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Balanced Parallel Sort on Hypercube Multiprocessors 
Bulent Abali, Fusun Ozguner, Member, IEEE, and Abdulla Bataineh, Member, IEEE 

Abstract-A parallel sorting algorithm for sorting n elements 
evenly distributed over Z d  = p nodes of a d-dimensional hyper- 
cube is presented. The average running time of the algorithm 
is O( ( n  log n)/p + p log2 n). The algorithm maintains a perfect 
load balance in the nodes by determining the (kn/p)th elements 
(k = 1,. . . , ( p  - 1)) of the final sorted list in advance. These 
p - 1 keys are used to partition the sorted sublists in each node 
to redistribute data to the nodes to be merged in parallel. The 
nodes finish the sort with an equal number of elements ( n / p )  
regardless of the data distribution. A parallel selection algorithm 
for determining the balanced partition keys in O(p log2 n )  time 
is presented. The speed of the sorting algorithm is further en- 
hanced by the distanced communication capability of the iPSC/2 
hypercube computer and a novel conflict-free routing algorithm. 
Experimental results on a 16-node hypercube computer show 
that the new sorting algorithm is competitive with the previous 
algorithms, and faster for skewed data distributions. 

Index Tem-Hypercube, multiprocessing, parallel algorithms, 
selection, sorting. 

I. INTRODUCTION 
ORTING is one of the most used and fundamental of S all computer operations. With increasing database sizes, 

parallelism must be exploited to obtain acceptable sorting 
times. Optimal sequential sorting algorithms that use binary 
comparisons are known to sort n elements in O ( n 1 o g n )  
time [l]. Therefore an optimal p-processor parallel sorting 
algorithm would sort n elements in O( (n  log n ) / p )  time. 
In this paper, we present a load balanced parallel sorting 
algorithm, balanced-sort, that runs in O( (n  log n ) /p+p  log2 n)  
average time for randomly distributed data on a hypercube 
multiprocessor. 

A d-dimensional hypercube multiprocessor (Fig. 1) is an 
MIMD (multiple instruction multiple data) machine with 2d 
processing elements (nodes) connected to form a Boolean 
d-cube. Each processing element has its own memory, and 
processing elements communicate by exchanging messages. 
The delay incurred by interprocessor message communication 
is due to two components: the message setup time T s ~  and the 
actual transfer time N x TB, where N is the number of bytes 
transferred and TB is the one-byte transfer time. In most of 
the commercially available message passing multiprocessors 
Tsu >> TB. 

The balanced-sort algorithm assumes that the n distinct 
elements to be sorted are initially distributed evenly over 
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Fig. 1. A four-dimensional hypercube. 

2d = p nodes of a d-dimensional hypercube ( n >> p).  
The n elements are considered sorted when a global order 
is obtained such that for p - 1 2 i > j 2 0, any element 
in node a is greater than any element in node j ,  and within 
each node n / p  elements are sorted among themselves. In 
the balanced-sort algorithm, each node sorts its list of n / p  
elements in O ( n / p l o g ( n / p ) )  expected time by performing a 
quicksort. Each of these sorted sublists is then partitioned into 
p segments so that the partitions from different nodes can be 
merged in parallel. By determining the exact partition keys, the 
algorithm ensures that nodes are left with an equal number of 
elements ( n / p )  at the end of the sort, regardless of the data 
distribution. This is important for efficient memory utilization 
in a distributed memory multiprocessor. Furthermore, the exact 
partition keys provide perfect load balance during the merge 
phase. The sorting algorithms given in [2]-[5] select the 
partition keys either randomly or by sampling the elements that 
may distribute data unevenly across processors. For example, 
in the hyperquicksort algorithm [2] almost all of the n elements 
may end up being merged in one node instead of n / p  in each 
node. A parallel selection algorithm referred to as the fast- 
partition algorithm is presented in Section IV that determines 
the p - 1 partition keys used in the balanced-sort algorithm 
in O ( p  log2 n )  time. The fast-partition algorithm is designed 
to minimize the number of setups in hypercubes with coarse- 
grain communication. 

A routing algorithm is presented in Section V that makes use 
of the Direct-Connect capability of the iPSC/2 hypercube to 
deliver elements to their destination node in just one communi- 
cation step, thus reducing the communication overhead caused 
by store-and-forward schemes. In other algorithms, elements 
are stored and forwarded in the intermediate nodes l o g p  to 
l o g p ( 1  + l o g p ) / 2  times [6], [2], [4], [3]. We show that the 
resulting routing algorithm is faster than the store-and-forward 
scheme for large values of n. However, the balanced-sort 
algorithm does not rely on the existence of the Direct-Connect 
capability and can be implemented on any hypercube by 
using the store-and-forward scheme. Another feature of the 
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balanced-sort algorithm is the overlapping of interprocessor 
communication and computation by using asynchronous com- 
munications. In the hypercube model assumed here, nodes 
communicate using the send and receive primitives. These 
primitives are divided into two categories as synchronous send 
(csend) and receive (crecv), and asynchronous send (isend) 
and receive (irecv). Synchronous primitives block the calling 
process until the message is transmittedheceived. On the other 
hand, asynchronous primitives allow a process to initiate the 
communication, and then continue with the computation, thus 
benefiting from the overlap of those two. We also assume that 
nodes can communicate to only 1 of their d neighbors at a 
time (1-port communication capability [4]). 

The average running time of the balanced-sort algorithm 
is O ( n / p l o g n  + p log2  n)  for randomly distributed data. A 
comparison with hyperquicksort [2] on the iPSC/2 hypercube 
computer shows that the balanced-sort algorithm performs 
better for a wide range of n and p values. 

The organization of the paper is as follows: Previous work 
on sorting is summarized in the next section. An overview 
of the balanced-sort algorithm is given in Section 111. The 
algorithm for finding the balanced partition keys is described 
in Section IV. The routing algorithm is presented in Section 
V. Finally, experimental results on a 16 node Intel 386 
based iPSC/2 hypercube multiprocessor and conclusions are 
presented in Sections VI-VII. 

