
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 6, JUNE 1995 561

Efficient Fast Hartley Transform Algorithms
for Hypercube-Connected Multicomputers

Cevdet Aykanat and Argun Dervig

Abstract- Although fast Hartley transform (FHT) provides
efficient spectral analysis of real discrete signals, the literature
that addresses the parallelization of FHT is extremely rare. FHT
is a real transformation and does not necessitate any complex
arithmetics. On the other hand, FHT algorithm has an irregular
computational structure which makes efficient parallelization
harder. In this paper, we propose a efficient restructuring for the
sequential FHT algorithm which brings regularity and symmetry
to the computational structure of the FHT. Then, we propose
an efficient parallel FHT algorithm for medium-to-coarse grain
hypercube multicomputers by introducing a dynamic mapping
scheme for the restructured FHT. The proposed parallel algo-
rithm achieves perfect load-balance, minimizes both the number
and volume of concurrent communications, allows only nearest-
neighbor communications and achieves in-place computation and
communication. The proposed algorithm is implemented on a 32-
node iPSC12' hypercube multicomputer. High-efficiency values
are obtained even for small size FHT problems.

Index Terms-Digital signal processing, fast Hartley trans-
form, parallel computing, multicomputer, hypercube, load bal-
ance, nearest-neighbor communication.

I. INTRODUCTION
ZGZTAL signal processing (DSP) of real-time signals D has gained importance with recent advances in digital

computer technology. Digital signal processors, digital com-
puters specializing in signal processing, are in development
and available on the market. All of this growth is for mas-
sive amounts of computations in various DSP applications.
One way to satisfy the performance requirement of DSP
applications is to choose clever algorithms or expand the
processor performance or both of them. DSP applications
are characterized by computations that are massive but fairly
straightforward and simple. Furthermore, these computations
exhibit orderly structures. Besides, DSP algorithms are very
efficient. These algorithms are optimized and improved several
times until now. However, it is still not enough for most of the
DSP applications. Performance of conventional computers are
still very limited in cases where extensive number crunching
computations are required. discrete Fourier transform (DFT)
and discrete Hartley transform (DHT) are such examples.

Manuscript received June 25, 1993; revised July 18, 1994. This work
was supported by Intel Supercomputer Systems Division under Grant
SSD100791-2 and the Turkish Scientific and Technical Research Council
under Grant EEEAG-5.

The authors are with the Department of Computer Engineering, Bilkent
University, 06533 Bilkent, Ankara, Turkey.

IEEE Log Number 9409879.

iPSCR is a registered trademark of Intel Corporation.

The DFT of an input sequence { f (i) : i = 0,1, . . . , N - 1)
of length N is

N-1

for IC = 0,1, . . . , N - 1. D F I provides a method for spectral
analysis of discrete signals. Thus, Cooley and Tukey providing
a more efficient algorithm [3], named as fast Fourier trans-
form (FFT), made possible many applications concerning the
computation of DFT to be realizable because of performance
problems.

Beyond the highly accepted usage of FFT, it is a complex
transformation. That is, both DFT and FFT include complex
arithmetic even if the input signal consists of real numbers
only. Hence, FFT contains redundancy if the signals in the
time domain are real. DHT is developed for a more efficient
and faster transformation [4]. The DHT of an input sequence
{h (i) : i = 0,1, . . . , N - l} of length N is

for IC = 0,1 , . . . , N - 1 where the input sequence h () is
constrained to real numbers only. Hartley transform does not
necessitate any complex arithmetics. This important feature
of Hartley transform increases the performance of DHT by
a factor of two, while decreasing the memory requirements
again by a factor of two at the same time. Computational
complexities of both schemes are O (N 2) . FFT reduces this
time to O(Nlg ,N) [3]. As well as FFT, DHT has also a fast
formulation called fast Hartley transform (FHT) [11, [2] with
computational complexity O(N lg,N). FHT provides efficient
spectral analysis of real discrete signals.

The purpose of this paper is to investigate the efficient par-
allelization of one-dimensional FHT algorithms on medium-
to-coarse grain multicomputers implementing the hypercube
interconnection topology. Computational load balance and
communication overhead are two crucial factors that determine
the efficiency of a parallel algorithm. In a multicomputer
with high communication latency (start-up time), both the
number and the volume of communications should be mini-
mized in order to reduce the communication overhead. The
communication structure of the parallel algorithm is also
a crucial issue. In a multicomputer, each adjacent pair of
processors can concurrently communicate with each other over

1045-9219/95$04.00 0 1995 IEEE

___._ ~ __

562 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 6, JUNE 1995

the communication links connecting them. Such communica-
tions are referred as single-hop communications. However,
nonadjacent processors can communicate with each other
by means of software or hardware routing. Such commu-
nications are referred as multihop communications. Multi-
hop communications are usually routed in a static manner
over the shortest paths of links between the communicat-
ing pairs of processors. In software routing, the cost of
multihop communications is substantially greater than that
of the single-hop messages since all intermediate processors
on the path are intercepted during the communication. The
performance difference between an individual multihop and
single-hop communication is relatively small in hardware
routing. However, a number of concurrent multihop commu-
nications may congest the routing network thus resulting in
substantial performance degradation. Hence, achieving con-
current communications between adjacent pairs of processors
is a valuable asset in designing efficient parallel algorithms.
Moreover, in almost all commercially available multicom-
puter architectures, interprocessor communications can only
be initiated frodinto contiguous local memory locations.
Hence, communications frodinto scattered memory locations
may introduce considerable overhead to the parallel program.
In this work, all these points are considered in designing
an efficient parallel FHT algorithm for hypercube-connected
multicomputers.

Although there is a substantial amount of literature on the
parallelization of the FFT, the literature that addresses the
parallelization of FHT is extremely rare. This situation can
be attributed to the following reasons: 1) wide popularity
of the FFT algorithm in the computer science literature, 2)
irregular computational structure of FHT compared to the
symmetrical and regular computational structure of the FFT,
and 3) feasibility of indirect computation of FHT through FFT.
However, direct computation of FHT is much more efficient
compared to any indirect computation of FHT.

To our knowledge, only Hou [6] and Lin [8] investigated
the parallelization of FHT on hypercubes. Hou’s algorithm is
a fine-grain algorithm which considers the parallelization of
an N-point FHT on a hypercube with P = N processors,
where each processor is assigned a single FHT point. In this
work, we briefly describe an extension of Hou’s fine-grain
algorithm to medium-to-coarse grain parallelism, where N 2
4P. This algorithm uses only single-hop communications. The
number and volume of concurrent communications required
by this scheme are 3d - 3 and x(3d - 3)M FHT points,
respectively, where M = N/P and d = 1gZP. The dynamic
mapping scheme proposed by Lin [8] reduces the number of
concurrent communications to d, each with a volume of NIP
FHT points. Concurrent communication volume overhead of
Lin’s algorithm is M d - M/2 FHT points on the Hurtley
graph. However, in a hypercube implementation of Lin’s
algorithm, d - 2 concurrent exchange communication steps
involve multihop communications since Hartley graph cannot
be embedded with dilation-one onto the hypercube graph.
Hence, concurrent communication volume overhead of Lin’s
algorithm will be much higher on the hypercube topology
due to the congestion during these d - 2 concurrent exchange

communications. Although these two algorithms are successful
attempts to reduce the communication overhead, neither of
them achieves perfect load balance for the simplified butterfly
scheme. Lin’s algorithm, which is originally proposed for the
basic butterfly scheme, achieves perfect load balance only for
this scheme. However, basic butterfly scheme requires ~ 6 0 %
more floating point operations than the simplified butterfly
scheme.

In this work, we propose an efficient restructuring for
the sequential FHT algorithm which brings regularity and
symmetry to the computational structure of the FHT. The
restructured algorithm does not involve any computational
overhead compared to the original algorithm. Then, we pro-
pose an efficient parallel FHT algorithm for medium-to-coarse
grain hypercube multicomputers by introducing a dynamic
mapping scheme for the restructured FHT. The proposed
parallel algorithm has the following nice features for the imple-
mentation of an N-point FHT on a d-dimensional hypercube
with P = 2d 5 N/4 processors: 1) achieves perfect load-
balance for the simplified butterfly scheme, 2) allows only
nearest-neighbor communications, 3) minimizes the number of
concurrent communications to d by eliminating fragmentary
message passing, 4) minimizes the total concurrent com-
munication volume to dM/2 by minimizing the volume of
communication in each concurrent exchange step to M/2 =
N/2P FHT points, and 5) achieves in-place computation and
communication.

The sequential FHT is presented in Section 11. In Section 111,
parallelization of the presented FHT scheme is discussed.
Section 111-A presents the proposed restructuring of the FHT
algorithm for an efficient parallelization. The dynamic map-
ping scheme proposed for the restructured FHT algorithm
is presented in Section 111-B. Section IV presents the ex-
perimental results on Intel’s iPSC/2 hypercube multicom-
puter.

