised July 23, 1990 and April 22,

B. Abali is with Bilkent University, 06533 Ankara, Turkey.
F. Ozguner is with the Department of Electrical Engineering, The Ohio

A. Bataineh is with Cray Research Inc., Eagan, MN 55121.
IEEE Log Number 9208489.

1991.

State University, Columbus, OH 43210.

01 00

0000

Fig. 1. A four-dimensional hypercube.

2d = p nodes of a d-dimensional hypercube (n >> p).
The n elements are considered sorted when a global order
is obtained such that for p - 1 2 i > j 2 0, any element
in node a is greater than any element in node j , and within
each node n / p elements are sorted among themselves. In
the balanced-sort algorithm, each node sorts its list of n / p
elements in O (n / p l o g (n / p)) expected time by performing a
quicksort. Each of these sorted sublists is then partitioned into
p segments so that the partitions from different nodes can be
merged in parallel. By determining the exact partition keys, the
algorithm ensures that nodes are left with an equal number of
elements (n / p) at the end of the sort, regardless of the data
distribution. This is important for efficient memory utilization
in a distributed memory multiprocessor. Furthermore, the exact
partition keys provide perfect load balance during the merge
phase. The sorting algorithms given in [2]-[5] select the
partition keys either randomly or by sampling the elements that
may distribute data unevenly across processors. For example,
in the hyperquicksort algorithm [2] almost all of the n elements
may end up being merged in one node instead of n / p in each
node. A parallel selection algorithm referred to as the fast-
partition algorithm is presented in Section IV that determines
the p - 1 partition keys used in the balanced-sort algorithm
in O (p log2 n) time. The fast-partition algorithm is designed
to minimize the number of setups in hypercubes with coarse-
grain communication.

A routing algorithm is presented in Section V that makes use
of the Direct-Connect capability of the iPSC/2 hypercube to
deliver elements to their destination node in just one communi-
cation step, thus reducing the communication overhead caused
by store-and-forward schemes. In other algorithms, elements
are stored and forwarded in the intermediate nodes l o g p to
l o g p (1 + l o g p) / 2 times [6], [2], [4], [3]. We show that the
resulting routing algorithm is faster than the store-and-forward
scheme for large values of n. However, the balanced-sort
algorithm does not rely on the existence of the Direct-Connect
capability and can be implemented on any hypercube by
using the store-and-forward scheme. Another feature of the

1045-9219/93$03.00 0 1993 IEEE

-__

ABALI et al.: BALANCED PARALLEL SORT ON HYPERCUBE MULTIPROCESSORS 573

balanced-sort algorithm is the overlapping of interprocessor
communication and computation by using asynchronous com-
munications. In the hypercube model assumed here, nodes
communicate using the send and receive primitives. These
primitives are divided into two categories as synchronous send
(csend) and receive (crecv), and asynchronous send (isend)
and receive (irecv). Synchronous primitives block the calling
process until the message is transmittedheceived. On the other
hand, asynchronous primitives allow a process to initiate the
communication, and then continue with the computation, thus
benefiting from the overlap of those two. We also assume that
nodes can communicate to only 1 of their d neighbors at a
time (1-port communication capability [4]).

The average running time of the balanced-sort algorithm
is O (n / p l o g n + p log2 n) for randomly distributed data. A
comparison with hyperquicksort [2] on the iPSC/2 hypercube
computer shows that the balanced-sort algorithm performs
better for a wide range of n and p values.

The organization of the paper is as follows: Previous work
on sorting is summarized in the next section. An overview
of the balanced-sort algorithm is given in Section 111. The
algorithm for finding the balanced partition keys is described
in Section IV. The routing algorithm is presented in Section
V. Finally, experimental results on a 16 node Intel 386
based iPSC/2 hypercube multiprocessor and conclusions are
presented in Sections VI-VII.

11. BACKGROUND

Several parallel sorting algorithms for distributed memory
hypercube multiprocessors were previously given in [6], [2],
[4], [3], [7]. Johnsson’s algorithm [6] is an adaptation of
Batcher’s [8] bitonic sort to hypercube computers. In this
algorithm, each node sorts its list of size n / p using a sequential
sorting algorithm in O (n / p l o g (n / p)) time. These lists are
then exchanged among the nodes and merged d(d+1)/2 times
according to the bitonic sorting rule (d = logp) , giving an
overall sorting time of ~ (n / p log (n /p) + n / p log2 p) . agar's
[2] hyperquicksort algorithm is known to be one of the fastest
sorting algorithms for hypercubes. In hyperquicksort, each
node quicksorts its list of size n / p . Then, node 0 broadcasts its
median element as the partition key. Nodes use the partition
key to split their lists into two. The two subcubes separated
by dimension d - 1 exchange sublists so that the sublists
that contain elements greater than the key are sent to the
upper half of the hypercube along dimension d - 1, and
the sublists that contain elements less than the key are sent
to the lower half of the hypercube. The sublists are then
merged by each node. The procedure is recursively repeated
in the subcubes of the hypercube along dimensions d - 2, d -
3 . . . , O . The sorting time for a uniform data distribution is
O (n / p log n + n / p logp). However, hyperquicksort does not
always perform well. Randomly chosen partition keys do not
necessarily split the elements evenly among the nodes. Thus,
some nodes end up merging more than n / p elements, leaving
the rest of the nodes idle [2]. The samplesort algorithm given
by Fox et al. [3] has the same time complexity and tries to
circumvent this load balancing problem by choosing a sample

of l keys from every node. This sample of total size l p ,
which is a representative of the distribution of n elements,
is sorted and the (li)th elements (i = 1 , 2 , . . . , p - 1) in the
sample are chosen as the partition keys. The probability of
choosing good partition keys increases with large l . However,
additional time is spent for sorting larger samples [3]. Seidel
and George [4] describe several parallel binsort algorithms
based on sampling of the elements. In the min-max binsort,
nodes send their minimum and maximum elements to node
0, which then determines the global minimum and maximum
elements in the hypercube to compute p - 1 partition keys
[4]. Parallel binsort algorithms of Seidel and George also
assume that a hypercube node can communicate with its d
neighbors simultaneously (d-port communication capability),
which is reported to reduce the communication costs by a
factor of at least d [4]. Won and Sahni [5] describe an
improved binsorting algorithm that requires less memory than
that of [4] due to the improvements in the sampling algorithm.
Plaxton [7] describes sorting and selection algorithms for
hypercubes which have better worst-case time complexities
than previous algorithms. Plaxton’s parallel quicksort runs
in O((n log n) / p + (n 1og3/2 p > / p + log3 p l o g (n / p)) time.
AII ~ ((n / p) l o g l o g p + log2 p l o g (n / p)) time parallel selec-
tion algorithm is used to determine the exact partition keys.
Using the exact partition keys is an improvement over the
previous sorting algorithms that choose the partition keys by
sampling the elements. Theoretically, Plaxton’s algorithms are
more robust than the algorithms presented in this paper. Our
contributions are new sorting, selection, and communication
algorithms that have small constant factors associated with
their time complexities and therefore are fast in practice.