11. BACKGROUND 

Several parallel sorting algorithms for distributed memory 
hypercube multiprocessors were previously given in [6], [2], 
[4], [3], [7]. Johnsson’s algorithm [6] is an adaptation of 
Batcher’s [8] bitonic sort to hypercube computers. In this 
algorithm, each node sorts its list of size n / p  using a sequential 
sorting algorithm in O ( n / p  l o g ( n / p ) )  time. These lists are 
then exchanged among the nodes and merged d(d+1)/2 times 
according to the bitonic sorting rule ( d  = logp) ,  giving an 
overall sorting time of ~ ( n / p  log (n /p )  + n / p  log2 p ) .   agar's 
[2] hyperquicksort algorithm is known to be one of the fastest 
sorting algorithms for hypercubes. In hyperquicksort, each 
node quicksorts its list of size n / p .  Then, node 0 broadcasts its 
median element as the partition key. Nodes use the partition 
key to split their lists into two. The two subcubes separated 
by dimension d - 1 exchange sublists so that the sublists 
that contain elements greater than the key are sent to the 
upper half of the hypercube along dimension d - 1, and 
the sublists that contain elements less than the key are sent 
to the lower half of the hypercube. The sublists are then 
merged by each node. The procedure is recursively repeated 
in the subcubes of the hypercube along dimensions d - 2, d - 
3 . . .  , O .  The sorting time for a uniform data distribution is 
O ( n / p  log n + n / p  logp). However, hyperquicksort does not 
always perform well. Randomly chosen partition keys do not 
necessarily split the elements evenly among the nodes. Thus, 
some nodes end up merging more than n / p  elements, leaving 
the rest of the nodes idle [2]. The samplesort algorithm given 
by Fox et al. [3] has the same time complexity and tries to 
circumvent this load balancing problem by choosing a sample 

of l keys from every node. This sample of total size l p ,  
which is a representative of the distribution of n elements, 
is sorted and the (li)th elements ( i  = 1 , 2 , .  . . , p  - 1) in the 
sample are chosen as the partition keys. The probability of 
choosing good partition keys increases with large l .  However, 
additional time is spent for sorting larger samples [3]. Seidel 
and George [4] describe several parallel binsort algorithms 
based on sampling of the elements. In the min-max binsort, 
nodes send their minimum and maximum elements to node 
0, which then determines the global minimum and maximum 
elements in the hypercube to compute p - 1 partition keys 
[4]. Parallel binsort algorithms of Seidel and George also 
assume that a hypercube node can communicate with its d 
neighbors simultaneously (d-port communication capability), 
which is reported to reduce the communication costs by a 
factor of at least d [4]. Won and Sahni [5] describe an 
improved binsorting algorithm that requires less memory than 
that of [4] due to the improvements in the sampling algorithm. 
Plaxton [7] describes sorting and selection algorithms for 
hypercubes which have better worst-case time complexities 
than previous algorithms. Plaxton’s parallel quicksort runs 
in O( (n  log n ) / p  + ( n  1og3/2 p > / p  + log3 p l o g ( n / p ) )  time. 
AII ~ ( ( n / p )  l o g l o g p  + log2 p l o g ( n / p ) )  time parallel selec- 
tion algorithm is used to determine the exact partition keys. 
Using the exact partition keys is an improvement over the 
previous sorting algorithms that choose the partition keys by 
sampling the elements. Theoretically, Plaxton’s algorithms are 
more robust than the algorithms presented in this paper. Our 
contributions are new sorting, selection, and communication 
algorithms that have small constant factors associated with 
their time complexities and therefore are fast in practice. 

111. OVERVIEW OF THE BALANCED-SORT ALGORITHM 

An overview of the balanced-sort algorithm will be given 
before the steps are described in greater detail in Sections 
IV-V. Initially, n distinct elements are distributed over 2* = p 
nodes of a hypercube with each node having n / p  elements. 
The balanced-sort algorithm rearranges the n elements to 
obtain an ordered list L[1 . . . n] distributed over p nodes, such 
that any element in node i is greater than every element in node 
, j  whenever i > j ,  within each node elements are sorted, and 
each node is left with exactly n / p  elements at the end of the 
sort. The major steps of the sorting algorithm are described 
below: 

Algorithm 1 Balanced-Sort 
1. Quicksort: Each node independently quicksorts the n / p  

elements initially residing in its memory to form a sorted 
list AIO . . . ( n / p )  - 11 in O ( n / p l o g ( n / p ) )  expected time 

2. Select Partition Keys: The elements L[kn/p] ( k  = 
1, . . . , p - 1) of the final sorted list L[l  + . . n] are de- 
termined. A parallel selection algorithm that finds these 
p - 1 partition keys in O(p log2 n) time is described in 
Section IV. 

3. Global Exchange: Each node finds the insertion point 
of the p - 1 partition keys in its list AIO . . . (n , /p)  - 11. 
(Key X ’ s  insertion point is between A[r] and A[. + 11, 

[11, [91. 



574 IEEE TRANSAC TlONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 5, MAY 1993 

if A[T] 5 X < A[T + 11.) This partitions each sorted 
list AIO . . ( n / p )  - 11 into p sorted segments At (C = 
0 ,  . . . , p - 1) such that for C > m, an element in segment 
At of any given node is greater than all the elements in 
segment A,,, of any node, and the sum of the number of 
elements in the Cth segments of the p nodes is n/p .  Each 
node sends its segment between the insertion points of 
L[kn/p]  andL[(k+l)n/p] tonode k ( k  = 1 , . . . , p - 2 )  . 
The end points are treated similarly: each node sends 
the elements smaller than or equal to L[n/p] to node 
0, and the elements greater than L[(p  - l)n/p] to node 
p - 1. Running time of the global exchange algorithm 
is between 0 ( p  log p )  and 0 ( n  + p log p ) ,  depending on 
the initial global ordering of data, as will be discussed 
in Section V and is overlapped with the computations in 
the binary tree merge step. 

4. Binary %e Merge: Each node k receives p - 1 sorted 
segments from other nodes, and has its segment IC. Each 
node independently forms a single sorted list out of these 
p segments in O(n/plogp)  time by a binary tree merge, 
which completes the sort. 