11. SEQUENTIAL FHT ALGORITHM

Different strategies exist for the computation of FHT and
some include Radix-2 Decimation-in-Time FHT, Radix-2
Decimation-in-Frequency FHT, Radix-4 FHT, Split Radix
FHT, Recursive FHT and Vector FHT [5], [7], [9], [lo].
Computational steps for a 32 point, radix-2, decimation-in-
time FHT algorithm [7] is illustrated in Fig. 1. This tabular
representation is proposed in [lo]. The input in this scheme
is N real numbers in bit-reversed order. The output is N real
numbers in normal order. The Ci and Si factors in Fig. 1
represent Cos(27ri/N) and Sin(2~i /N) , respectively. As is
seen in Fig. 1, each level of FHT algorithm takes a set of
N real numbers and transforms them into another set of
N real numbers. This process is repeated n = lg,N times,
resulting in the in-place computation of the desired Hartley
transform in normal order. However, the tabular representation
is not sufficient for a detailed analysis of the computational
interdependencies which is crucial for an efficient parallel
algorithm design. In this work, computational flow graph
for the FHT algorithm is derived in order to explore the
computational interdependencies.

AYKANAT AND DERVIS: FHT ALGORITHMS FOR HYPERCUBE-CONNECTED MULTICOMPUTERS 563

Fig. 1 . Computational steps in (N = 32)-point fast Hartley transform.

Ci = Cos(PxiM), Si = Sin(2dM)

(a) (b)

Fig. 2.
butterflies.

Computational flow graphs for (a) type-1 and (b) type-2 basic FHT

A close examination of Fig. 1, reveals that FHT computa-
tions at each level resemble basic FFT butterfly computations.
The first level (t = 0) consists of 2-point FFT-like butterflies.
However, the remaining levels (t = 1,2 , . . ' , n - 1) consist
of 4-point FHT butterflies. There are two types of basic FHT
butterflies which will be referred here as type-1 and type-2
basic FHT butterflies. Fig. 2 illustrates the computational flow
graphs for type-1 and type-2 basic FHT butterflies at level in
an N-point FHT. Each type of FHT butterfly is identified by
an ordered 4-tuple {p, T , q, s}. Note that both types of basic
butterflies consist of two stages.

In the first stage of a type-1 basic FHT butterfly, the (q , s)
pair is involved in two butterfly type of computations to
generate four intermediate results. Each butterfly computation
involves the multiplication of q and s points by Cos/Sin and
Sin/Cos factor pairs, respectively, and pairwise addition of

Stage-1 Stage-2 I Stage-1 Stage-2

I
Ci = Cos(Pm/N), Si = Sin(Pm/N)

(a) (b)

Fig. 3.
FHT butterflies.

Computatlonal flow graphs for (a) type1 and (b) type-2 simplified

these four multiplication results. Hence, the first stage of a
type- 1 basic butterfly involves eight multiplications and four
additions. In the first stage of a type-2 basic butterfly, both
q and s points are multiplied by Cos + Sin (CS) factor pairs
to generate four intermediate results. Hence, the first stage
of a type-2 basic butterfly involves four multiplications. In
the second stages of both type-1 and type-2 basic butterflies,
these four intermediate results are individually added to their
p, T , q, s points to update these values for the next level. The
second stages of both types of basic FHT butterflies involve
four additions.

A careful analysis of type- 1 basic butterfly computation
reveals that angles of Cos and Sin factor pairs multiplied by
the q and s points are mutually T radians away from each other,
since 2 ~ (i + %) / N = 2 ~ i / N + 7r. Hence, type-1 basic FHT
butterfly (Fig. 2(a)) can be simplified as shown in Fig. 3(a).
This simplification reduces the total number of floating point

%4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 6, JUNE 1995

operations in the first stages of type-1 butterflies to 6 (from
eight multiplications and four additions to four multiplications
and two additions) as follows:

qtemp := Ci x H [q] + Si x H [s] ;
stemp := C j x H [s] + S j x H [q] ;

H[q] := H[p] - qtemp;
H [s] := H[T] - sremp;

H[p] := Hb] + qtemp;
H[T] := HIT] + stemp;

(3 4
(3b)
(3c)
(3 4
(3e)
(30

The resulting FHT butterfly will be referred here as type-1
simpZiJied FHT butterfly. A similar analysis can also be ap-
plied to type-2 basic FHT butterfly to reduce the number of
multiplications involved in the first stage from four to two.
Furthermore, a detailed analysis shows that Cos + Sin factors
multiplied by the q and s points are always 1. Hence, the
remaining two multiplications can also be omitted. Fig. 3(b)
illustrates the computational flow-graph for a type-2 simplijied
FHT butterfly. Note that multiplications with Cos+ Sin factors
are shown in Fig. 3(b) for the sake of completeness. Hence,
the computations involved in a type-2 simplified FHT butterfly
are as follows:

qtemp := H [q] ; (4a)
stemp := H[s] ; (4b)

H [q] := H[p] - qtemp; (4c)
H [s] := H[T] - sremp; (4 4

H[p] := Hlp] + qtemp; (4e)
H[r] := H[T] + sremp; (40

In the rest of the paper, simplified FHT butterflies will be re-
ferred as butterflies for the sake of simplicity, unless otherwise
stated.

Each FHT point in an N-point FHT is assumed to have an
n-bit binary representation where n = lg,N. For example, f n

(binary string of length n) denotes the binary representation
of an FHT point q where q denotes its decimal index in the
bit-reversed ordering. In both types of butterflies, FHT points
in both (p , q) and (T, s) pairs differ only in the Cth bit of their
n-bit binary representation at level C such that q = p + 2e and
s = T + 2e. That is, Cth bits of the binary representations of
both q and s indexes are “1,” whereas lth bits of both p and T

indexes are “0.” Note that the least significant bit of a binary
number is referred here as its 0th bit. Hence, FHT points in
(p , q) and (T,s) pairs are separated by 2e at level C.

In a type-1 butterfly at level C, two FHT points of each
(q , s) pair differ only in the least significant bits of their
n-bit binary representations. This difference is such that, least
significant C bits of the binary representations of the q and s
indexes are mutually 2’s complement of each other. Hence,
the separation between q and s indexes of a type-I butterfly
varies between 2 and 2e - 2 at level l for C 2 2. In a type-2
butterfly at level C, q and s points only differ in the (e- 1)th bit
of their binary representations such that q is an odd multiple

of 2e, and s = q + 2e-1. That is, q and s indexes of a type-2
butterlly are separated by 2‘-’ at level C. Hence, type-2
butterflies at level C can easily be identified by the 4-tuples
{ p , T, q, s} = { p , p + 2e-1, p + 2‘, p + 3 x 2‘-l} where p
is a multiple of 2e+1 (i.e., least significant (C + 1)-bits are all
0’s). These observations can be summarized by the following
definitions.

Dejinition I : For any binary strings bk and fe-1 # 4e-1
(where IC = n - C - l), the 4-tuple

constitutes a type-1 FHT butterfly at level C (C = 2, . . . , n - 1)
in an (N = 2”)-point FHT. Here, subscripts denote the
lengths of the respective binary strings, 4e-1 denotes a string
consisting of .! - 1 zeros, and fiFl denotes (C - 1)-bit 2’s
complement of f e - 1 . Note that and (Oft-1) are C-
bit 2’s complement of each other since f e - 1 contains at least
one 1.

Dejnition 2: For any binary string bk (where IC = n-e-l),
the 4-tuple

{brc00&-1, bkolcbe-1, b k l O 4 e - 1 , b k l l $ e - i }

constitutes a type-2 FHT butterfly at level C (C = 1,2 , . . . , n -
1) in an (N = 2n)-point FHT.

Fig. 4 illustrates the proposed computational flow-graph
for the (N = 32)-point FHT algorithm using the simplified
butterfly scheme. As is seen in Fig. 4, first level (e = 0)
is a special level which consists of two-point butterflies
without any Cos/Sin factor multiplications. That is, only
additiodsubtraction operations are performed in two-point
butterflies. Each level C of the following n - 1 levels
consist of N/2e+1 consecutive blocks where each block
contains 2e+1 consecutive FHT points. For example, at
level C = 3, a 32 point FHT contains 32/23+1 = 2
blocks, Bg = (0 - 15) and BA = (16 - 31}, where
each block consists of 23+1 = 16 consecutive FHT points.
First, second, third, and fourth quarters of each block contain
2e-1 p , r, q and s points of the Ze-’ butterflies confined to
that block. The first points of successive quarters of each
block constitute the p , r , q , s points of the only type-
2 butterfly involved in that block. As is seen in Fig. 4,
{ 16, 20, 24, 28) is the only type-2 butterfly involved in block
BA = (16 - 31}, whereas (17, 23, 25, 31}, (18, 22, 26, 30)
and (19, 21, 27, 29) constitute the type-I butterflies in that
block. Hence, the number of type-1 and type-2 butterflies at
level C are

respectively. Note that N& + N& = N/4 FHT butterflies
exist at each level for C = 1,2, . . . , n - 1. Also note that
level 1 = 1 consists of only N/4 type-2 butterflies and the
number of type-2 butterflies decreases by one half in the
following n - 2 levels and reduces to 1 at the last level
(1 = n - 1).