111. OVERVIEW OF THE BALANCED-SORT ALGORITHM

An overview of the balanced-sort algorithm will be given
before the steps are described in greater detail in Sections
IV-V. Initially, n distinct elements are distributed over 2* = p
nodes of a hypercube with each node having n / p elements.
The balanced-sort algorithm rearranges the n elements to
obtain an ordered list L[1 . . . n] distributed over p nodes, such
that any element in node i is greater than every element in node
, j whenever i > j , within each node elements are sorted, and
each node is left with exactly n / p elements at the end of the
sort. The major steps of the sorting algorithm are described
below:

Algorithm 1 Balanced-Sort
1. Quicksort: Each node independently quicksorts the n / p

elements initially residing in its memory to form a sorted
list AIO . . . (n / p) - 11 in O (n / p l o g (n / p)) expected time

2. Select Partition Keys: The elements L[kn/p] (k =
1, . . . , p - 1) of the final sorted list L[l + . . n] are de-
termined. A parallel selection algorithm that finds these
p - 1 partition keys in O(p log2 n) time is described in
Section IV.

3. Global Exchange: Each node finds the insertion point
of the p - 1 partition keys in its list AIO . . . (n , /p) - 11.
(Key X ’ s insertion point is between A[r] and A[. + 11,

[11, [91.

574 IEEE TRANSAC TlONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 5, MAY 1993

if A[T] 5 X < A[T + 11.) This partitions each sorted
list AIO . . (n / p) - 11 into p sorted segments At (C =
0 , . . . , p - 1) such that for C > m, an element in segment
At of any given node is greater than all the elements in
segment A,,, of any node, and the sum of the number of
elements in the Cth segments of the p nodes is n/p . Each
node sends its segment between the insertion points of
L[kn/p] andL[(k+l)n/p] tonode k (k = 1 , . . . , p - 2) .
The end points are treated similarly: each node sends
the elements smaller than or equal to L[n/p] to node
0, and the elements greater than L[(p - l)n/p] to node
p - 1. Running time of the global exchange algorithm
is between 0 (p log p) and 0 (n + p log p) , depending on
the initial global ordering of data, as will be discussed
in Section V and is overlapped with the computations in
the binary tree merge step.

4. Binary %e Merge: Each node k receives p - 1 sorted
segments from other nodes, and has its segment IC. Each
node independently forms a single sorted list out of these
p segments in O(n/plogp) time by a binary tree merge,
which completes the sort.

In step 1, the heapsort algorithm can be used to attain an
O(n/p log(n/p)) worst-case time bound [l], however quick-
sort was implemented as it is faster in practice [9]. As indicated
earlier, the partitioning step ensures that the nodes receive n / p
elements each for the binary tree merge step. Thus, merge
times will be equal in each node, and nodes will finish the
sort exactly with n / p elements each. The partitioning step
also guarantees that the segments to be merged on different
nodes are disjoint so that no interprocessor communication is
needed during binary tree merge.

Iv . SELECTION OF THE PARTITION KEYS

In the selection of the partition keys, the elementary hyper-
cube algorithms exchange-add and transpose are used. These
algorithms and their variations originally appeared in several
references including [lo]-[14]. We include them here for the
sake of completeness.

A. Elementary Hypercube Algorithms

The exchange-add algorithm finds the global sum of 2d = p
numbers distributed over the nodes of a d-cube in O(1ogp)
time and leaves each node with a copy of the result. Each
node z executes the following in exchange-add:

Algorithm 2 Exchange-Add
z = (zd -1 . . . zo) : This node’s id
T : Initially, the partial sum residing in this node.
The global sum is returned in T.

for i = 0, ..., d - 1
irecv partial sum into s from node (Zd-1 . . . Z. . . zo)

csend partial sum T to node (z d - 1 . . . Z. * . zo)

wait for irecv to complete
r = r + s

along dimension i

along dimension i

endfor

The transpose algorithm distributes p values in every node,
each addressed to a different node, in O(p1ogp) time. Values
are represented in the form of tuples to identify their source
and destination nodes. Let < val ,dst ,src > denote the
value val to be sent from node STC to node dst. In node z
(z = 0,1, + . . , p - l) , initially there are p tuples < waZ5, j , z >
(j = 0,1 , . . , p - 1) . Upon completion of the algorithm, node
z receives the p tuples < wall, z , j > (j = 0,1, . . , p - 1)
addressed to it from the other nodes.

Elements are transposed with the following algorithm:

z = (Zd-1 e . zo) : This node’s id
T[O. . + p - 11: List of p tuples < V a l & , dst, z >

for i = 0, ..., d - 1

Algorithm 3 Transpose

residing in this node.

split T into two lists B and B’
B contains the tuples whose dst fields
agree with Zd-1 e . .ZO in ith bit position,
and B‘ contains tuples that do not.

along dimension i

along dimension i

irecv list C from node (z d - 1 e . . Z. . zo)

csend list B’ to node (zd -1 . . + Z. . zo)

wait for irecv to complete
T c B U C

endfor
The algorithm communicates along d different dimensions,

and in each direction lists of size p / 2 are exchanged, resulting
in an overall execution time of O (p log p) .