In step 1, the heapsort algorithm can be used to attain an 
O(n/p  log(n/p)) worst-case time bound [l], however quick- 
sort was implemented as it is faster in practice [9]. As indicated 
earlier, the partitioning step ensures that the nodes receive n / p  
elements each for the binary tree merge step. Thus, merge 
times will be equal in each node, and nodes will finish the 
sort exactly with n / p  elements each. The partitioning step 
also guarantees that the segments to be merged on different 
nodes are disjoint so that no interprocessor communication is 
needed during binary tree merge. 

Iv .  SELECTION OF THE PARTITION KEYS 

In the selection of the partition keys, the elementary hyper- 
cube algorithms exchange-add and transpose are used. These 
algorithms and their variations originally appeared in several 
references including [lo]-[14]. We include them here for the 
sake of completeness. 

A.  Elementary Hypercube Algorithms 

The exchange-add algorithm finds the global sum of 2d = p 
numbers distributed over the nodes of a d-cube in O(1ogp) 
time and leaves each node with a copy of the result. Each 
node z executes the following in exchange-add: 

Algorithm 2 Exchange-Add 
z = ( zd -1  . . . zo) :  This node’s id 
T :  Initially, the partial sum residing in this node. 
The global sum is returned in T. 

for i = 0, ..., d - 1 
irecv partial sum into s from node (Zd-1 . . . Z. . . zo )  

csend partial sum T to node ( z d - 1  . . . Z. * . zo) 

wait for irecv to complete 
r = r + s  

along dimension i 

along dimension i 

endfor 

The transpose algorithm distributes p values in every node, 
each addressed to a different node, in O(p1ogp) time. Values 
are represented in the form of tuples to identify their source 
and destination nodes. Let < val ,dst ,src  > denote the 
value val to be sent from node STC to node dst. In node z 
( z  = 0,1, + . . , p - l) ,  initially there are p tuples < waZ5, j ,  z > 
( j  = 0,1 , .  . , p  - 1 ) .  Upon completion of the algorithm, node 
z receives the p tuples < wall, z ,  j > ( j  = 0,1,  . . , p  - 1) 
addressed to it from the other nodes. 

Elements are transposed with the following algorithm: 

z = (Zd-1 e . zo) :  This node’s id 
T[O. . + p  - 11: List of p tuples < V a l & ,  dst, z > 

for i = 0, ..., d - 1 

Algorithm 3 Transpose 

residing in this node. 

split T into two lists B and B’ 
B contains the tuples whose dst fields 
agree with Zd-1 e . .ZO in ith bit position, 
and B‘ contains tuples that do not. 

along dimension i 

along dimension i 

irecv list C from node ( z d -  1 e . . Z. . zo) 

csend list B’ to node ( zd -1  . . + Z. . zo) 

wait for irecv to complete 
T c B U C  

endfor 
The algorithm communicates along d different dimensions, 

and in each direction lists of size p / 2  are exchanged, resulting 
in an overall execution time of O ( p  log p ) .  

B. Fast-Partition Algorithm 
The fast-partition algorithm for finding the partition keys, 

namely L[kn /p ]  (k = 1,. . . , p  - l), is based on the following 
scheme: An element X is proposed as the partition key 
L [ k n / p ] .  Each node i (i = 0, .  . . ,p-1) determines the number 
of elements smaller than or equal to X (referred to as the 
local rank) in its sorted list AIO . . . (n /p )  - I]. Since in each 
node A [ O . . . ( n / p )  - 11 is already sorted, the local rank of 
X can be determined in log(n/p) comparisons by a binary 
search. Then, the p local ranks of X are summed by using 
the exchange-add algorithm, to find its global rank, i.e., X ’ s  
position in the final sorted list L[1 . . . n]. If X ’ s  global rank is 
greater(smal1er) than k n / p ,  a new candidate smaller(greater) 
than X is proposed as the partition key, and the procedure is 
iterated in this fashion until the key with the global rank k n / p ,  
i.e., L[lcn/p] is found. The fast-partition algorithm amortizes 
the high setup cost of interprocessor communication over p - 1 
partition keys ( I C  = 1, . . . , p - 1) by processing them in one 
batch. 

For the kth balanced partition key L[kn/p]  ( k  = 1, . . . , p - 
I), each node keeps two local variables min[k] and max[IC] 
which are pointers to its sorted list AIO . . . ( n / p )  - 11. The local 
search space, in each node, for the kth balanced partition key is 
between min[IC] and max[IC] such that A[min[k]] < L[ICn/p] < 
A[max[k]]. The global search space for the kth partition key is 
the collection of its p local search spaces. Initially, the global 
search space for the kth partition key L[ICn/p] consists of n 
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elements (i.e., all the elements in the hypercube) and each of 
the p local search spaces consists of n / p  elements. 

In the first iteration, each node proposes A [ k n / p 2 ]  as a 
candidate for the kth partition key. After the first iteration, 
each node i (i = 0,. . . , p - 1) proposes the median element 
C a [ k ]  of its local search space as a candidate for the balanced 
partition key L[kn/p]  ( k  = 1, . . , p - I). The median of the 
p candidates Co[k],  C1 [ k ] ,  . . . , C P - l [ k ] ,  each coming from a 
different node, is selected as the final candidate and used 
during the local and global ranking phases of the iteration. For 
determining the medians, the transpose algorithm rearranges 
the p ( p  - 1) candidates in the hypercube such that all of the 
candidates associated with the partition key L[kn/p] ,  namely 
C a [ k ]  (i = 0, . . .  , p  - l ) ,  move to node k ,  in parallel for 
IC = 1 , .  . . , p  - 1, in O(p1ogp)  total time. Then, the medians 
of the p candidates for each of the ( p  - 1) partition keys are 
determined in parallel, with node k determining the median of 
the p candidates proposed for L [ k n / p ] .  Since 1 5 IC 5 p - 1, 
node 0 receives only N I L  values, hence does not participate in 
the median selection. Fig. 2 illustrates this search procedure for 
only one of the partition keys ( L [ n / p ] ) .  Initially, the algorithm 
determines that node 0's candidate X I  is the median candidate 
for the first partition key L [ n / p ] .  Each node finds the local 
rank (insertion point) of X I  in its list and the global rank of 
XI is found to be smaller than n / p .  The new search space is 
shown in Fig. 2 below the insertion point of X I .  In iteration 2, 
each node proposes the median key in its current local search 
space as the new candidate. The median of these candidates, 
X2,  is selected and found to have a global rank greater than 
n /p .  The search space is further reduced as shown in Fig. 
2 and iterations continue until L [ n / p ]  is found. In a manner 
similar to the sequential binary search, the global search space 
is approximately cut by half in each iteration by proposing a 
candidate from the middle of the global search space. 