AYKANAT AND DERVIS: FHT ALGORITHMS FOR HYPERCUBE-CONNECTED MULTICOMPUTERS 565

LEVEL 0 LEVEL I LEVEL 2 LEVEL 3 LEVEL 4

Stage-I Stage-2 Stage-I Stage-2 Stage-I Stage-2 Stage-I Stage-2

CI = Cos(12dN) SI = Sin(12dN)

Fig 4 Computational flow graph for the 32-point FHT and its static tiled mapping on a three-dimensional hypercube

Fig. 5 illustrates the pseudo-code for the sequential FHT
algorithm. In this algorithm, N real inputs {h(i): i =
0,1, . . . , N - l} are assumed to be stored in bit-reversed order
in one-dimensional H-array. Computations are performed in-
place and the results are obtained in the H-array in normal
order. As is seen in Fig. 5, the first outer for-loop performs
the computations associated with the 2-point butterflies in
the first level (e = 0). The second outer for-loop performs
the computations associated with the remaining n - 1 levels.
The first inner for-loop iterates N/2'+' times to identify the
N/2'+' consecutive FHT blocks at each level. The innermost
for-loop iterates 2'-' - 1 times to identify and perform the
computations involved in the 2'-' - 1 type-1 butterflies in each
block. In Fig. 5, p l , r l , q l , s l and p 2 , r2, q2, s2 refer to the

p, r, q , s points of type-1 and type-2 butterflies, respectively.
The total number of type-1 and type-2 FHT butterflies are

(6b)

respectively. Recall that type- 1 and type-2 simplified butter-
flies require 10 and 4 floating-point operations, respectively,
and that first level (e = 0) involves only N floating point ad-
ditiodsubtraction operations. Hence, the sequential execution
time of an N-point FHT computation can be modeled as

(7)

N n-1

N$2 = - 1,
e=i

Tseq = (2.5Nlg2N - 4.5N + 6)tcalc

566 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 6, JUNE 1995

/* Input in bit-reversed order in HIO . . . N-11 */
/* Output in normu1 order in HIO . . . N - l]

for i := 0 to N / 2 - 1 do
t e m p := H [2 i + 1 ;
H 2i + 11 := H [2 4 - t emp;

*/

:= H[2i] + t e m p ;

for e : = 1 ton- 1 do
for i := 0 to N / 2 f + 1 - 1 do

p2 := i x P+l; q2 := p2 + 21;
r 2 := p2 + 2e-1; s2 := q2 + 2 t - l ;
qtemp := H[q2]; s temp := H [s 2] ;

for j := 1 to 2 f - 1 - 1 do
p l := p2 + j; q l := pl + 2 5
r l := p2 + 2' - j ; S I := r l + 2e;

Fig. 5. Sequential (N = 2")-point FHT algorithm.

where tcalc is the time taken by the floating-point multipli-
cation, addition and subtraction operations. The computation
of Cos/Sin factors are not involved in the given complexity
analysis.

In most of the real time DSP applications, N-point FHT is
applied consecutively, for a fixed N, to N-point input data
sets. Hence, in general, N /2 coefficient values are computed
once, as the value of the N is fixed, and stored in a table.
These coefficients are then accessed by a simple table-lookup
procedure during successive FHT computations.

111. PARALLEL FHT ALGORITHM

There are strong computational dependencies in the FHT
algorithm. These computational dependencies exist between
successive levels confined within the butterflies. As is seen in
Fig. 3(a) and Fig. 4, stage-2 computations in type- 1 butterflies
depend on the results of the stage-1 computations. The compu-
tation of qtemp and stemp values [(3a) and (3b), respectively]
in the first stage necessitates bidirectional interdependency
between q and s points, which will be referred here as
q ++ s interactions. Note that first stages of type-2 butterflies
involve no computations and interactions. Type-2 butterflies
are also modeled as two stage computations just for the sake of
completeness. The update of p, r, q and s points in the second
stages of all butterflies (for C = 1 ,2 , . . . , n - 1) necessitate
bidirectional interdependencies between the p and q, and r
and s points, which will be referred here as p H q and
r H s interactions. The p w q and r H s interactions are
very regular in nature since p and q, and r and s points are
separated by 2e at level C for C 2 1. In fact, this regularity in
the p H q and r H s interactions makes hypercube topology
very suitable for the parallelization of FHT. However, the

q tf s interactions complicates the parallelization because
of the irregular spacing between q and s points of type-1
butterflies.

This paper investigates the parallelization of (N = 2")-
point FHT on a d-dimensional hypercube with P = 2d
processors, where the number of 4-point FHT butterflies is an
integer (power of 2) multiple of the number of processors (i.e.,
N 2 4P). A straightforward parallelization can be achieved
by adopting a static tiled mapping. The first processor in the
decimal ordering is assigned the first M = N/P FHT points,
the second processor is assigned the next M points and so on.
Successive processors in the decimal ordering are assigned the
consecutive slices of FHT points with each slice containing
equal number of M consecutive FHT points. This mapping
prevents the fragmentation of FHT butterflies and (q, s) pairs
during the first n - d and n - d + 1 levels, respectively.
Both (p, q) and (r, s) pairs of butterflies are fragmented across
processor pairs which are neighbors over channel c = C - n+ d
at level C for C = n - d, . . . , n - 1. Here, channel c denotes
the set of P / 2 communication links between processor pairs
whose d-bit binary representations differ only in their cth
bit. Hence, these pairwise exchanges due to the p H q and
r H s interactions can be accomplished by performing a
concurrent single-hop exchange communication over channel
c = C- n + d at level C for C = n- d, . . , n - 1. Unfortunately,
the nature of fragmentation of (4, s) pairs, and hence the nature
of the communications due to the q H s interactions are
very irregular and complicated because of the irregularity in
these interactions. A careful analysis reveals that the q H s
interactions necessitate concurrent exchange communications,
each with a volume of M - 1 FHT points, at each level of the
last d - 1 levels, plus concurrent exchange communications,
each with a volume of single FHT point, at each level of the
last d - 2 levels. All former type of exchange communications
are single-hop communications at level 1 = n - d + 1 and
multihop communications with distances 2, . . . , d - 1 during
the last d - 2 levels C = n - d + 2, . . . , n - 1, respectively. All
latter type of communications are single-hop communications
at level C = n - d + 2 and mostly multihop communications
with maximum distances 2, . . . , d-2 during the last d-3 levels
C = n - d + 3, . . . , n - 1, respectively. Multihop exchange
communications during the last d - 2 levels will introduce
drastic performance degradation due to the congestion.

The fine-grain algorithm proposed by Hou [6] considers the
parallelization of N-point FHT on a hypercube with P = N
processors, where each processor is assigned a single FHT
point. Here, we will briefly describe an extension of Hou's
fine-grain algorithm to medium-to-coarse grain parallelism. A
tiled decomposition scheme is adopted for the initial mapping.
This initial mapping is maintained during the first n - d + 2
levels C = 0 ,1 , . . . , n - d + 1. The tiled mapping scheme
already confines the FHT butterflies to 1-dimensional and 2-
dimensional subcubes over channels c = 0 and c = 0 , l at
levels C = n - d and C = n - d + 1, respectively. Hence, the
second stages of levels C = n-d and C = n-d+l , and the first
stage of level C = n - d + 1 necessitate concurrent single-hop
exchange communications over channels c = 0 , 1 and c = 0
due to the p H q , r H s and q H s interactions, respectively.

AYKANAT AND DERVIS: FHT ALGORITHMS FOR HYPERCUBE-CONNECTED MULTICOMPUTERS 567

Then, at the end of each level C = n - d + l , . . . , n - 2,
those processor pairs which exchanged their local M - 1 or
M q or s points during the first stage of that level, exchange
the further responsibilities of these local FHT points. These
mapping exchange operations performed at the end of each
level C, for C = n - d + 1, . . . , n - 2, confine the FHT butterflies
to 2-dimensional subcubes over successive channels C - n + d
and C - n + d + 1, at the following level C + 1. The d-bit binary
representations of four processors in each subcube differ only
in their cth and (c - 1)th bits such that these two successive
bits are “00,” “01,” “lo,” and “11” in the first, second, third,
and fourth processors, respectively. The fragmentation of FHT
butterflies across these subcubes during the last d - 1 levels
is such that first, second, third and fourth processors in each
subcube hold M p, T , q and s points, respectively, of the M
butterflies confined to that subcube. Hence, each level C of the
last d - 1 levels require three concurrent single-hop exchange
communications, each with a volume of A 4 (or M - 1) FHT
points, over channels c- 1, c and c- 1, respectively, where c =
C - n + d. The first and second exchange communications are
information exchange operations due to the q H s, and p H q,
T H s interactions in the first and second stage computations,
respectively. The third exchange communication is a mapping
exchange operation due to the nonlocal q H s swaps. Note
that level C = n - d necessitates only one concurrent single-
hop exchange communication over channel c = 0, and the
mapping exchange communication at the last level may not
be necessary. Thus, the number and volume of concurrent
communications required by this scheme are 3d - 3 and
z(3d - 3)M FHT points, respectively.

The dynamic mapping scheme proposed by Lin [8] reduces
the number of concurrent communications to d. The initial
mapping avoids the fragmentation of two-point butterflies at
level C = 0 by assigning consecutive FHT-point pairs to
successive processors in a cyclic manner. This initial mapping
scheme can be considered as a scattered mapping of consec-
utive FHT-point pairs, where FHT point pair (22, 22 + 1) is
assigned to processor i mod P . The dynamic mapping during
the following d levels confines the FHT butterflies to processor
pairs which are neighbors on the Hartley graph during levels
C = 1,2, . . . , d, and prevents the fragmentation of butterflies
during the last n - d - 1 levels. At level C = 1 , 2 , . . . , d ,
processor pairs whose least significant C- 1 bits are all 0’s hold
M/2 type-2 butterflies, whereas all other processor pairs hold
M/2 type-1 butterflies. Former and latter types of processor
pairs will be referred here as type-2 and type-1 processor
pairs, respectively. The fragmentation of level4 butterflies (for
C = 1,2 , . . . ,d) across each processor pair is such that ith
local FHT-point pairs in the first and second processors, whose
(C - 1)th bits are 0 and 1, correspond to the (p , ~) and (s ,q)
pairs of the butterflies, respectively, confined to that processor
pair, for i = 0,1, . . . , M/2- 1. The first and second processors
of type- 1 pairs are responsible for updating the (p, s) and (T , q)
pairs, respectively, or vice-versa, depending on their Cth bits.
The first and second processors of type-2 pairs are responsible
for updating the (p , q) and (T , s) pairs, respectively. Hence,
type-1 processor pairs need to exchange all of their local
FHT points at the beginning of each level C = 2 , . . . ,d .