B. Fast-Partition Algorithm
The fast-partition algorithm for finding the partition keys,

namely L[kn /p] (k = 1,. . . , p - l), is based on the following
scheme: An element X is proposed as the partition key
L [k n / p] . Each node i (i = 0, . . . ,p-1) determines the number
of elements smaller than or equal to X (referred to as the
local rank) in its sorted list AIO . . . (n /p) - I]. Since in each
node A [O . . . (n / p) - 11 is already sorted, the local rank of
X can be determined in log(n/p) comparisons by a binary
search. Then, the p local ranks of X are summed by using
the exchange-add algorithm, to find its global rank, i.e., X ’ s
position in the final sorted list L[1 . . . n]. If X ’ s global rank is
greater(smal1er) than k n / p , a new candidate smaller(greater)
than X is proposed as the partition key, and the procedure is
iterated in this fashion until the key with the global rank k n / p ,
i.e., L[lcn/p] is found. The fast-partition algorithm amortizes
the high setup cost of interprocessor communication over p - 1
partition keys (I C = 1, . . . , p - 1) by processing them in one
batch.

For the kth balanced partition key L[kn/p] (k = 1, . . . , p -
I), each node keeps two local variables min[k] and max[IC]
which are pointers to its sorted list AIO . . . (n / p) - 11. The local
search space, in each node, for the kth balanced partition key is
between min[IC] and max[IC] such that A[min[k]] < L[ICn/p] <
A[max[k]]. The global search space for the kth partition key is
the collection of its p local search spaces. Initially, the global
search space for the kth partition key L[ICn/p] consists of n

MALI et al.: BALANCED PARALLEL SORT ON HYPERCUBE MULTIPROCESSORS 575

elements (i.e., all the elements in the hypercube) and each of
the p local search spaces consists of n / p elements.

In the first iteration, each node proposes A [k n / p 2] as a
candidate for the kth partition key. After the first iteration,
each node i (i = 0,. . . , p - 1) proposes the median element
C a [k] of its local search space as a candidate for the balanced
partition key L[kn/p] (k = 1, . . , p - I). The median of the
p candidates Co[k], C1 [k] , . . . , C P - l [k] , each coming from a
different node, is selected as the final candidate and used
during the local and global ranking phases of the iteration. For
determining the medians, the transpose algorithm rearranges
the p (p - 1) candidates in the hypercube such that all of the
candidates associated with the partition key L[kn/p] , namely
C a [k] (i = 0, . . . , p - l) , move to node k , in parallel for
IC = 1 , . . . , p - 1, in O(p1ogp) total time. Then, the medians
of the p candidates for each of the (p - 1) partition keys are
determined in parallel, with node k determining the median of
the p candidates proposed for L [k n / p] . Since 1 5 IC 5 p - 1,
node 0 receives only N I L values, hence does not participate in
the median selection. Fig. 2 illustrates this search procedure for
only one of the partition keys (L [n / p]) . Initially, the algorithm
determines that node 0's candidate X I is the median candidate
for the first partition key L [n / p] . Each node finds the local
rank (insertion point) of X I in its list and the global rank of
XI is found to be smaller than n / p . The new search space is
shown in Fig. 2 below the insertion point of X I . In iteration 2,
each node proposes the median key in its current local search
space as the new candidate. The median of these candidates,
X2, is selected and found to have a global rank greater than
n /p . The search space is further reduced as shown in Fig.
2 and iterations continue until L [n / p] is found. In a manner
similar to the sequential binary search, the global search space
is approximately cut by half in each iteration by proposing a
candidate from the middle of the global search space.

Each node i executes the following steps in the fast-partition
algorithm:

Algorithm 4 Fast-Partition
Initialize: Let A [O . . . (n / p) - 11 be the sorted list of
n / p elements in node i (i = O,...,p - I). Let the
local variables m i n [k] and m a x [k] (k = l,...,p - 1)
be the pointers for the sorted list A [O . . . (n / p) - 11.
During the iterations, the local search space for the k-th
balanced partition key L[kn/p] will always be between
m i n [k] and m a x [k] such that A [m i n [k]] < L [k n / p] <
A [m a x [k]] . Initialize min[k] = -1, m a x [k] = n / p
for IC = l,...,p - 1. Initially, propose A [k n / p 2] as
a candidate for the balanced partition key L [k n / p] for
k = 1, , p - 1. This step takes O (p) time.
Tkanspose: Each node i (i = O,...,p - 1) is now
holding a candidate for L [k n / p] (k = 1, . . . ,p-1). The p
candidates associated with L [k n / p] and distributed over
the p nodes are moved to node k (k = 1,...,p - 1)
using the transpose algorithm. Since k 2 1, node 0 gets
only N I L values. This step takes O (p l o g p) time.
Select Median of the Candidates: Node i now holds
the p candidates for the partition key L [i n / p] . Node i
determines the median candidate by sorting the p keys
and taking their median in O(p1ogp) time. Candidates

o r - o n

x 1

nlp-1
Node 0 Node 1 Node 2 Node 3

Fig. 2. Illustration of the search procedure for finding the partition key
L [k n / p] for k = 1.

other than the median are discarded. Node 0 is idle at
this step since it holds all the N I L values.

4. Broadcast: Each node i (i = 1, . . . , p - 1) broadcasts its
median key to the rest of the nodes 0, I, + . . , p - 1. The
p medians are broadcast in parallel in O (p) time using
an Exchange-Add like algorithm that has the arithmetic
addition replaced with the set union operation (see also
[111 for broadcast on hypercubes). Each node receives
the broadcast keys and forms a local copy C[1. . ' p - 11
of the candidate list. (C[IC] is the key received from node
k . Thus, C [k] is the candidate for the balanced partition

5. Local Rank Computation: Each node determines the
local rank R[k] of C [k] (I C = l , . . . , p - 1) by a
binary search in A[O...(n/p) - 11. This step takes
O(p l o g (n / p)) time.

6. Global Rank Computation: The p local ranks of C[k]
distributed over p nodes are summed using the exchange-
add algorithm and stored in the local variable GIIC]
(I C = 1, . . . , p - I), resulting in O (p log p) overall time
for this step. G[k] holds the global rank, i.e., the position
of C[k] in the sorted output L[1 of the Balanced-
Sort algorithm. Each node has a copy of G [1 . . . p - 11.
If G [k] = k n / p , then the kth balanced partition key is
found (L [k n / p] = C[k]) .