Each node i executes the following steps in the fast-partition 
algorithm: 

Algorithm 4 Fast-Partition 
Initialize: Let A [ O . . . ( n / p )  - 11 be the sorted list of 
n / p  elements in node i ( i  = O,...,p - I). Let the 
local variables m i n [ k ]  and m a x [ k ]  ( k  = l,...,p - 1) 
be the pointers for the sorted list A [ O . . . ( n / p )  - 11. 
During the iterations, the local search space for the k-th 
balanced partition key L[kn/p]  will always be between 
m i n [ k ]  and m a x [ k ]  such that A [ m i n [ k ] ]  < L [ k n / p ]  < 
A [ m a x [ k ] ] .  Initialize min[k] = -1, m a x [ k ]  = n / p  
for IC = l,...,p - 1. Initially, propose A [ k n / p 2 ]  as 
a candidate for the balanced partition key L [ k n / p ]  for 
k = 1, , p  - 1. This step takes O ( p )  time. 
Tkanspose: Each node i (i = O,...,p - 1) is now 
holding a candidate for L [ k n / p ]  ( k  = 1,  . . . ,p-1). The p 
candidates associated with L [ k n / p ]  and distributed over 
the p nodes are moved to node k ( k  = 1,...,p - 1 )  
using the transpose algorithm. Since k 2 1, node 0 gets 
only N I L  values. This step takes O ( p l o g p )  time. 
Select Median of the Candidates: Node i now holds 
the p candidates for the partition key L [ i n / p ] .  Node i 
determines the median candidate by sorting the p keys 
and taking their median in O(p1ogp) time. Candidates 

o r -  o n  

x 1  

nlp-1 
Node 0 Node 1 Node 2 Node 3 

Fig. 2. Illustration of the search procedure for finding the partition key 
L [ k n / p ]  for k = 1. 

other than the median are discarded. Node 0 is idle at 
this step since it holds all the N I L  values. 

4. Broadcast: Each node i (i = 1, . . . , p - 1 )  broadcasts its 
median key to the rest of the nodes 0, I, + . . , p - 1. The 
p medians are broadcast in parallel in O ( p )  time using 
an Exchange-Add like algorithm that has the arithmetic 
addition replaced with the set union operation (see also 
[ 111 for broadcast on hypercubes). Each node receives 
the broadcast keys and forms a local copy C[1. . ' p  - 11 
of the candidate list. (C[IC] is the key received from node 
k .  Thus, C [ k ]  is the candidate for the balanced partition 

5. Local Rank Computation: Each node determines the 
local rank R[k]  of C [ k ]  ( I C  = l , . . . , p  - 1) by a 
binary search in A[O...(n/p) - 11. This step takes 
O(p l o g ( n / p ) )  time. 

6. Global Rank Computation: The p local ranks of C[k] 
distributed over p nodes are summed using the exchange- 
add algorithm and stored in the local variable GIIC] 
( I C  = 1, . . . , p - I), resulting in O ( p  log p )  overall time 
for this step. G[k] holds the global rank, i.e., the position 
of C[k]  in the sorted output L[1 of the Balanced- 
Sort algorithm. Each node has a copy of G [ 1 .  . . p - 11. 
If G [ k ]  = k n / p ,  then the kth balanced partition key is 
found ( L [ k n / p ]  = C[k]) .  

7. Reduce the Search Space: If G [ k ]  > k n / p ,  it is known 
that C [ k ]  > L [ k n / p ] .  Therefore, each node decrements 
its m a x [ k ]  pointer to the smallest possible value such 
that C [ k ]  5 A [ m a x [ k ] ]  in its list A[O.. . ( n / p )  - 11. 
Likewise, if G [ k ]  < k n / p ,  then each node increments 
its m i n [ k ]  pointer to the largest possible value such that 
C [ k ]  2 A[min[IC]] in its list A[O. . . ( n / p )  - 11. 

8. Propose New Candidates: For k = 1, . . .  , p  - 1, 
each node proposes A[[(max[IC] + m i n [ k ] ) / 2 J ]  as the 
new candidate for L [ k n / p ] .  If m a x [ k ]  = min[k] + 
1, the balanced partition key L [ k n / p ]  cannot be in 

key L [ k n / p I  .> 
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this node, since there are no elements left between 
the two pointers min[k] and max[k]. In that case, the 
node proposes a dummy value N I L  as the candidate 
instead of A[ L(max[k] + min[k])/2]]. This ensures that 
an element which does not belong to the global search 
space for L[kn/p] is not proposed and thus, the median 
selection process at step 3 is not adversely affected. At 
step 3, the NIL values are discarded before a median is 
chosen. Iterations continue from Step 2 until all of the 
p - 1 balanced partition keys are found. 

By adding the dominant complexity terms, O(p1ogp) in steps 
2, 3, 6 and O(plog(n/p)) in step 5, the time complexity of 
each iteration is found to be O(p log n). A n  upper bound for 
the number of iterations can be established as follows: The 
candidate key C[k] for the balanced partition key L[kn/p] is 
the median element (i.e., A[l(max[k] + min[k])/2]]) of one 
of the p local search spaces. Therefore, once the global rank 
G[k] of C[k] is determined, the size of the local search space in 
the node that proposed C[k] will be reduced exactly by half. 
If the global rank G[k] < kn/p, it is known that proposed 
candidate C[k] is smaller than L[kn/p]. Therefore, L[kn/p] 
cannot be between A[min[k]] and C[k], and the pointer min[k] 
is incremented to eliminate the elements between A[min[k]] 
and C[k] from consideration, which eliminates one half of the 
elements between min[k] and max[k] (Step 7). Likewise, if 
the global rank G[k] > kn/p, the pointer max[k] is updated 
to eliminate the other half of the elements in the local search 
space. In each iteration, the size of at least one local search 
space will be reduced by half as described above. 