However, type-2 processor pairs need to exchange only half
of their local FHT points at the beginning of each level C =
1,2, . . . , d. These exchanges will be referred here as type-1
and type-2 exchanges, respectively. One half of the M local
FHT points involved in each type-1 exchange is a mapping
exchange, whereas the other half is exchanged because of the
computational interdependencies. Type-2 exchanges are both
mapping and information exchanges.

All P/2 processor pairs are type-2 pairs at level 1 = 1,
and the number of type-2 processor pairs decreases by one
half in the following d - 1 levels, thus reducing to 1 at
level C = d. Thus, the communication volume of type-1
exchanges determines the concurrent communication volume
during levels C = 2,3, . . . , d. Hence, concurrent communica-
tion volume overhead of Lin’s algorithm is Md - M/2 FHT
points on Hartley graph. Unfortunately, Hartley graph cannot
be embedded with dilation one onto the hypercube graph as is
also indicated in [8]. In a hypercube implementation of Lin’s
algorithm, type-2 exchanges are single-hop communications
over channel c = C - 1 at level C for C = 1,2, . . . , d. Type-1
exchanges at level C = 2 are single-hop communications over
channel c = 1. Hence, all exchanges can be concurrently
performed over channels c = 0 and c = 1 at levels C =
1 and C = 2, respectively. However, type-1 exchanges at
levels C = 3, . . . , d are mostly multihop communications with
maximum distances of C - 1 = 2, . . . , d - 1. Hence, concurrent
communication volume overhead of Lin’s algorithm will be
much higher on the hypercube topology due to the congestion
during these d - 2 levels.

Although these two algorithms are successful attempts to
reduce the communication overhead, neither of them achieves
perfect load balance for the simplified butterfly scheme. Con-
sider the coarse-grain extension of Hou’s algorithm. The
tiled mapping scheme, which is maintained during the first
n - d + 2 levels, achieves perfect load balance during the first
n - d levels, since it assigns equal number of unfragmented
butterflies to each processor during these levels. However, load
balance is disturbed during the first stage computations of the
last d levels. At levels C = n - d and C = n - d + 1, . . . , n - 1,
processors can be considered as divided into 2 and 4 groups,
each containing P /2 and P/4 processors, respectively. At
level 1 = n - d, each processor in the first and second halves of
the hypercube holds and updates M/2- 1 (p , T) and (q , s) pairs
of type-1 butterflies, respectively. Hence, at level C = n - d,
one half of the processors holding q and s points concurrently
perform 3M - 6 floating point operations while the processors
in the other half wait idle for receiving these qtemp and
stemp results corresponding to the first stage computations of
type-1 butterflies. At levels C = n - d + 1, ... ,n - 1, each
processor in the first, second, third, and fourth quarters of the
hypercube holds and updates either M - 1 or M p, T, q and
s points of type- 1 butterflies, respectively. Hence, at levels
C = n - d + 1, . . . , n - 1, one half of the processors holding
q or s points concurrently perform 3M or 3M - 3 floating
point operations while the processors in the other half wait
idle for receiving these qtemp or stemp results corresponding
to the first stage computations of type-1 butterflies. Note that
this algorithm cannot achieve perfect load balance even for

568 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6. NO. 6, JUNE 1995

(a) (b) (C)

Fig. 6. Computational mappings of FHT butterflies to processors (a)
coarse-grain extension ofHou's algorithm (e = n-d+l,. . . , n-1). (b) Lin's
algorithm (e = 1 , 2 , . . . , d) , (c) proposed algorithm (a = n - d , . . . , n - 1),
during the respective levels which involve communications.

the basic butterfly scheme during the first stage computations
of last d - 1 levels because of the four-way computational
fragmentation of FHT butterflies during these levels. Here,
four-way computational fragmentation refers to the situation
in which four different processors compute the four different
points of the same FHT butterfly.

Lin's algorithm, which is originally proposed for the basic
butterfly scheme, achieves perfect load balance only for this
scheme. This algorithm achieves perfect load balance during
levels l = 0 and C = d + 1 , . . . , n - 1 , both for the basic
and simplified butterfly schemes, by assigning equal number
of unfragmented butterflies to each processor during these
n - d levels. The 2-way fragmentation during levels 4 =
1,2, . . . , d achieves perfect load balance for the basic butterfly
scheme during these d levels. Consider the performance of
this algorithm for the simplified butterfly scheme during d - 1
levels C = 2, . . . , d. After the exchange operations during these
levels, M / 2 type-] butterflies are duplicated in each type-1
processor pair. However, each processor in type-1 pairs is
responsible for updating either the (p , s) or (T , q) pairs of
the respective M / 2 butterflies. Hence, both processors in
each type-1 pair should compute the same qtemp and stemp
values for all M / 2 butterflies local to that processor pair,
because these two values are needed in the second stage
computations of both (p , s) and (T , q) pairs. This redundancy
during the first stage computations of type- 1 butterflies reduces
the performance of the algorithm to that of the basic butterfly
scheme. This redundancy can be avoided if the first and second
processors in each type-] pair compute the qtemp and stemp
values, or vice-versa, and then exchange these results. This
approach attains the performance of the simplified butterfly
scheme with perfect load balance at the expense of d - 1 extra
single-hop exchange communications each with a volume of
M / 2 FHT points.

Fig. @a) and (b) clearly illustrate the four-way and two-
way computational fragmentation of 4-point FHT butterflies
in coarse-grain extension of Hou's algorithm and Lin's algo-
rithm, respectively, during the indicated levels which involve
communications. Note that the two-way fragmentation at level
e = n - d of the coarse-grain extension of Hou's algorithm
is not shown in the figure since it is an exceptional level of
this algorithm. In this figure, p, , r i , q, and s, represent the p ,

T , q and s points of the same butterfly, respectively. Circles
represent processors and solid lines indicate the adjacency of
the respective processor pairs in the hypercube topology. The
square represents a two-dimensional subcube over channels
c - 1 and c. Dashed line indicates the adjacency of the
respective processor pair in the Hartley graph. The orderings
in the lists indicate the local orderings of the FHT points in
the H arrays of the respective processors.

In the following section, we propose and describe a
restructuring which brings regularity to the q t-f s interactions,
without disturbing the regularity of the p * q and T t-f s
interactions. Then, we will propose a dynamic mapping
scheme for the restructured algorithm which totally avoids
the computational fragmentation of FHT butterflies, as is
illustrated in Fig. 6(c).

A. Restructuring

The computational interdependencies between the succes-
sive levels of the FHT algorithm should be closely examined
in order to achieve a suitable restructuring for an efficient
parallelization. Two consecutive blocks Bzz and B,2"+' at
level C constitute the block B;+, at the next level C + 1, for
z = 0, 1 , . . . , 2 n - e - 2 - 1 . For example, in a 32 point FHT
(see Fig. 4), two consecutive FHT blocks Bz = (1 6 - 2 3)
and B: = (24 - 3 1) at level C = 2 constitute the FHT
block l?; = (1 6 - 3 1) at the next level C = 3 . The
(l + 1)th bits of the indexes of all FHT points in even and
odd numbered blocks Be22 and Bit+' at level C are 0 and
1, respectively. We can deduce the following two theorems
by considering the butterfly pairs (T j E Biz, T,' E
where T,' - T: = 2e+1. Here, Ti - T: = 2'+' denotes that,
p ; - p i = T i - T; = q: - 4: = si - s: = 2e+1 where
T,' = { p i , T; , qk, s i } and T: = {p,", reo, q;, sj}. That is, (T j ,
T i) denotes the set of 2'-l butterfly pairs in consecutive
FHT blocks Bzz and Biz+1 at level C such that the indexes
of the p , r , q and s points of the two butterflies in each
pair differ only in their (C + 1)th bits. For example, in a
32-point FHT (see Fig. 4), (T: E B;, Ti E B:) denotes
two butterfly pairs ((1 6 , 18, 20, 2 2 } , (2 4 , 26, 28, 3 0)) and
((17, 19, 21, 2 3 } , (25, 27, 29, 3 1)) .

Theorem 1: Each level-l (e 2 2). type-1 FHT butterfly pair
(2'1: E B ~ ' , T l ~ E Biz+') constitutes the type-1 butterfly
pair (FTle+l, S71e+l) E B;+l at the next level l + 1, where

FTle+i = (pe+l,re+i,~e+i.se+i> = { ~ e , s e , p e ~ ~ e)
F F F F 0 0 1 1

s s s 0 0 1 1
S n + l = {PP+l, Te+1, 4e+1. $+l> = {re > 4e 1 Te > 4 e) .