7. Reduce the Search Space: If G [k] > k n / p , it is known
that C [k] > L [k n / p] . Therefore, each node decrements
its m a x [k] pointer to the smallest possible value such
that C [k] 5 A [m a x [k]] in its list A[O.. . (n / p) - 11.
Likewise, if G [k] < k n / p , then each node increments
its m i n [k] pointer to the largest possible value such that
C [k] 2 A[min[IC]] in its list A[O. . . (n / p) - 11.

8. Propose New Candidates: For k = 1, . . . , p - 1,
each node proposes A[[(max[IC] + m i n [k]) / 2 J] as the
new candidate for L [k n / p] . If m a x [k] = min[k] +
1, the balanced partition key L [k n / p] cannot be in

key L [k n / p I .>

576 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 5, MAY 1993

this node, since there are no elements left between
the two pointers min[k] and max[k]. In that case, the
node proposes a dummy value N I L as the candidate
instead of A[L(max[k] + min[k])/2]]. This ensures that
an element which does not belong to the global search
space for L[kn/p] is not proposed and thus, the median
selection process at step 3 is not adversely affected. At
step 3, the NIL values are discarded before a median is
chosen. Iterations continue from Step 2 until all of the
p - 1 balanced partition keys are found.

By adding the dominant complexity terms, O(p1ogp) in steps
2, 3, 6 and O(plog(n/p)) in step 5, the time complexity of
each iteration is found to be O(p log n). A n upper bound for
the number of iterations can be established as follows: The
candidate key C[k] for the balanced partition key L[kn/p] is
the median element (i.e., A[l(max[k] + min[k])/2]]) of one
of the p local search spaces. Therefore, once the global rank
G[k] of C[k] is determined, the size of the local search space in
the node that proposed C[k] will be reduced exactly by half.
If the global rank G[k] < kn/p, it is known that proposed
candidate C[k] is smaller than L[kn/p]. Therefore, L[kn/p]
cannot be between A[min[k]] and C[k], and the pointer min[k]
is incremented to eliminate the elements between A[min[k]]
and C[k] from consideration, which eliminates one half of the
elements between min[k] and max[k] (Step 7). Likewise, if
the global rank G[k] > kn/p, the pointer max[k] is updated
to eliminate the other half of the elements in the local search
space. In each iteration, the size of at least one local search
space will be reduced by half as described above.

There are p local search spaces with each having n /p
elements initially, and it takes log(n/p) iterations to reduce
the size of each local search space. Therefore, an upper bound
for the number of iterations is p log(n/p). However, more than
one local search space will be reduced at each iteration in
general. On the average, Algorithm 4 will iterate log n times:
The candidate C[k] , as determined in Step 3, is the median of p
candidates each of which is the median of a local search space.
Thus, C[k] falls approximately in the middle of the global
search space for L[lcn/p]. This means that on the average, the
size of the global search space for L[kn/p] will be halved
in each iteration. Since the size of the global search space for
L[kn/p] is initially n, the average iteration count will be log n.
Each iteration takes O(p log n) time. Therefore, Algorithm 4
finds the p - 1 partition keys in O(plog2 n) average time.
Note that the communication setup cost per iteration is only
(3logp)Tsu which is the sum of the setup times in steps 2,
4, and 6. Tsv is the message setup time.

Algorithm 4 has a property similar to that of the sequential
binary search: the size of the search space decreases geometri-
cally. In the first few iterations Algorithm 4 makes big jumps in
the global search space and begins proposing candidates very
close to the balanced partition keys. In practice, if a candidate
C[k] has a global rank sufficiently close to kn/p such that
the criterion E 2 Ikn/p - G[k]I is satisfied, iterations can be
terminated earlier, resulting in a faster partitioning algorithm
with partitions of size n /p f 2~ at worst.

As a further improvement, the upper bound for the number
of iterations can be reduced to O(1ogn) iterations by using

weighted medians in Step 3 of the algorithm. The weight of
a candidate key is defined as,the size of the corresponding
local search space, i.e., max[k] - min[k] - 1. Algorithm 4
is modified as follows: In Step 2, each node sends to the
destination node the candidate key and its weight. Thus, each
node k (k = 1, . . . , p - 1) receives p candidate-weight pairs
{(C,", W,"), (Cj!, W i) , . . . , (Ci-', Wi-')}. In Step 3, each
node k sorts the p candidate keys so that

where 0 5 l j 5 p - 1 and then determines m such that

j=1 j = 1

where S = W i is the size of the global search space for
this iteration. The weighted median Cim is selected as the final
candidate for L[kn/p], and the remaining p - 1 candidates are
discarded. Equation (1) guarantees that there are at least S/4
elements smaller than or equal to Cim, and that there are at
least S/4 elements greater than Cp in the global search space.
Thus, in each iteration at least 1/4th of the elements in the
global search space are eliminated, and therefore the algorithm
terminates after O(log n) iterations. Note that communicating
the weights and computing m increase the time complexity of
each iteration only by a small constant factor. The idea of using
weighted medians for selection is due to Galil and Megiddo
[15] and Frederickson and Johnson [16]. The procedure is
explained in detail in Ibaraki and Katoh [17]. Our contribution
here is the application of the procedure to all partition keys
in parallel.

V. GLOBAL EXCHANGE

Let Ah (l = 0,1, . . . , p - 1) denote the p sorted segments
in node 2, induced by the p - 1 balanced partition keys. In the
global exchange step of the balanced-sort algorithm, segments
are exchanged among the nodes such that each node i sends
its segment Ai to node e . A communication scheme similar to
that of the hyperquicksort algorithm could easily be used to
implement the global exchange [2] : Segments that contain the
elements smaller (greater) than the p/2th partition key (i.e.,
L[n/2]) are sent to the lower (upper) half of the hypercube
along dimension d - 1. The upper and lower subcubes repeat
this procedure recursively along dimensions d - 2, d - 3,. + . , 0
using the rest of the partition keys. However, this scheme
results in up to log p memory-to-memory copy operations for
each element. In this section, a communication algorithm for
reducing this overhead for large values of n is described.
The algorithm makes use of a hardware feature of the iPSC/2
hypercube that is described below.