There are p local search spaces with each having n /p  
elements initially, and it takes log(n/p) iterations to reduce 
the size of each local search space. Therefore, an upper bound 
for the number of iterations is p log(n/p). However, more than 
one local search space will be reduced at each iteration in 
general. On the average, Algorithm 4 will iterate log n times: 
The candidate C[k] ,  as determined in Step 3, is the median of p 
candidates each of which is the median of a local search space. 
Thus, C[k] falls approximately in the middle of the global 
search space for L[lcn/p]. This means that on the average, the 
size of the global search space for L[kn/p] will be halved 
in each iteration. Since the size of the global search space for 
L[kn/p] is initially n, the average iteration count will be log n. 
Each iteration takes O(p log n)  time. Therefore, Algorithm 4 
finds the p - 1 partition keys in O(plog2 n) average time. 
Note that the communication setup cost per iteration is only 
(3logp)Tsu which is the sum of the setup times in steps 2, 
4, and 6. Tsv is the message setup time. 

Algorithm 4 has a property similar to that of the sequential 
binary search: the size of the search space decreases geometri- 
cally. In the first few iterations Algorithm 4 makes big jumps in 
the global search space and begins proposing candidates very 
close to the balanced partition keys. In practice, if a candidate 
C[k] has a global rank sufficiently close to kn/p such that 
the criterion E 2 Ikn/p - G[k]I is satisfied, iterations can be 
terminated earlier, resulting in a faster partitioning algorithm 
with partitions of size n /p  f 2~ at worst. 

As a further improvement, the upper bound for the number 
of iterations can be reduced to O(1ogn) iterations by using 

weighted medians in Step 3 of the algorithm. The weight of 
a candidate key is defined as,the size of the corresponding 
local search space, i.e., max[k] - min[k] - 1. Algorithm 4 
is modified as follows: In Step 2, each node sends to the 
destination node the candidate key and its weight. Thus, each 
node k ( k  = 1, . . . , p - 1) receives p candidate-weight pairs 
{(C,", W,"), (Cj!, W i ) ,  . . . , (Ci-', Wi-')}.  In Step 3, each 
node k sorts the p candidate keys so that 

where 0 5 l j  5 p - 1 and then determines m such that 

j=1 j = 1  

where S = W i  is the size of the global search space for 
this iteration. The weighted median Cim is selected as the final 
candidate for L[kn/p], and the remaining p - 1 candidates are 
discarded. Equation (1) guarantees that there are at least S/4 
elements smaller than or equal to Cim, and that there are at 
least S/4 elements greater than Cp in the global search space. 
Thus, in each iteration at least 1/4th of the elements in the 
global search space are eliminated, and therefore the algorithm 
terminates after O(log n) iterations. Note that communicating 
the weights and computing m increase the time complexity of 
each iteration only by a small constant factor. The idea of using 
weighted medians for selection is due to Galil and Megiddo 
[15] and Frederickson and Johnson [16]. The procedure is 
explained in detail in Ibaraki and Katoh [17]. Our contribution 
here is the application of the procedure to all partition keys 
in parallel. 

V. GLOBAL EXCHANGE 

Let Ah (l = 0,1,  . . . , p - 1) denote the p sorted segments 
in node 2, induced by the p - 1 balanced partition keys. In the 
global exchange step of the balanced-sort algorithm, segments 
are exchanged among the nodes such that each node i sends 
its segment Ai to node e .  A communication scheme similar to 
that of the hyperquicksort algorithm could easily be used to 
implement the global exchange [2 ] :  Segments that contain the 
elements smaller (greater) than the p/2th partition key (i.e., 
L[n/2]) are sent to the lower (upper) half of the hypercube 
along dimension d - 1. The upper and lower subcubes repeat 
this procedure recursively along dimensions d - 2, d - 3,. + . , 0 
using the rest of the partition keys. However, this scheme 
results in up to log p memory-to-memory copy operations for 
each element. In this section, a communication algorithm for 
reducing this overhead for large values of n is described. 
The algorithm makes use of a hardware feature of the iPSC/2 
hypercube that is described below. 

In the iPSCl2 hypercube, each node is equipped with a direct 
connect module (DCM), which allows nonneighboring nodes 
to communicate directly [18]. A DCM can be considered to 
be a (d + 1) input, (d + 1) output crossbar switch. The d input- 
output pairs of the DCM are connected to the d neighbors 
of the node through hypercube links. The remaining input- 
output pair is connected to the internal bus of the node, 
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hence to the local memory. A DCM can be set up so that a 
message coming from one link can be immediately directed to 
another link, thereby avoiding the store-and-forward overhead. 
The connection through the DCM's is a circuit-switched type 
connection. Measurements on iPSC/2 indicate that commu- 
nication between two nonneighboring nodes is as fast as 
communication between adjacent nodes if all the links in 
the communication path between the two nodes are available. 
Therefore, the objective of our global exchange algorithm is 
to ensure that the communication paths between the nodes 
are available during the exchange of the sorted segments. The 
communication hardware uses the e-cube algorithm for routing 
messages [18], where the routing tag is obtained by taking the 
bit by bit logical exclusive-OR of the source and destination 
node addresses. The nonzero bit positions in the routing tag, 
read from right to left, give the hypercube coordinates as 
a message goes along. For example, if the routing tag is 
T = ( ~ 4 ~ 3 ~ 2 ~ 1 ~ 0 )  = (01011), the message travels along 
dimensions 0, 1,  and 3 to arrive at its destination. 

By making use of the DCM's and e-cube routing, the 
following algorithm delivers segments directly to their des- 
tinations with segments following disjoint paths. Hypercube 
nodes distributively execute Algorithm 5, where @ denotes an 
exclusive-oa operation: 

Algorithm 5 Global-Exchange 

2 :  this node's id 
A [ , . . . , p - l :  segments to be delivered 

for I C =  l,...,p- 1 
irecv segment A:@''" from node z @ IC 
isend segment A;@+ to node z @ IC 
wait for irecv and isend to complete 
sync 

endfor 

The p - 1 = 7 steps of the global-exchange on a 3-cube are 
shown in Fig. 3. Processors wait at the sync instruction until 
it is executed by all p of them to ensure that no processor 
gets ahead of the others and blocks the network links. In each 
step, each node z sends to the node numbered z @ k ,  which 
means that the routing tag is identical ( z  @ ( z  @ k )  = I C )  for all 
the segments being exchanged. The nonzero bit positions in k 
give the dimensions traversed by the segments. For example, 
for IC = (101), the links along the dimensions 0 and 2 are used 
by the segments as seen in Fig. 3. Since the value of IC is the 
same in all of the nodes, every source node sends in direction 
0, and the crossbars forward messages coming from direction 
0 to direction 2. This ensures that no more than one segment 
is routed to the same link, thus segments follow disjoint paths. 