Proofi Since T l : and T1: are type-] butterflies at level e

m l e + i STle+i

and T1i - T1: = 2(+l, we have

p i = bk000fe-1 = bkooge;
si = b k o l l fi-l = bkolg ,";
p i = bk100fe-1 = bkl0ge;

T; = b k O O l fe'_l = bkoog,"
4: = bk010fe-1 = b k o l g e
T j = bk lOl f$ - , = bklog ,"

Si = b k l l l f , " _ l = b k l l g g ; 4: = b k l l O f e - 1 = b k l l g e

where k = n - C - 2. Here, ge = Of t -1 # 4 g , and
g," = # 44 since f e - 1 # 4e-1 by Definition 1. Hence,

0 proof follows by Definition 1.

AYKANAT AND DERVIS: FHT ALGORITHMS FOR HYPERCUBE-CONNECTED MULTICOMPUTERS 569

0 stage-1 stage2 stage-1 *-2

T1 I

I
I
I
I
I
I
I
I
I
I
I
I
I

n st--1 St-2 stagE-1 stage-2

LEVEL- (L) LEVEL- (L+1) I LEVEL- (L) LEVEL- (L+1)

(a) (b)

Fig. 7. The combination structures of (a) type-I, (b) type-2 FHT butterfly pairs.

Theorem 2: Each level-C (I 2 l), type-2 FHT butterfly
constitutes the butterfly pair

identify their decimal indexes in the H-array. For example,
we will consider the combination structures of the butterfly
pairs (T:,Ti) where

pair (T2; E Bzi, T2: E
(FDe+l,STle+l) E Bf+, at the next level (e + l) , where

FDe+i = {peF+l,reF+l, qeF+1, $+11 = {P:, &,p:,
~ m e + l = { ~ f + i , rf+i 7 &+I, $+1) = {re , se , re ,

0 0 0 0 T,O = { ~ t , re, qe 1 s t } = {ill iZ,i3,i4}
q1 = { P i , r i , d , s i } = { j 1 , % 2 , j 3 , j 4 } .

0 0 1 1
are type-2 and type- 1 butterllies, respectively.

and T2: - T2; = 2'+l, we have
Proof: Since T2: and T2: are type-2 butterflies at level e

R2E+l STle+i
pj = bkO004e-1 = bkOO4e = b k O O (l 4 c - l)
q; = b k O l O q 5 - 1 = bkOlq5t s; = bkOl(lqhc-1)
p: = bk1004e-1 = b k l O 4 e
4; = bkll04t-l = b k l l d e

= b k l O (l 4 e - 1)
s j = bkll(14e-l)

where k = n - C - 2. Proof follows by Definitions 2 and 1
since O4e-1 = & and !-bit 2's complement of (14e-1) is

Fig. 7 illustrates the combination structures of type-1 and
type-2 butterfly pairs. As is seen in Fig. 4, in a 32 point FHT,
the type-1 butterfly pair ({ 1,7 ,9 ,15} E B:, { 17,23,25,31} E
Bi) at level e = 3, constitutes the type-1 butterfly pair
({1,15,17,31},{7,9,23,25}) E at the next level C =
4. Similarly, the type-2 butterlly pair ({0,4,8,12} E B:,
{ 16,20,24,28} E BA) at level l = 3, constitute the (type-2,
type-1) butterfly pair ({0,8,16,24}, {4,12,20,28}) E B: at
the next level e = 4.

In the discussions given so far, p , r , q and s labels were
used both to identify different points of FHT butterflies and
the decimal indexes of the corresponding FHT points in the H -
array. However, for the sake of clarity of further discussions,
p, r , y and s labels will be used only to identify different points
of FHT butterflies, whereas i and j labels will be used to

equal to itself. 17

Note that i and j indexes satisfy the same relations previously
defined for p , ~ , q and s points. That is, i 3 = i l + 2e, 24 =
i2+2',j3 = j l + P , j 4 =jz+2',j1-21 = j Z - i Z = j 3 - i 3 =
j 4 - 24 = 2'+', . . ., etc. In this notation, Theorems 1 and 2
can be restated as follows: level-(e + 1) (FTlg+l, STle+l)
and (FT2e+l, STle+l) pairs generated by type-1 (Tl;, Tl i)
and type-2 (T2;, T2:) pairs will have the following structure
in the H-array:

Rlk'+l = { i l> i4 , j l , j4 } STh+l {22ri3,j2,j3}
m&+1 = { i i , i 3 , j i , j3 } STh+i = {i2,24,jz7j4},

respectively.
Theorems 1 and 2 reveal that regularly separated (by powers

of 2's) butterfly pairs at a particular level constitute scrambled
butterfly pairs at the following level. The scrambled combina-
tion of the butterfly pairs is the main reason for the irregular
spacing betyeen q and s points of type-1 butterflies in the
following levels. However, this scrambling between butterfly
pairs can be avoided by a clever re-ordering while storing
the computational results of each butterfly into the H-array.
This internal re-ordering will be different for type-1 and type-2
butterflies since the combination structures of these two types
of butterfly pairs are different from each other. Combination
structure of type-2 FHT butterfly pairs is also investigated
since they generate a single type-1 butterfly at the following
level.

570 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 6, JUNE 1995

Stager Stage-2 ALIGNMENT Stage-I Stage2

LEVEL- (L)

(a)

LEVEL- (L+1)

I
I
I
I
I
I
I
I
I
I
I

-0 Stage-I Stage-2 ALIGNMENT Stage-l Stage2

LEVEL- (L) LEVEL- (L+l)

(b)
Fig. 8. The combination structures of (a) type-I, (b) type-2 restructured FHT butterfly pairs.

The scrambled combination of type- 1 butterfly pairs are
avoided by swapping r and s points of type-1 butterflies while
storing their updated values into the H-array. The scrambled
combination of type-2 butterfly pairs are avoided by swapping
r and q points of type-2 butterflies while storing their updated
values into the H-array. In this scheme, the results of type-1
(Tl!, T1:) and type-2 (T2;, T2:) pairs will have the
following order in the H-array at the completion of level-C
computations;

respectively. Hence, in the proposed scheme, the generated
type-1 (F T l e + l , STle+l) and (type-2, type-1) (FT2e+l,
STle+l) pairs will have the following structure in the H-array

according to Theorems 1 and 2, respectively. Fig. 8 illustrates
the alignment operations during the computation of restruc-
tured FHT butterflies, and the combination structures of the
restructured butterfly pairs. The computations involved in a
restructured type-1 simplified FHT butterfly are

qtemp := Ci x H [q] + Si x H [s] ;
stemp := C j x H [s] + S j x H [q] ;

H [q] := H[p] - qtemp;
H [s] := H [r] + stemp;

H [r] := H[r] - sremp;

(8b)
(8c)
(W

(80
H[p] := H[p] + qtemp;

The computations involved in a restructured type-2 simplified
FHT butterfly are

qremp := H [q] ; (9a)
stemp := H [s] ; (9b)
H [q] := H [r] + stemp; (9c)
H [s] := H [r] - stemp; (9 4
H[r] := H[p] - qtemp; (9e)
H[p] := H[p] + qtemp; (90

Comparison of (8) with (3), and (9) with (4) reveals that the
proposed restructuring does not introduce any computational
overhead. The proposed restructuring has the following nice
features. The combination structures of both types of butterfly
pairs are very similar. Consider both type-1 and type-2 level4
butterfly pairs (T:, 2':) that combine to constitute the
(F T e + l , STe+l) butterfly pairs at the next level C + 1. The first
(last) two FHT points of T: followed by the first (last) two
FHT points of Tl will constitute FTe+l (STde+l) respectively,
at the next level. The only difference is the reverse allocation
of the FHT points of the (p , r) and (q , s) pairs of the second
STe+l butterfly in the H-array when (T j , T i) is a type-1
butterfly pair. Note that the proposed restructuring avoids
the scrambled combination structure between butterfly pairs
at successive levels. Furthermore, in the proposed scheme,
p , r points and q,s points of both FTe+l and STe+l will
be allocated to the consecutive locations of the H-array if
p , r points and q, s points of both T; and Ti are initially
allocated to the consecutive locations of the H-array. This
structure is valid for both types of butterfly pairs in the
proposed restructuring scheme, since (p , r) and (9, s) pairs of
FTe+l and STe+l constitute the first two and last two points,
respectively, of both types of T: and Ti butterflies. That is, if

Tle" = { i l , 21 + 1,i3,23 + 1)

= {ji ,j i + l , j 3 , j 3 + 1)

AYKANAT AND DERVIS: F'HT ALGORITHMS FOR HYPERCUBE-CONNECTED MULTICOMPUTERS 571

LEVEL0 LEVEL1 ALIGN LEVEL2 ALIGN LEVEL3 ALIGN LEVEL4 ALIGN

0

18

1

31 m

30

5

27

4

28

9

- -

23 P1
10

22

13

18

8

24

17

- -

15 P2
18

14

21

11

m
12

25

L -

7 P3
B
6

29

3

Cos(12dN) Cos(i2WN) + Sin(12dN)

I Cob(~2xlN) + Sin(prJN)

- = - - - x = 2iG:;z
VI CosWdN)

Fig. 9.
during the last two levels C = 3 and C = 4 correspond to mapping exchanges of the respective FHT points.

Computational flow graph for a 32-point restructured FHT and its tiled mapping on a two-dimensional hypercube. The nonlocal alignment operations

then we will have

Similarly, if

then we will have

This important feature of the proposed restructuring scheme
will be exploited to avoid the fragmentation of the (4, s) pairs
of type- 1 butterflies during the parallelization.