In the iPSCl2 hypercube, each node is equipped with a direct
connect module (DCM), which allows nonneighboring nodes
to communicate directly [18]. A DCM can be considered to
be a (d + 1) input, (d + 1) output crossbar switch. The d input-
output pairs of the DCM are connected to the d neighbors
of the node through hypercube links. The remaining input-
output pair is connected to the internal bus of the node,

ABALI et al.: BALANCED PARALLEL SORT ON HYPERCUBE MULTIPROCESSORS 511

hence to the local memory. A DCM can be set up so that a
message coming from one link can be immediately directed to
another link, thereby avoiding the store-and-forward overhead.
The connection through the DCM's is a circuit-switched type
connection. Measurements on iPSC/2 indicate that commu-
nication between two nonneighboring nodes is as fast as
communication between adjacent nodes if all the links in
the communication path between the two nodes are available.
Therefore, the objective of our global exchange algorithm is
to ensure that the communication paths between the nodes
are available during the exchange of the sorted segments. The
communication hardware uses the e-cube algorithm for routing
messages [18], where the routing tag is obtained by taking the
bit by bit logical exclusive-OR of the source and destination
node addresses. The nonzero bit positions in the routing tag,
read from right to left, give the hypercube coordinates as
a message goes along. For example, if the routing tag is
T = (~ 4 ~ 3 ~ 2 ~ 1 ~ 0) = (01011), the message travels along
dimensions 0, 1, and 3 to arrive at its destination.

By making use of the DCM's and e-cube routing, the
following algorithm delivers segments directly to their des-
tinations with segments following disjoint paths. Hypercube
nodes distributively execute Algorithm 5, where @ denotes an
exclusive-oa operation:

Algorithm 5 Global-Exchange

2 : this node's id
A [, . . . , p - l : segments to be delivered

for I C = l,...,p- 1
irecv segment A:@''" from node z @ IC
isend segment A;@+ to node z @ IC
wait for irecv and isend to complete
sync

endfor

The p - 1 = 7 steps of the global-exchange on a 3-cube are
shown in Fig. 3. Processors wait at the sync instruction until
it is executed by all p of them to ensure that no processor
gets ahead of the others and blocks the network links. In each
step, each node z sends to the node numbered z @ k , which
means that the routing tag is identical (z @ (z @ k) = I C) for all
the segments being exchanged. The nonzero bit positions in k
give the dimensions traversed by the segments. For example,
for IC = (101), the links along the dimensions 0 and 2 are used
by the segments as seen in Fig. 3. Since the value of IC is the
same in all of the nodes, every source node sends in direction
0, and the crossbars forward messages coming from direction
0 to direction 2. This ensures that no more than one segment
is routed to the same link, thus segments follow disjoint paths.

The sync instruction is executed in O(10gp) time. To
synchronize, each node sends and receives a dummy token
along dimensions 0, I : . . . , d - 1. Thus, until sync is issued
by all of the processors, none of them can proceed to the
next step of the algorithm. When segment sizes are more or
less equal (2 n,/p2), Algorithm 5 runs in O(n/p + plogp)
time since processors finish each step of Algorithm 5 at about
the same time, and the sync operation does not delay them.
However, when segment sizes are significantly different, such

kg lw-_I1ll
01 0 01 1

000 001
Coordinate Directions K=001 K=010

K=011 K=l W

K=110 K=l 1 1

Fig. 3. The 7 communication steps of Global-Exchange on a 3-cube.

as in the case where each node has one segment of size n / p
and p - 1 segments of size 0, the exchange of segments
may be serialized by the sync operation and therefore may
take longer. An upper bound for the segment transfer time
is O(n + p l o g p) due to this serialization. However, this is
a very pessimistic upper bound. Even when nodes have one
segment of size N n l p , the segments are transferred in parallel
in many cases. Furthermore, experimental results show that
when segment sizes are significantly different, the performance
is not affected significantly. This is explained by a combination
of factors: Communication time is smaller than computation
time, the global exchange step is overlapped with the merge
step, and the binary tree merge is usually faster with such data
distributions as described in Section VI.

While reducing log p memory-to-memory copy operations
to only 1, Algorithm 5 increases the number of communication
steps from logp to p - 1, since the p - 1 segments in each
node are individually delivered to their destinations. Thus,
there is a tradeoff between the communication volume and
the communication setup cost. For the case where all segment
sizes are equal (n / p 2) this tradeoff can be analyzed as follows:
If the store-and-forward scheme is used as in hyperquicksort,
each node will send half @ / 2) of its segments to the other
subcube and keep the other half. This is performed log p
times until all of the segments reach their destination node.
Therefore, the overall communication cost is

where Tsu is the communication setup time, TB is the one
byte transfer time, and N is the amount of data being sorted

578 IEEE TRANSAC TIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 5 , MAY 1993

Uniform

-
Hyperquicksort (8 procr.)

'3
0 1 I I 1 I I I I I

0 50 100 150 200 250 300 350 400
Number of elements n (l.OE+3)

Fig. 4. Speedup of hyperquicksort and balanced-sort for the UNIFORM dis-
tribution.

in bytes (N = 4n for 4 byte elements). If Algorithm 5 is used
instead of the store-and-forward scheme, each node sends its
segments to p - 1 other nodes directly. Therefore, the overall
communication cost is

(3)

Comparison of (2) and (3) indicates that Algorithm 5 takes
less time than the store-and-forward scheme for large values
of N and most values of p. Equating (2) and (3), and using the
measured communication parameters of iPSC/2, the breakeven
values of N for the two algorithms are found as 42 KBytes,
134 KBytes, and 432 Kbytes for p = 4,8,16, respectively
(TSU = 955 ps for messages longer than 100 bytes, and TB =
0.366 ps). Beyond those values of N , the communication
time of Algorithm 5 is smaller than the store-and-forward
scheme. Thus, Algorithm 5 is more suitable when the volume
of communication is large and the setup time (Tsu) is small.

The algorithm can be slightly improved by observing that
the communication links used for k and E , the ones comple-
ment of k , are also disjoint. For example, in Fig. 3 note that
the links used for k = (101) and = (010) are disjoint.
This allows two sets of segments to be exchanged between
the execution of two syncs.