The sync instruction is executed in O(10gp) time. To 
synchronize, each node sends and receives a dummy token 
along dimensions 0, I : . . . ,  d - 1. Thus, until sync is issued 
by all of the processors, none of them can proceed to the 
next step of the algorithm. When segment sizes are more or 
less equal (2 n,/p2), Algorithm 5 runs in O(n/p + plogp) 
time since processors finish each step of Algorithm 5 at about 
the same time, and the sync operation does not delay them. 
However, when segment sizes are significantly different, such 

kg lw-_I1ll 
01 0 01 1 

000 001 
Coordinate Directions K=001 K=010 

K=011 K=l W 

K=110 K=l 1 1 

Fig. 3. The 7 communication steps of Global-Exchange on a 3-cube. 

as in the case where each node has one segment of size n / p  
and p - 1 segments of size 0, the exchange of segments 
may be serialized by the sync operation and therefore may 
take longer. An upper bound for the segment transfer time 
is O(n + p l o g p )  due to this serialization. However, this is 
a very pessimistic upper bound. Even when nodes have one 
segment of size N n l p ,  the segments are transferred in parallel 
in many cases. Furthermore, experimental results show that 
when segment sizes are significantly different, the performance 
is not affected significantly. This is explained by a combination 
of factors: Communication time is smaller than computation 
time, the global exchange step is overlapped with the merge 
step, and the binary tree merge is usually faster with such data 
distributions as described in Section VI. 

While reducing log p memory-to-memory copy operations 
to only 1, Algorithm 5 increases the number of communication 
steps from logp to p - 1, since the p - 1 segments in each 
node are individually delivered to their destinations. Thus, 
there is a tradeoff between the communication volume and 
the communication setup cost. For the case where all segment 
sizes are equal ( n / p 2 )  this tradeoff can be analyzed as follows: 
If the store-and-forward scheme is used as in hyperquicksort, 
each node will send half @ / 2 )  of its segments to the other 
subcube and keep the other half. This is performed log p 
times until all of the segments reach their destination node. 
Therefore, the overall communication cost is 

where Tsu is the communication setup time, TB is the one 
byte transfer time, and N is the amount of data being sorted 
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Fig. 4. Speedup of hyperquicksort and balanced-sort for the UNIFORM dis- 
tribution. 

in bytes ( N  = 4n for 4 byte elements). If Algorithm 5 is used 
instead of the store-and-forward scheme, each node sends its 
segments to p - 1 other nodes directly. Therefore, the overall 
communication cost is 

(3) 

Comparison of (2) and (3) indicates that Algorithm 5 takes 
less time than the store-and-forward scheme for large values 
of N and most values of p.  Equating (2) and (3), and using the 
measured communication parameters of iPSC/2, the breakeven 
values of N for the two algorithms are found as 42 KBytes, 
134 KBytes, and 432 Kbytes for p = 4,8,16, respectively 
(TSU = 955 ps for messages longer than 100 bytes, and TB = 
0.366 ps). Beyond those values of N ,  the communication 
time of Algorithm 5 is smaller than the store-and-forward 
scheme. Thus, Algorithm 5 is more suitable when the volume 
of communication is large and the setup time (Tsu) is small. 

The algorithm can be slightly improved by observing that 
the communication links used for k and E ,  the ones comple- 
ment of k ,  are also disjoint. For example, in Fig. 3 note that 
the links used for k = (101) and = (010) are disjoint. 
This allows two sets of segments to be exchanged between 
the execution of two syncs. 

Another interesting feature of the balanced-sort algorithm 
is the ability to overlap communication and computation 
in the global exchange and binary tree merge steps using 
asynchronous communication primitives: as soon as node z 
receives the first segment A;,  it may begin merging the pair 
of segments A: and A:, while two more segments arrive at 
the node in parallel with the merge. Merging and exchanging 
of segment pairs continue in this pipelined fashion until all of 
the segments are exchanged. Note that Algorithm 5 provides 
conflict-free routing in omega [19], indirect binary n-cube 
[20], and generalized cube [21] multistage networks as well. 
Thus, balanced-sort can also take advantage of any of those 
networks. 

TABLE I 
EXECUTION TIMES (mS) OF HYPERQUICKSORT AND 

BALANCED-SORT FOR THE UNIFORM DISTRIBUTION 

d d 1 0 3 )  Hyper. Blncd. Q P GM 

1 4 78 96 56 25 15 
1 8 158 162 116 16 30 
1 16 332 329 251 34 44 
1 30 630 * 623 480 34 109 
1 60 1280 1288 1037 36 215 
2 4 51 101 28 54 19 
2 8 96 151 57 63 31 
2 16 194 246 118 68 60 
2 30 380 410 234 68 108 
2 60 766 789 503 78 208 
2 100 1340 *1274 856 73 345 
2 120 1613 *1532 1037 83 412 
3 4 38 134 14 96 24 
3 8 66 158 28 96 34 
3 16 124 213 58 103 52 
3 30 223 315 113 117 85 
3 60 458 516 237 125 154 
3 100 777 805 410 127 268 
3 120 942 946 503 134 309 
3 150 1182 *1129 628 127 374 
3 200 1574 *1503 857 143 503 
3 240 1900 *1778 1040 135 603 
3 300 2396 *2235 1338 148 749 
4 4 37 221 8 176 37 
4 8 51 256 15 191 50 
4 16 83 297 28 206 63 
4 30 142 361 55 221 85 
4 60 268 486 114 235 137 
4 100 460 663 200 264 199 
4 120 535 719 238 250 231 
4 150 686 837 306 255 276 
4 200 900 1032 411 266 355 
4 240 1084 1192 504 268 420 
4 300 1350 1418 634 267 517 
4 400 1823 1831 872 287 672 

d dimension of the hypercube. 
*: Indicates the faster balanced-sort cases. 
Hyper: Hyperquicksort time. 
Blncd: Balanced-Sort time. 
Q and P: Quicksort and partitioning times of balanced-sort 
GM: Global exchange and merge time of balanced-sort. 