In the original FHT algorithm, 4-point butterfly computa-
tions start at level e = 1 which contains only type-2 butterflies.
Note that p , T points and q, s points of all type-2 butterflies

at level C = 1 are already allocated to the consecutive
locations of the H-array. Hence, if the proposed restructuring
is applied starting from level C = 1, then p , r points and
q,s points of all butterflies at the following levels will be
allocated to the consecutive locations of the H-array. Fig. 9
illustrates the computational flow-graph for the restructured
32-point FHT algorithm. As is seen in Fig. 9, the type-1
butterfly pair ({ 18,19,22,23}, {26,27,30,31}) at level
C = 2 constitutes the type-1 butterfly pair, ({18,19,26,27},
{23,22,31,30}) at the following level l = 3. Similarly, type-2
butterfly pair ({16,17,20,21}, {24,25,28,29}) atlevell = 2
constitutes the (type-2, type-1) butterfly pair ({ 16,17,24,25},
{20,21,28,29}) at the following level l = 3. As is also
seen in Fig. 9, the proposed restructuring does not disturb the
block structure of the original FHT algorithm. Furthermore,
the proposed restructuring brings regularity and symmetry to
the in-block allocation structure of the FHT butterflies. The
following paragraph explains the regular allocation structure
of 2e-1 = Ze+l/4 butterflies in each block at level e for
e = 1 , 2 , . . . , n - 1.

572 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 6, JUNE 1995

/* Input in bit-reversed order in HIO . . . N-I] *I
/* Output in normal order in H[O . . . N-1]
for i := 0 to N / 2 - 1 do

t e m p := H[2i + 1 ;
H[2i + 11 := H [2 4 - t emp;
H[2i] := H[2i] + t e m p ;

for i := 0 to N/2'+' - 1 do

*I

for e := I to 72 - 1 do

p2 := i x 2;+';
r 2 := p2 + 1;
qtemp := H[q2];
H q2 := H r 2 + stemp;
H s2 := H r 2 - stemp;
H r 2 := H 2 - qtemp;
H 2 := H 2 +qtemp;

for j := 1 to 2l-I - 1 do

q2 := p2 + 2 f ;
s2 := q2 + 1 ;
s temp := H [s 2] ;

p l : = p 2 + 2 x j ; qI : = P I $ 2 ; ;

t i ci
Tl :=PI f 1;

H [r l] := H [r l] - stemp;
Fig. 10. Restructured sequential (X = 2n)-point FHT algorithm.

In each block, 2'-l consecutive FHT-point pairs in the
first and second halves constitute the (p , r) and (q , s) pairs,
respectively, of the butterflies involved in that block. Con-
secutive FHT-point pairs in each half are ordered regularly
such that ith pairs in the first and second halves constitute
the (p , r) and (q , s) pairs of the same butterfly, respectively,
for i = 0 , 1 , . . . ,2'-l. The first pairs (i = 0) in each half
constitute the only type-2 butterfly involved in that block. The
following - 1 consecutive pairs (i = 1 , 2 , . . . , P-' - 1)
in each half constitute (2'-l - 1) type-1 butterflies involved
in that block. However, the last (2e-2 - 1) consecutive pairs
(i = 2e-2 + 1, . . . ,2'-' - 1) in each half hold the FHT points
of (p , r) and (q , s) pairs in the reverse order (i.e., as {r , p } and
{s, 4)). These reverse ordered (p , T) and (q , s) pairs belong to
the second type- 1 butterflies generated from type- 1 butterfly
pairs in the previous level.

For example, in a 32-point restructured FHT algorithm (see
Fig. 9), the 4-tuples {0,1,8,9} , {2,3,10, ll}, {4,5,12,13},
{ 7,6,15,14} constitute the 23-1 = 4 FHT butterflies involved
in block B! = (0 - 15) at level C = 3. Note that the first
butterfly (0, 1,8 ,9} is the only type-2 butterfly involved in
B!. Also note that (p , r) and (q , s) pairs of only the last type-1
butterfly { 7,6,15,14} are hold in reverse order in the H-array
since 23-2 - 1 = 1. As is seen in Fig. 9, this type-1 butterfly
is the second butterfly generated by the type-1 butterfly pair
({2,3,6,7} , {10,11,14,15}) in the previous level (e = 2).

Fig. 10 illustrates the pseudo-code for the restructured FHT
algorithm. Note that this algorithm has a very similar structure
compared to standard algorithm given in Fig. 5 since both
programs exploit the block structure of the FHT computations
at each level. However, the assignment statements for p , r, q, s
indexes are different due to the restructuring. Furthermore, (8)
and (9) are used instead of (3) and (4), respectively, in order
to realize the internal alignment operations for the restructured

butterfly computations. The last 2e-2 - 1 iterations of the
innermost for-loop for C 2 3 need extra attention since FHT
points of the last (ZeP2 - 1) (p, r) and (q, s) pairs of each block
are hold in reverse order in the H-array during these levels.
A careful analysis of (3) reveals the symmetry between the
computations of p and r points, and q and s points of type-1
butterflies. That is, correct values for the type-1 butterflies will
also be computed if we interchange p with r , q with s, and i
with j in (3). In this case, qtemp will hold the correct value
of stemp and vice versa. This symmetry in type-1 butterfly
computations is exploited in the restructured FHT algorithm as
follows. The first two lines in the innermost for-loop computes
the indexes of the p , r , q, s points of type-1 butterflies involved
in a particular block assuming a proper ordering of the FHT
points in (p , r) and (q , s) pairs. Hence, during the first 2e-2
iterations, p l , rl , q l , sl variables refer to the correct FHT
points p , r , q, s, respectively, in the H-array. However, during
the last 2e-2 - 1 iterations, p l , r l , q l , s l indexes refer to
r, p , s, q points, respectively, in the H-array. Thus, this scheme
implicitly achieves the interchange of p with r, and q with s.
The interchange of the Cos/Sin factors (i.e., interchange of
i and j) is also achieved implicitly during construction of
the Cos/Sin factor indgx tables prior to the execution of the
program. As is seen in Fig. 9, at level C = 4, i / j indexes of the
last 24-2 - 1 = 3 Cos/Sin factor pairs appear in reverse order
(as j / i ; 9/7,10/6,13/3). Hence, the last four statements of the
innermost for-loop effectively computes the correct values for
the s, p , r , q points of type-1 butterflies, and stores them into
H[ql], H[sl], H[pl], H[rl], respectively. Thus, the updated
values of the s , p , r, q points of type-1 butterflies are effectively
stored into their s, q , r, p locations, respectively. Hence, p and
q points of type- 1 butterflies are effectively swapped, instead
of r and s points, during these iterations.

The implementation scheme proposed in Fig. 10 modifies
the combination structure of the last 2e-2 - 1 type-1 butterfly
pairs (Tl;, 7'1:) in each block pair (Biz, Bii+l), at levels
C 2 3. We need to examine the combination structure of these
reverse butterfly pairs in order to show that the implementation
scheme in Fig. 10 does not disturb the regularity and symmetry
of the proposed restructuring. Consider the reverse type- 1
(Tl;, 7'1:) butterfly pairs, where

T1; = { i l + 1 , i l , 23 + 1,23}

TI: = {ji + 1 , j i , j 3 + l,.b}.
The algorithm in Fig. 10 effectively swaps p and q points of

reverse type- 1 butterfly pairs during the alignment operation.
Hence, reverse type- 1 butterfly pairs will have the following
allocation structure:

= {ig + 1,21,21 + 1,23}

= { j 3 + l , j i ,j i + l ,h}
in the H-array just after the alignment operations. Thus,
according to Theorem 1, type-1 (F T l e + l , STle+l) pairs
generated by the reverse type-1 butterfly pairs will have the
following structure:

R l e + i = {p;,s;,p:,s:} = (23 + 1,23,j3 + l , j 3 }
0 0 1 1 STle+l = { T e , q e , r e , q e) = (21,il + l , j l , j l+ 1)

AYKANAT AND DERVIS: FHT ALGORITHMS FOR HYPERCUBE-CONNECTED MULTICOMPUTERS

-

573

in the H-array. For example, type-1 ({7,6,15,14},
{23,22,31,30}) butterfly pair at level e = 3 constitutes
the type-1 ({15,14,31,30}, {6,7,22,23}) butterfly pair at
the next level e = 4. It is clear that (STle+l, F T l e + l) butterfly
pairs generated during the last 2e-2 - 1 iterations will have
the same spatial structure compared to the (FTle+l, STle+l)
butterfly pairs generated during the first 2e-2 iterations
of the innermost for-loop. Hence, the scheme proposed in
Fig. 10 maintains the regular and symmetrical features of the
restructured FHT algorithm without disturbing the simplicity
and regularity of programming.

As is seen in Fig. 9, the order of the output results is
scrambled in the proposed restructured FHT algorithm. How-
ever, in most of the DSP applications a sequence of DSP
blocks are applied consecutively on a set of input data. A
proper outputhnput interface between successive DSP blocks
can always be maintained, if the output or input data order of
a particular DSP block is disturbed for the sake of efficiency.
Hence, the order of input and output data of individual
DSP blocks does not bring any inefficiency to the overall
application.