Another interesting feature of the balanced-sort algorithm
is the ability to overlap communication and computation
in the global exchange and binary tree merge steps using
asynchronous communication primitives: as soon as node z
receives the first segment A;, it may begin merging the pair
of segments A: and A:, while two more segments arrive at
the node in parallel with the merge. Merging and exchanging
of segment pairs continue in this pipelined fashion until all of
the segments are exchanged. Note that Algorithm 5 provides
conflict-free routing in omega [19], indirect binary n-cube
[20], and generalized cube [21] multistage networks as well.
Thus, balanced-sort can also take advantage of any of those
networks.

TABLE I
EXECUTION TIMES (mS) OF HYPERQUICKSORT AND

BALANCED-SORT FOR THE UNIFORM DISTRIBUTION

d d 1 0 3) Hyper. Blncd. Q P GM

1 4 78 96 56 25 15
1 8 158 162 116 16 30
1 16 332 329 251 34 44
1 30 630 * 623 480 34 109
1 60 1280 1288 1037 36 215
2 4 51 101 28 54 19
2 8 96 151 57 63 31
2 16 194 246 118 68 60
2 30 380 410 234 68 108
2 60 766 789 503 78 208
2 100 1340 *1274 856 73 345
2 120 1613 *1532 1037 83 412
3 4 38 134 14 96 24
3 8 66 158 28 96 34
3 16 124 213 58 103 52
3 30 223 315 113 117 85
3 60 458 516 237 125 154
3 100 777 805 410 127 268
3 120 942 946 503 134 309
3 150 1182 *1129 628 127 374
3 200 1574 *1503 857 143 503
3 240 1900 *1778 1040 135 603
3 300 2396 *2235 1338 148 749
4 4 37 221 8 176 37
4 8 51 256 15 191 50
4 16 83 297 28 206 63
4 30 142 361 55 221 85
4 60 268 486 114 235 137
4 100 460 663 200 264 199
4 120 535 719 238 250 231
4 150 686 837 306 255 276
4 200 900 1032 411 266 355
4 240 1084 1192 504 268 420
4 300 1350 1418 634 267 517
4 400 1823 1831 872 287 672

d dimension of the hypercube.
*: Indicates the faster balanced-sort cases.
Hyper: Hyperquicksort time.
Blncd: Balanced-Sort time.
Q and P: Quicksort and partitioning times of balanced-sort
GM: Global exchange and merge time of balanced-sort.

VI. IMPLEMENTATION RESULTS
The performance of hyperquicksort and the balanced-sort

algorithm (Algorithm 1) which uses Algorithm 4 for par-
titioning were compared on a 16-node iPSC/2 hypercube.
Won and Sahni [SI compared the performance of Wagar's
hyperquicksort [2] extensively with bitonic sort of Johnsson
[6], [8], min-max binsort of Seidel and George [4], and several
versions of the parallel binsort of Won and Sahni [5] on the
NCUBEI7 hypercube multiprocessor. Won and Sahni's results
show that hyperquicksort is faster than the other algorithms in
many cases. Therefore, we consider comparison with hyper-

MALI et al.: BALANCED PARALLEL SORT ON HYPERCUBE MULTIPROCESSORS 579

Fig.

Skewed

$1'1 Balanced-sori (I6 procs.)

84 r / Hyparquickrwf (16 procs:)

T a l o n c a d - s o r t (8 prom.)

7

6

5

4 rqulckrort (8 procs.)

3

2

O (I I I I I I I 1
0 50 100 150 200 250 300 350 400

Number of elements n (1.OE+3)

5. Speedup of hyperquicksort and balanced-sort for the SKEWED dis-
tribution.

quicksort to be sufficient to demonstrate the performance of
the balanced-sort algorithm.

The iPSC/2 hypercube used in evaluating the algorithms
consists of 16 nodes each of which consists of a 16-MHz
386 microprocessor, a 64 KByte cache, 1 MByte of memory
and a DCM. Communication bandwidth was measured as
2.73 MBytes/s. Communication setup time was measured as
536 ps for short messages (5 100 bytes), and 955 ps for
long messages (> 100 bytes). Randomly generated 32-bit
integers were sorted. The global exchange and the binary tree
merge steps of the balanced-sort were implemented using asyn-
chronous communication primitives to allow communication
and computation overlap as described in Section V. However,
the amount of overlap was not measured. To observe the
effect of initial data distribution on the performance of the
partitioning and global exchange algorithms, three different
initial data distributions were used.

The UNIFORM distribution consists of randomly distributed
elements over the hypercube such that the p - 1 balanced
partition keys L[kn /p] (k = l , . . . , p - 1) partition each
list AIO . . * (n / p) - 11 into p segments of almost equal size
(21 n / p 2) . Hyperquicksort achieves its best performance with
the UNIFORM distribution, since it is most likely that the
nodes receive n / p elements each during the merge phase and
have equal loads throughout the sort. Fig. 4 shows the speedup
of balanced-sort and hyperquicksort as a function of n, for
8 and 16 node hypercubes, for the UNIFORM distribution.
Table I shows the sort times for hyperquicksort and balanced-
sort. For small n, balanced-sort performs significantly worse
than hyperquicksort for all hypercube dimensions. The parti-
tioning overhead dominates the overall time in balanced-sort.
However, as n grows, the speedup of balanced-sort grows
faster than hyperquicksort speedup and it is greater than
hyperquicksort speedup for a few cases (indicated by * in
Table I). We attribute this result to the global exchange
algorithm described in Section V which is implemented to
overlap communication and computation, and avoid the store-
and-forward overhead.