VI. IMPLEMENTATION RESULTS 
The performance of hyperquicksort and the balanced-sort 

algorithm (Algorithm 1) which uses Algorithm 4 for par- 
titioning were compared on a 16-node iPSC/2 hypercube. 
Won and Sahni [SI compared the performance of Wagar's 
hyperquicksort [2] extensively with bitonic sort of Johnsson 
[6], [8], min-max binsort of Seidel and George [4], and several 
versions of the parallel binsort of Won and Sahni [5] on the 
NCUBEI7 hypercube multiprocessor. Won and Sahni's results 
show that hyperquicksort is faster than the other algorithms in 
many cases. Therefore, we consider comparison with hyper- 
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5.  Speedup of hyperquicksort and balanced-sort for the SKEWED dis- 
tribution. 

quicksort to be sufficient to demonstrate the performance of 
the balanced-sort algorithm. 

The iPSC/2 hypercube used in evaluating the algorithms 
consists of 16 nodes each of which consists of a 16-MHz 
386 microprocessor, a 64 KByte cache, 1 MByte of memory 
and a DCM. Communication bandwidth was measured as 
2.73 MBytes/s. Communication setup time was measured as 
536 ps for short messages (5  100 bytes), and 955 ps for 
long messages (> 100 bytes). Randomly generated 32-bit 
integers were sorted. The global exchange and the binary tree 
merge steps of the balanced-sort were implemented using asyn- 
chronous communication primitives to allow communication 
and computation overlap as described in Section V. However, 
the amount of overlap was not measured. To observe the 
effect of initial data distribution on the performance of the 
partitioning and global exchange algorithms, three different 
initial data distributions were used. 

The UNIFORM distribution consists of randomly distributed 
elements over the hypercube such that the p - 1 balanced 
partition keys L[kn /p ]  (k = l , . . .  , p  - 1) partition each 
list AIO . . * ( n / p )  - 11 into p segments of almost equal size 
(21 n / p 2 ) .  Hyperquicksort achieves its best performance with 
the UNIFORM distribution, since it is most likely that the 
nodes receive n / p  elements each during the merge phase and 
have equal loads throughout the sort. Fig. 4 shows the speedup 
of balanced-sort and hyperquicksort as a function of n, for 
8 and 16 node hypercubes, for the UNIFORM distribution. 
Table I shows the sort times for hyperquicksort and balanced- 
sort. For small n, balanced-sort performs significantly worse 
than hyperquicksort for all hypercube dimensions. The parti- 
tioning overhead dominates the overall time in balanced-sort. 
However, as n grows, the speedup of balanced-sort grows 
faster than hyperquicksort speedup and it is greater than 
hyperquicksort speedup for a few cases (indicated by * in 
Table I). We attribute this result to the global exchange 
algorithm described in Section V which is implemented to 
overlap communication and computation, and avoid the store- 
and-forward overhead. 

TABLE I1 
EXECUTION TIMES (mS) OF HYPERQUICKSORT AND 
BALANCED-SORT FOR THE SKEWED DISTRIBUTION 

d n1103) Hvuer. Blncd. Q P GM 
~~ ~ 

1 4 78 114 56 50 8 
1 8 159 188 119 54 15 
1 16 327 335 247 59 29 
1 30 645 *613 496 64 53 
1 60 1315 *I208 1034 70 104 
2 4 54 128 27 88 13 
2 8 102 175 56 98 21 
2 16 207 261 119 106 36 
2 30 397 413 235 116 62 
2 60 803 *742 496 125 121 
2 100 1372 *1204 873 134 197 
2 120 ** 1406 1035 135 236 
3 4 44 185 13 149 23 
3 8 78 201 27 149 25 
3 16 149 25 8 57 164 37 
3 30 275 349 111 178 60 
3 60 562 '538 235 194 109 
3 100 941 '785 402 208 175 
3 120 1139 *914 497 209 208 
3 150 1431 *1112 628 226 258 
3 200 ** 1437 873 226 338 
3 240 ** 1665 1036 225 404 
3 300 ** 2090 1348 240 502 
4 4 39 279 
4 8 58 317 
4 16 100 367 
4 30 178 437 
4 60 350 561 
4 100 592 721 
4 120 705 797 
4 150 882 910 
4 200 1185 *I076 
4 240 1427 *1216 
4 300 1793 '1453 
4 400 2413 *1805 

8 238 33 
15 265 37 
28 292 47 
54 321 62 

111 353 97 
201 377 143 
236 381 180 
299 410 201 
402 415 259 
497 415 304 
628 451 374 
873 441 491 

d: dimension of the hypercube. 
*: Indicates the faster balanced-sort cases. 
**: Hyperquicksort does not run due to insufficient memory. 
Hyper: Hyperquicksort time. 
Blncd: Balanced-Sort time. 
Q and P: Quicksort and partitioning times of balanced-sort. 
GM: Global exchange and merge time of balanced-sort. 

In the SKEWED distribution, data are globally presorted 
in a way to increase the communication time of the global 
exchange step of balanced-sort; the distribution is such that in 
node i (i = O , l , .  . . , p  - l) ,  segment Ai has a size of n / p  if 
l = i + l(modp),  and has a size of 0 if ! # i + l(modp). 
Thus, all of the n / p  elements in node i have to move to 
node i + l(modp) during the global exchange step. Fig. 5 
and Table I1 show that for large n, balanced-sort is faster than 
hyperquicksort. For example, for n = 400 000 and p = 16, 
a speedup of 7.7 for hyperquicksort and 10.3 for balanced- 
sort is obtained. The skew in the initial data distribution 



580 IEEE TRANSAClIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 5, MAY 1993 

n13- 

:: 12- 
Ell- 
0 -  

10- 

9- 
a- 
7- 

6- 

5- 
4- 

3- 
2- 
1- 

Best 

Ealanced-sort (16 procr.) 

quicksort (8 procs.) 