B. Dynamic Mapping

Consider the performance of the tiled mapping scheme for
the parallelization of the restructured FHT algorithm. The
intemal alignment operations for the restructured butterflies
will correspond to simple local swap operations during the first
n - d levels since the tiled mapping prevents the fragmentation
of butterflies during these levels. However, these alignment
operations will necessitate mapping exchange communications
after the second stage computations of the last d levels because
of the fragmentation of butterflies during these levels. The non-
local alignment operations performed at the end of each level e,
for e = n - d, . . . , n - 2 , confine the FHT butterflies of the next
level (l+l) to one-dimensional subcubes over channel c = e -
nfdf l . The d-bit binary representations of the two processors
in each subcube differ only in their cth bit such that this bit is
“0” and “1” in the first and second processors of the subcube,
respectively. The fragmentation of FHT butterflies across these
subcubes is such that first and second processors in each
subcube hold and are responsible for computing M/2 (p , ~)
and (q , s) pairs, respectively, of the M butterflies confined to
that subcube. Hence, each level t? of the last d levels require
two concurrent single-hop exchange communications both
over channel c = e - n+ d. The first concurrent exchange com-
munication, of volume M FHT points, is due to the p H q and
T H s interactions. The second concurrent exchange commu-
nication, of volume M/2 FHT points, is a mapping exchange
operation due to the nonlocal alignment operations. Thus, the
proposed restructuring reduces the number and volume of
concurrent communications to 2d and 3dM/2 FHT points,
respectively. Although this scheme achieves perfect load bal-
ance for the basic butterfly scheme it doesn’t achieve perfect
load balance for the simplified butterfly scheme because of the
fragmentation of butterflies during the last d levels.

In this section, we propose a dynamic mapping scheme
for the restructured FHT algorithm which prevents the

fragmentation of FHT butterflies. Starting with the initial
tiled mapping, alignment operations in the restructured FHT
algorithm do not fragment the butterflies during the first n - d
levels, and confines the butterflies to 1 -dimensional subcubes
during the last d levels. The first and second processors in each
subcube hold (p , T) and (q, s) pairs of the butterflies confined
to that subcube. In the proposed scheme, at the beginning
of each level e during the last d levels, first and second
processors in each subcube exchange the appropriate halves
of their local (p , T) and (4 , s) pairs, respectively, such that
each processor gathers M/4 unfragmented butterflies. This
exchange communication is a mapping exchange operation
which effectively exchanges the responsibility of further
computations associated with those exchanged FHT points.
The M / 2 butterflies fragmented across the two processors of
each subcube are evenly divided between these two processors
after the mapping exchange communication. Hence, this
scheme achieves perfect load balance both for the basic and
simplified butterfly schemes, since it gathers and assigns
equal number of unfragmented butterflies to each processor at
each level. These mapping exchange operations are the only
communication requirement of the proposed scheme since they
gather and assign unfragmented butterflies to all processors at
each level of the last d levels. Hence, in this scheme, each level
t? of the last d levels require only one concurrent single-hop
exchange communication, of volume M / 2 FHT points, over
channel c = C - n + d. Thus, the proposed scheme reduces the
number and volume of concurrent communications to d and
d M / 2 FHT points, respectively. In this scheme, the alignment
operations associated with the restructured FHT butterflies
remain as simple local swaps during the last d levels. These
local alignment operations maintain the regularity of local
FHT computations, enable in-place local computations and
communications.

Fig. 11 illustrates the proposed dynamic mapping scheme
for a 32-point restructured FHT on a two-dimensional hyper-
cube. Fig. 12 illustrates the pseudo-code for the node program
of the proposed parallel FHT algorithm. The pseudo-code is
given only for the last d levels, since the pseudo-code for the
node program is very similar to the restructured sequential
FHT algorithm (Fig. 10) for the first (n - d) levels. As is
seen in Fig. 11, the computational flow graphs for the local
FHT computations performed by processors during the first
(n - d) levels are exactly same as the computational flow graph
for the M-point FHT algorithm. That is, P processors can
be considered as concurrently computing P independent M-
point FHT (using proper Cos/Sin factors for the N-point FHT)
during the first n-d levels, Hence, the pseudo-code of the node
program for the first n - d levels of the parallel algorithm can
easily be obtained by replacing variables N and n in Fig. 10
with M and m = lg,M, respectively.

In the first inner if-then-else statement of Fig. 12, each
processor identifies itself either as the first or the second
processor in the respective one-dimensional subcube by simply
checking the cth bit of its processor index. Here, mynode is
assumed to be a &bit binary number representing the index of
the respective processor. The variable c denotes the channel
over which the mapping exchange operation is to be performed

514 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 6, JUNE 1995

C W W) W $ W h M) ==ma i I -
$1 COuLrM) I c o s (j 2 u N) + s l ~)

Fig. 1 1 . Dynamic mapping of a 32-point restructured FHT on a two-dimensional hypercube.

at that level. Then, each first processor exchanges the second
half of its local H-array with the first half of the local H-array
of the respective second processor, and vice-versa. Hence,
first processors effectively exchange their local M/4 (p, r)
pairs with the local M/4 (q, s) pairs of the respective second
processors, and vice-versa. The p r and qs indexes used inside
the first ij-then-else statement identify the nature of the FHT
points being sent and received.

The proposed parallel FHT algorithm does not necessitate
any extra send or receive buffers. All communications are
initiated frodinto contiguous locations of the local H arrays
thus avoiding any scattedgather type of local operations for
communications. Note that first and second processors at a
particular level use the second and first halves of their local H-
arrays, respectively, as contiguous send and receive buffers for
the exchange communication operations. Hence, the proposed
scheme has a very regular in-place communication structure.
In Fig. 12, send and recv denote synchronous (blocking) send
and receive primitives. Synchronous sendreceive operations
are used to prevent the contamination of the message to be
sent with the incoming message since the same half of the
local H-array is used both as send and receive buffers at a
particular level.

Fig. 13 illustrates the computation and communication struc-
ture of the proposed parallel algorithm for a 32-point FHT
on a three-dimensional hypercube. First level L = 0 is not
shown in Fig. 13 since it neither involves communications
nor local alignment operations. Circles indicate processors and
numbers inside the circles indicate the indexes of the respec-
tive processors. Each processor is associated with two lists (of
length M = 4) at each level. Upper and lower lists denote the
order of the local FHT points before and after the restructured
butterfly computations, respectively. Wide and narrow crosses
in this figure represent the local alignment operations for type-
1 and type-2 restructured butterflies, respectively. Solid lines
represent the communication links over which the concurrent
mapping exchange communication occurs at a particular level.
Processor pairs connected with solid lines represent the 1-
dimensional subcubes discussed earlier. The sublists (of length
2) at the tails of arrows represent the FHT points transmit-
ted in the respective directions during a particular concurrent
exchange communication.

At the beginning of each level during the last d levels, the ith
local FHT-point pairs in the first and second processors of each
one-dimensional subcube correspond to the (p, r) and (q , 3)
pairs of the same butterfly, for i = 0,1, . . . , M / 2 - 1. Hence,

AYKANAT AND DERVIS: FHT ALGORITHMS FOR HYPERCUBE-CONNECTED MULTICOMPUTERS 575

I* Computations over the last d bits *I
I* d concurrent exchange communication phase *I
I* H : a real array of size M = N / P *I

for e:= n - d to n - 1 do
c := e - (n - d) ;
dnode := mynode 2";

if (cth bit of mynode is 0) then

else

sendfrom(H r : p r = M / 2 , M - 1) to dnode;
recv into (H k s / : q s = M / 2 , M-1)from dnode;

send from (H qs : qs =0 , M / 2 - 1) to dnode;
recv into (H L A : p r =0, M / 2 - 1) from dnode;

if (mynode mod 2"+' =0) then do
p 2 : = 0 ; r 2 = 1 ;
q2 := M / 2 ;
qtemp := H[q2];

s2 = q2 + 1 ;
s temp := H[s2]

else
p l := 0; r l = 1 ;
ql := M / 2 ; sl = ql + 1 ;
qtemp := C f a c l x H ql + S f a c l x H s l ;
s temp := C f a c 2 x H [s l] + S f a c 2 x H l q l] ;

H [r l] := H [r l] - stemp;

for i:= 1 to M / 4 - 1 do
p l := 2 x i;
ql := p l + M / 2 ;
qtemp := C f a c l x H q l + S f a c l x H s l ;
s t e m p : = C f a c 2 x H [s l] + S f a c 2 x H l q l] ;

r l := p l + 1 ;
s l := ql + 1 ;

Fig. 12. Parallel (N = 2")-point restructured FHT algorithm with dynamic
mapping for a d-dimensional hypercube with P = 2d processors (last d
levels).

after the mapping exchange communication, the ith FHT-
point pairs in the first and second halves of each processor
correspond to the same butterfly, for i = 0,1, M / 4 - 1 .
Thus, as is also seen in Fig. 12, each processor performs
simpZ$ed FHT butterfly computations on local (p , r) and (q l s)
pairs separated by M / 2 = N/2P. The proposed parallel FHT
algorithm has a very regular in-pZace computational structure
and hence can also be implemented on SIMD type hypercubes
efficiently.

Although butterflies are partitioned evenly among
processors throughout the algorithm, the type of butterflies
the processors compute during the last d levels, are not.
FHT block sizes increase as 2 , 4 , . . . , 2 " - d during the
first n - d levels. Thus, each processor computes equal
number of FHT blocks during the first n - d levels, since
tiled mapping assigns consecutive M = N / P = 2"-d
FHT points in blocks to processors. Recall that each FHT
block at a particular level C 2 1 contains one type-2
and 2l-l - 1 type-1 butterflies Hence, type-1 and type-2
butterflies are partitioned evenly among processors at each
level C = 1, n - d - 1. That is, each processor computes

Fig. 13. Computation and communication structure of the proposed parallel
algorithm for a 32-point FHT on a three-dimensional hypercube (first level
0 = 0 is not shown).