TABLE I1
EXECUTION TIMES (mS) OF HYPERQUICKSORT AND
BALANCED-SORT FOR THE SKEWED DISTRIBUTION

d n1103) Hvuer. Blncd. Q P GM
~~ ~

1 4 78 114 56 50 8
1 8 159 188 119 54 15
1 16 327 335 247 59 29
1 30 645 *613 496 64 53
1 60 1315 *I208 1034 70 104
2 4 54 128 27 88 13
2 8 102 175 56 98 21
2 16 207 261 119 106 36
2 30 397 413 235 116 62
2 60 803 *742 496 125 121
2 100 1372 *1204 873 134 197
2 120 ** 1406 1035 135 236
3 4 44 185 13 149 23
3 8 78 201 27 149 25
3 16 149 25 8 57 164 37
3 30 275 349 111 178 60
3 60 562 '538 235 194 109
3 100 941 '785 402 208 175
3 120 1139 *914 497 209 208
3 150 1431 *1112 628 226 258
3 200 ** 1437 873 226 338
3 240 ** 1665 1036 225 404
3 300 ** 2090 1348 240 502
4 4 39 279
4 8 58 317
4 16 100 367
4 30 178 437
4 60 350 561
4 100 592 721
4 120 705 797
4 150 882 910
4 200 1185 *I076
4 240 1427 *1216
4 300 1793 '1453
4 400 2413 *1805

8 238 33
15 265 37
28 292 47
54 321 62

111 353 97
201 377 143
236 381 180
299 410 201
402 415 259
497 415 304
628 451 374
873 441 491

d: dimension of the hypercube.
*: Indicates the faster balanced-sort cases.
**: Hyperquicksort does not run due to insufficient memory.
Hyper: Hyperquicksort time.
Blncd: Balanced-Sort time.
Q and P: Quicksort and partitioning times of balanced-sort.
GM: Global exchange and merge time of balanced-sort.

In the SKEWED distribution, data are globally presorted
in a way to increase the communication time of the global
exchange step of balanced-sort; the distribution is such that in
node i (i = O , l , . . . , p - l) , segment Ai has a size of n / p if
l = i + l(modp), and has a size of 0 if ! # i + l(modp).
Thus, all of the n / p elements in node i have to move to
node i + l(modp) during the global exchange step. Fig. 5
and Table I1 show that for large n, balanced-sort is faster than
hyperquicksort. For example, for n = 400 000 and p = 16,
a speedup of 7.7 for hyperquicksort and 10.3 for balanced-
sort is obtained. The skew in the initial data distribution

580 IEEE TRANSAClIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 5, MAY 1993

n13-

:: 12-
Ell-
0 -

10-

9-
a-
7-

6-

5-
4-

3-
2-
1-

Best

Ealanced-sort (16 procr.)

quicksort (8 procs.)

Hyper.

75
155
318
631

1302
55

107
216
414
852

1462
1723

79
150
279
566
952

1155
1449

* *
* *
* *
38
58

100
178
348
591
705
884

1181
1430
1790

0: I I I I I I I I

0 50 100 150 200 250 300 350 400
Number of dements n (1 .OE+3)

Blncd.

110
193
322

*589
*1162

123
164
243

*382
*681

*1107
*1288

191
241
320

*481
*693
*804
*969
1251
1444
1816
276
307
355
415
514
65 1

'696
*803
*933

*lo49
'1236

Fig. 6. Speedup of hyperquicksort and balanced-sort for the BEST distribu-
tion.

causes a load imbalance in the merge step of hyperquicksort;
some nodes merged much more than n / p elements, while in
the balanced-sort algorithm, each node merged exactly n /p
elements.

The increase in the communication time due to the SKEWED
distribution did not affect balanced-sort adversely. On the
contrary, comparison of Tables I and I1 show that for the
same values of n and p, balanced-sort is faster for the
SKEWED distribution than the UNIFORM distribution for
many cases. This result was partially because the interpro-
cessor communication time is smaller than the other steps of
balanced-sort, and partially because of the implementation of
the two-way merge algorithm used in the binary tree merge.
If one list is exhausted during the merge, the remainder of
the other list is moved by a block copy operation which
results in fewer comparisons. In the SKEWED distribution,
since sizes of the segments being merged are significantly
different, binary tree merge takes much less time than in the
UNIFORM distribution. Thus, the anticipated increase in the
communication time is nullified by a fast binary tree merge.
This may be verified from the GM column of Tables I and
11.

In the BEST distribution, data are globally presorted so
that initially all elements in node i are greater than all
elements in node j , if i > j , and within a node elements are
randomly distributed. This is the ideal global data distribution
for balanced-sort. Since data are globally ordered to begin
with, no interprocessor communication takes place to exchange
the segments during the global exchange step of balanced-sort.
Fig. 6 and Table I11 show that for large n the balanced-sort
algorithm performs better than hyperquicksort. For example,
for n = 400 000 and p = 16, a speedup of 7.7 for
hyperquicksort and 12.1 for balanced-sort is obtained. This
difference is because balanced-sort did not incur a commu-
nication cost during the global exchange step, and merged
fast due to unequal segment sizes, but primarily it is because
hyperquicksort had a load imbalance. For example, for n =
400K and p = 16, the hyperquicksort sorts in 2413 ms

d

2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
4
4

TABLE I11
EXECUTION TIMES (mS) OF HYPERQUICKSORT AND

BALANCED-SORT FOR THE BEST DISTRIBUTION

n(103)
4
8

16
30
60
4
8

16
30
60

100
120

8
16
30
60

100
120
150
200
240
300

4
8

16
30
60

100
120
150
200
240
300
400

d : dimension of
2413 I *1531

: hypercube.

Q
55

119
247
496

1034
27
56

118
235
496
873

1035
27
57

111
235
402
497
628
872

1035
1348

8
14
28
53

112
20 1
236
298
403
497
629
873

P
50
54
59
64
69
88
96

106
115
124
134
133
148
163
178
194
209
209
222
223
224
240.
237
265
294
323
349
377
378
408
406
410
436
436

GM
5

20
16
29
59
8

12
19
32
61

100
120

16
21
31
52
82
98

119
156
185
228
31
28
33
39
53
73
82
97

124
142
171
222

*: Indicates the faster balanced-sort cases.
**: Hyperquicksort does not run due to insufficient memory.
Hyper: Hyperquicksort time.
Blncd: Balanced-Sort time.
Q and P: Quicksort and partitioning times of balanced-sort.
GM: Global exchange and merge time of balanced-sort.

with the BEST distribution, while it takes only 1823 ms with
the UNIFORM distribution which is the ideal distribution for
hyperquicksort. This load imbalance in hyperquicksort occurs
during its merge phase. For example, for the case of p = 8
and n = 64 000 (not shown in the table), one node finished
the sort with 15 000 elements and another node with 1000
elements using hyperquicksort, whereas every node finished
the sort exactly with n /p = 8000 elements using balanced-sort.
Note that in Tables I1 and 111 the missing timing information
for hyperquicksort (indicated by **) is because some nodes
did not have enough memory to complete the sort due to the
uneven distribution of data among the nodes during the merge
phase.