Hyper. 

75 
155 
318 
631 

1302 
55 

107 
216 
414 
852 

1462 
1723 

79 
150 
279 
566 
952 

1155 
1449 

* *  
* *  
* *  
38 
58 

100 
178 
348 
591 
705 
884 

1181 
1430 
1790 

0: I I I I I I I I 

0 50 100 150 200 250 300 350 400 
Number of dements n (1  .OE+3) 

Blncd. 

110 
193 
322 

*589 
*1162 

123 
164 
243 

*382 
*681 

*1107 
*1288 

191 
241 
320 

*481 
*693 
*804 
*969 
1251 
1444 
1816 
276 
307 
355 
415 
514 
65 1 

'696 
*803 
*933 

*lo49 
'1236 

Fig. 6. Speedup of hyperquicksort and balanced-sort for the BEST distribu- 
tion. 

causes a load imbalance in the merge step of hyperquicksort; 
some nodes merged much more than n / p  elements, while in 
the balanced-sort algorithm, each node merged exactly n /p  
elements. 

The increase in the communication time due to the SKEWED 
distribution did not affect balanced-sort adversely. On the 
contrary, comparison of Tables I and I1 show that for the 
same values of n and p, balanced-sort is faster for the 
SKEWED distribution than the UNIFORM distribution for 
many cases. This result was partially because the interpro- 
cessor communication time is smaller than the other steps of 
balanced-sort, and partially because of the implementation of 
the two-way merge algorithm used in the binary tree merge. 
If one list is exhausted during the merge, the remainder of 
the other list is moved by a block copy operation which 
results in fewer comparisons. In the SKEWED distribution, 
since sizes of the segments being merged are significantly 
different, binary tree merge takes much less time than in the 
UNIFORM distribution. Thus, the anticipated increase in the 
communication time is nullified by a fast binary tree merge. 
This may be verified from the GM column of Tables I and 
11. 

In the BEST distribution, data are globally presorted so 
that initially all elements in node i are greater than all 
elements in node j ,  if i > j ,  and within a node elements are 
randomly distributed. This is the ideal global data distribution 
for balanced-sort. Since data are globally ordered to begin 
with, no interprocessor communication takes place to exchange 
the segments during the global exchange step of balanced-sort. 
Fig. 6 and Table I11 show that for large n the balanced-sort 
algorithm performs better than hyperquicksort. For example, 
for n = 400 000 and p = 16, a speedup of 7.7 for 
hyperquicksort and 12.1 for balanced-sort is obtained. This 
difference is because balanced-sort did not incur a commu- 
nication cost during the global exchange step, and merged 
fast due to unequal segment sizes, but primarily it is because 
hyperquicksort had a load imbalance. For example, for n = 
400K and p = 16, the hyperquicksort sorts in 2413 ms 

d 

2 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 

TABLE I11 
EXECUTION TIMES (mS) OF HYPERQUICKSORT AND 

BALANCED-SORT FOR THE BEST DISTRIBUTION 

n(103) 
4 
8 

16 
30 
60 
4 
8 

16 
30 
60 

100 
120 

8 
16 
30 
60 

100 
120 
150 
200 
240 
300 

4 
8 

16 
30 
60 

100 
120 
150 
200 
240 
300 
400 

d :  dimension of 
2413 I *1531 

: hypercube. 

Q 
55 

119 
247 
496 

1034 
27 
56 

118 
235 
496 
873 

1035 
27 
57 

111 
235 
402 
497 
628 
872 

1035 
1348 

8 
14 
28 
53 

112 
20 1 
236 
298 
403 
497 
629 
873 

P 
50 
54 
59 
64 
69 
88 
96 

106 
115 
124 
134 
133 
148 
163 
178 
194 
209 
209 
222 
223 
224 
240. 
237 
265 
294 
323 
349 
377 
378 
408 
406 
410 
436 
436 

GM 
5 

20 
16 
29 
59 
8 

12 
19 
32 
61 

100 
120 

16 
21 
31 
52 
82 
98 

119 
156 
185 
228 
31 
28 
33 
39 
53 
73 
82 
97 

124 
142 
171 
222 

*: Indicates the faster balanced-sort cases. 
**: Hyperquicksort does not run due to insufficient memory. 
Hyper: Hyperquicksort time. 
Blncd: Balanced-Sort time. 
Q and P: Quicksort and partitioning times of balanced-sort. 
GM: Global exchange and merge time of balanced-sort. 

with the BEST distribution, while it takes only 1823 ms with 
the UNIFORM distribution which is the ideal distribution for 
hyperquicksort. This load imbalance in hyperquicksort occurs 
during its merge phase. For example, for the case of p = 8 
and n = 64 000 (not shown in the table), one node finished 
the sort with 15 000 elements and another node with 1000 
elements using hyperquicksort, whereas every node finished 
the sort exactly with n /p  = 8000 elements using balanced-sort. 
Note that in Tables I1 and 111 the missing timing information 
for hyperquicksort (indicated by **) is because some nodes 
did not have enough memory to complete the sort due to the 
uneven distribution of data among the nodes during the merge 
phase. 
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VII. CONCLUSION [18] S. F. Nugent, “The iPSCI2 direct-connect communications technology,” 
in Proc. Third Con$ Hypercube Concurrent Comput. and Appl., Jan. 
1988, pp. 51-60. 

[19] D. H. Lawrie, ‘‘Access and alignment of data in an array processor,” 
IEEE Trans. Comput., vol. C-24, pp. 1145-1155, Dec. 1975. 

Trans. ComDut., vol. C-26. DD. 458-473, Mav 1977. 

Results show that the balanced-sort algorithm is competitive 
with the other algorithms for randomly distributed data and 

in the other algorithms. Since each node processes exactly 
faster for skewed data distributions that cause load imbalance [201 M, c, Pease, indirect n-cube microprocessor array,,, IEEE 

n/P elements, ~omputational load is well distributed among [21] H. J. Siege-] and R. J. McMillen, “The mukstage cube: A versatile 
interconnection network,” IEEE Comput. Mag., pp. 65-76, Dec. 1981. the nodes which contributes to the speedup of the algorithm. 

Exact partitioning has the further advantage of most efficiently 
utilizing the distributed memory. 
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