M / 2 2-point butterflies, M/2e+1 type-2 butterflies, and
M/4 - M/2e+1 type-1 butterflies during the first n - d
levels. Hence, there is no deviation from the perfect load
balance during the first n - d levels. However, the number
of type-2 butterflies is P / 2 at level f2 = n - d, decreases
by one half during the following d - 1 levels, and reduces
to 1 at the last level. Hence, even distribution of type-2
butterflies is not possible during the last d levels.
After the mapping exchange operation at each
level f2 of the last d levels, the first butterfly
of M / 4 butterflies in each processor is a type-2
butterfly if least significant c + 1 bits of the processor
are all O's, where c = f2 - n + d. Otherwise, it is a type-1
butterfly as well as the remaining M/4 - 1 butterflies. So, at
each level C of the last d levels, P/2'+' processors compute
one type-2 and M / 4 - 1 type-1 butterflies, while the others
compute M / 4 type-1 butterflies, where c = C - n + d. As

TABLE I
PARALLEL EXECUTION TIMES (IN ms) OF LINT AND THE PROPOSED

(Our) PARALLEL ALGORITHMS FOR VARIOUS SEE FHT’s ON 3 AND 4
DIMENSIONAL HYPERCUBES DURING THE d EXCHANGE COMMUNICATION PHASE

n I P = 8 P = 16
Exec. time

is seen in Fig. 12, this difference in local computations is
resolved simply by the second if-hen-else statement.

The parallel execution time of the proposed FHT algorithm
can be modeled as

where t,, is the message startup time overhead and ttr is
the time taken for the transmission of a floating-point word
(4 bytes). The first and second terms in (10) represent the
parallel execution times of the first n - d and last d levels,
respectively. Note that bottleneck processors which compute
only type-1 butterflies during the last d levels determine the
parallel execution times of these levels. In the first term, TGpd
represents the sequential execution time of the first n - d
levels. The expression for TEsd can be derived by using (5)
as follows:

n-d-1 7L-d-1

N
= (2.5N1g2p - 4.5N + 6 P

Substituting (1 1) into (10) we obtain

Comparing the first term of (12) with the expression given
for the overall sequential execution time Tseq in (7), we can
rewrite (12) as

The first two terms in (13) represent the parallel execution time
under perfect load balance conditions. The last term in (13)
represents the slight deviation from the perfect IQ@ balaace as
a parallel computational overhead term. .This o W b d , which
is always smaller than the machine specific cbnstant .6tcalc,
can be neglected for sufficiently large N I P values.

IV. EXPERIMENTAL RESULTS
All programs introduced in this work (Figs. 5, 10, and

12) are coded in C language and run on an Intel’s iPSC/2
hypercube with 32 processors for various N = 2” data sizes,
128 5 N 5 64 K. The performance of the original and
the restructured sequential FHT algorithms (Figs. 5 and 10,
respectively) are observed to be the same, as is expected.
Parallel FHT algorithm with static tiled mapping is not im-
plemented for reasons of losing load balance, high number
and volume of communications as well as multihop commu-
nications. The coarse grain extension of Hou’s algorithm is
also not implemented for similar reasons; losing load balance,
large number and volume of concurrent communications.
The performance of the proposed parallel restructured FHT
algorithm with dynamic mapping (Fig. 12) is evaluated in
comparison with Lin’s [SI algorithm. Table I illustrates the
parallel performance comparison of Lin’s and the proposed
algorithms. As is described earlier, the parallel computational
performance of Lin’s algorithm reduces to that of the basic
butterfly scheme. Recall that tbasic/tsimp = 1.6 where tbasic
and tsimp denote the computational complexity of type- 1 basic
and simplified butterflies, respectively. As is seen in Table I,
the experimental performance ratio of the proposed algorithm
to Lin’s algorithm approaches to this ratio with increasing
FHT size. Larger communication volume overhead of Lin’s
algorithm does not introduce significant decrease in its relative
performance on iPSC/2 compared to the proposed algorithm
because of the small ttr/tcalc x 0.25 value. Furthermore,
index computation overhead of Lin’s algorithm is less than that
of the proposed algorithm (two versus four per butterfly). The
experimental performance ratio values do not exceed the value
1.6 because of the above mentioned reasons. However, the
relative performance of the proposed algorithm compared to
Lin’s algorithm is expected to be much higher on hypercubes
with larger ttr/tcalc values. The relative performance is also
expected to increase with increasing hypercube dimension
since Lin’ s algorithm introduces congestion during the last
d-2 levels of the d concurrent exchange communication phase
due to the multihop messages during these levels.

Fig. 14 displays the speed-up and efficiency curves for the
proposed parallel FHT algorithm. As is seen in Fig. 14, nearly
linear speed-up is achieved for large N . As is also seen
in Fig. 14, efficiency remains over 85% when NIP 2 512
FHT points are mapped to an individual processor of the
hypercube. Relatively small efficiency values for small size
problems on large dimensional hypercubes are due to the high
communication latency (tsU >> tcalc) value of the iPSC/2
architecture.

V. CONCLUSION

The fast Hartley transform which is a promising alternative
to the fast Fourier transform is parallelized for hypercube-
connected multicomputers. The proposed restructured sequen-
tial FHT algorithm Mags f-egularity and symmetry to the
computation of FHT. The p m s e d parallel FHT algorithm
which exploits this Testruchuing and uses the dynamic map-
ping scheme achieves both perfect load-balance and nearest-

576 IfiEE TRANSACTlONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 6. JUNE 1995

AYKANAT AND DERVIS: FHT ALGORITHMS FOR HYPERCUBE-CONNECTED MULTICOMPUTERS 577

32

28

24

20
n
?
(U 16

cn

V

8
12

8

4

0
0 8 16 24 32

Number of Processors (P)

C

I I I I I l l l l I I I l l l l 9 6 3 1 0‘
Data Size (N)

(b)

Fig. 14.
FHT algorithm.

(a) Speed-up and (b) efficiency curves for the proposed parallel

neighbor communications, requires only d concurrent ex-
change communications by eliminating fragmentary message
passing, and has a concurrent communication volume of N / 2 P
FHT points per exchange step. The proposed parallel algorithm
also achieves in-place computation and communication. The
proposed parallel FHT algorithm is implemented on an Intel’s
iPSC/2 hypercube multicomputer with 32 processors. High-
efficiency values are obtained even for small size problems.

REFERENCES

[l] R. N. Bracewell, “The fast Hartley transform,” Proc. ZEEE, vol. 72,
Aug. 1984.

[2] 0. Buneman, “Conversion of m ’ s to fast Hartley transforms,” SIAM
J. Sci. Stat. Comput., vol. 7, no. 2, pp. 624638, Apr. 1986.

[3] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calcula-
tion of complex Fourier series,” Math. Comput., vol. 19, pp. 297-301,
Apr. 1965.

[4] R. V. L. Hartley, “A more symmetrical Fourier analysis applied to
transmission problems,” Proc. IRE, vol. 30, pp. 1 6 1 5 0 , Mar. 1942.

[5] H. S. Hou, “The fast Hartley transform algorithm,” IEEE Trans. Com-
put., vol. C-36, pp. 147-156, Feb. 1987.

[6] -, “Hypercube architecture for singular value decomposition and
other fast transforms,” in Proc. SPZE’s Symp. Advances in Intelligent
Robot. Syst., Cambridge, MA, 1987, paper 848-84.

[7] T. Le-Ngoc and M. Tue Vo, “Implementation and performance of the
fast Hartley transform,” IEEE Micro, pp. 20-27, Oct. 1989.

[8] X. Lin, T. F. Chan, and W. J. Karplus, “”he fast Hartley transform on the
hypercube multiprocessors,” in Proc. 3rd Conf: Hypercube Concurrent
Comput. and Appl., Pasadena, C A Assoc. Comput. Machinery, Jan.
1988, vol. I, pp. 1451-1454.

[9] H. V. Sorensen, D. L. Jones, C. S. Burrus, and M. T. Heideman, “On
computing the discrete Hartley transform,” IEEE Trans. Acoust., Speech,
Signal Processing, vol. ASSP-33, pp. 1231-1238, Oct. 1985.

[lo] J. D. Villasenor and R. N. Bracewell, “Vector Hartley transform,”
Electron. Lett., vol. 25, no. 17, pp. 1110-1111, Aug. 17, 1989.

Cevdet Aykanat received the B.S. and M.S. degrees
from the Middle East Technical University, Ankara,
Turkey, and the Ph.D. degree from the Ohio State
University, Columbus, all in electrical engineering.

He was a Fullbright scholar during his Ph.D. stud-
ies. He worked at the Intel Supercomputer Systems
Division, Beaverton, as a research associate. Since
October 1988 he has been with the Department of
Computer Engineering and Information Sciences,
Bilkent University, Ankara, Turkey, where he is cur-
rently an associate professor. His research interests

include parallel computer architectures, parallel algorithms, applied parallel
computing, neural network algorithms, and fault-tolerant computing.

Argun Dervis received the B.S. degree in elec-
trical engineering from the Middle East Technical
University, Ankara, Turkey, and the M.S. degree
in computer science from the Bilkent University,
Ankara, in 1989 and 1992, respectively.

He is currently working as a software engineer in
the digital signal processing group involving elec-
tronic warfare applications in ASELSAN Military
Electronics, Ankara. His current research interests
are in parallel processing and digital signal process-
ing for embedded applications.