ABALI et al.: BALANCED PARALLEL SORT ON HYPERCUBE MULTIPROCESSORS 581

VII. CONCLUSION [18] S. F. Nugent, “The iPSCI2 direct-connect communications technology,”
in Proc. Third Con$ Hypercube Concurrent Comput. and Appl., Jan.
1988, pp. 51-60.

[19] D. H. Lawrie, ‘‘Access and alignment of data in an array processor,”
IEEE Trans. Comput., vol. C-24, pp. 1145-1155, Dec. 1975.

Trans. ComDut., vol. C-26. DD. 458-473, Mav 1977.

Results show that the balanced-sort algorithm is competitive
with the other algorithms for randomly distributed data and

in the other algorithms. Since each node processes exactly
faster for skewed data distributions that cause load imbalance [201 M, c, Pease, indirect n-cube microprocessor array,,, IEEE

n/P elements, ~omputational load is well distributed among [21] H. J. Siege-] and R. J. McMillen, “The mukstage cube: A versatile
interconnection network,” IEEE Comput. Mag., pp. 65-76, Dec. 1981. the nodes which contributes to the speedup of the algorithm.

Exact partitioning has the further advantage of most efficiently
utilizing the distributed memory.

ACKNOWLEDGMENT
We would like to thank the anonymous referees for their

helpful suggestions.

REFERENCES

D. E. Knuth, The Art of Computer Programming, Vol. 3, Sorting and
Searching.
B. Wagar, “Hyperquicksort,” in Hypercube Multiprocessors 1987.
Philadelphia, PA SIAM, 1987, pp. 292-299.
G. Fox, M. Johnson, G. Lyzenga, S. 0. J. Salmon, and D. Walker,
Solving Problems on Concurrent Processors, Vol I. Englewood, Cliffs,
NJ: Prentice-Hall, 1988.
S. R. Seidel and W. L. George, “Binsorting on hypercubes with d-port
communication,” in Proc. Third Conf: Hypercube Concurrent Comput.
and Appl., Jan. 1988, pp. 1455-1461.
Y. Won and S. Sahni, “A balanced bin sort for hypercube multicomput-
ers,’’ J. Supercomput., vol. 2, pp. 435-448, 1988.
S. L. Johnsson, “Combining parallel and sequential sorting on a boolean
n-cube,” in Proc. Int. Conf Parallel Processing, 1984, pp. 444-448.
C. G. Plaxton, “Load balancing, selection and sorting on the hypercube,”
in Proc. I989 ACM Symp. Parallel Algorithms and Architectures, 1989,

K. E. Batcher, “Sorting networks and their applications,” in Proc. AFIPS
1968 SrCC, 1968, pp. 307-314.
R. Sedgewick, “Implementing quicksort programs,” Commun. ACM, vol.

G. C. Fox and W. Furmanski, “Optimal communication algorithms on
hypercube,” Tech. Rep. CCCP-314, California. Inst. of Tech., Pasadena,
CA, July 1986.
S. L. Johnsson and C.-T. Ho, “Spanning graphs for optimum broad-
casting and personalized communication in hypercubes,” IEEE Trans.
Comput., vol. 38, pp. 1249-1268, Sept. 1989.
Y. Saad and M. H. Schultz, “Data communication in hypercubes,”
Tech. Rep. YALEUDCS/RR-428, Dept. Comput. Sci., Yale Univ., New
Haven, CT, Oct. 1985.
Q. F. Stout and B. Wagar, “Passing messages in link-bound hypercubes,”
in Hypercube Multiprocessors 1987.
C. Aykanat, F. Ozguner, F. Ercal, and P. Sadayappan, “Iterative al-
gorithms for solution of large sparse systems of linear equations on
hypercubes,” IEEE Trans. Comput., vol. 37, pp. 1554-1568, Dec. 1988.
Z. Galil and N. Megiddo, “A fast selection algorithm and the problem
of optimum distribution effort,’’ J. ACM, vol. 26, pp. 58-64, 1979.
G. N. Frederickson and D. B. Johnson, “The complexity of selection
and ranking in X + k’ and matrices with sorted columns,” J. Comput.
and Syst. Sci., vol. 24, pp. 197-208, 1982.
T. Ibaraki and N. Katoh, Resource Allocation Problems. Cambridge,
MA: M.I.T. Press, 1988.

Reading, MA. Addison-Wesley , 1972.

pp. 64-73.

21, pp. 847-856, Oct. 1978.

Philadelphia, PA: SIAM, 1987.

‘ f

Assistant Professor at
she has been with the
University, where she
parallel algorithms ant
techniques.

Biilent Abali received the B.S.E.E. degree from
Middle East Technical University, Ankara, Turkey
in 1983, and the M.S. and Ph.D. degrees in elec-
trical engineering from the Ohio State University,
Columbus, in 1985 and 1989, respectively.

Since 1989, he has been a research staff member
at the IBM T. J. Watson Research Center, Yorktown
Heights, NY.

Fiisun Ozgiiner (S’74-M’75) received the M.S.
degree in electrical engineering from the Istanbul
Technical University in 1972, and the Ph.D. degree
in electrical engineering from the University of
Illinois, Urbana-Champaign, in 1975.

She was with the Design Automation group at the
IBM T. J. Watson Research Center for one year and
joined the faculty at the Department of Electrical
Engineering, Istanbul Technical University in 1976.
She spent the summers of 1977 and 1985 at the IBM
T. J. Watson Research Center and was a visiting

the University of Toronto in 1980. Since January 1981
! Department of Electrical Engineering, The Ohio State
is presently a Professor. Her research interests include

d architectures, fault-tolerant design and fault simulation

Abdulla Bataineh (S’90-M’92) received the B.S.
degree in electrical engineering from Yarmouk Uni-
versity, Irbid, Jordan, in 1987, and the M.S. and
Ph.D. degrees in electrical engineering from the
Ohio State University, Columbus, in 1988 and 1991,
respectively.

He spent the summers of 1989, 1990, and 1991
at Cray Research Inc , Eagan, MN. Currently, he is
with Cray Research Inc., Eagan, MN. His research
interests are in the area of parallel algorithms and ar-
chitectures, logic simulation, and high-speed digital
circuit and device simulation

