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Signal Recovery from Wavelet Transform Maxima 

A. Enis Cetin and Rashid Ansari 

Abstract-This paper presents an iterative algorithm for signal recov- 
ery from discrete-time wavelet transform maxima. The signal recovery 
algorithm is developed by using the method of projections onto convex 
sets. Convergence of the algorithm is assured. 

I. INTRODUCTION 

Multiresolution representation of signals finds applications in sev- 
eral fields including computer vision, image processing, and geo- 
physics. Recently, it is shown in [ l ]  that the wavelet orthonormal 
bases [2]-[6] serve to provide a useful multiresolution signal repre- 
sentation, and some applications of the Wavelet Transform (WT) to 
signal and image analysis are presented. In [5], [6] i t  is observed 
that the local maxima of the absolute value (henceforth referred to as 
absolute maxima) of the WT of a signal help detect sharp variations 
in the signal, and an iterative signal recovery algorithm is developed 
from this information. However, the proof of convergence is not 
established and it is posed as an open problem. 

This note presents an iterative algorithm for signal recovery from 
Discrete-time WT (DWT) absolute maxima. The new signal recovery 
algorithm is developed by using the method of the Projections 
onto Convex Sets (POCS) [7]. The key contribution here is that 
sets which are different from those used in [5], [6] are defined to 
represent the available information. The nature of these sets leads 
to establishing the convergence of the new algorithm for recovery 
problems that involve either 1) all absolute extrema, 2) absolute 
maxima, 3) extrema, or 4) maxima, of the DWT. 

11. WAVELET TRANSFORM AND THE SIGNAL RECOVERY PROBLEM 

In this section, the signal recovery problem is presented. 
Let t.1 be a wavelet and o be the corresponding smoothing function 

[l]. Let {d[n].11 E Z} be a discrete-time signal that is to be 
recovered. It is assumed that d [ n ]  is acquired from a function 
f E L ( R )  such that d[n] = S ~ f ( . r ) l ~ = ~ ~  for all 11 E 2 where 
S l f ( . r )  = f * o(.r). Altemately, by using a Lemma of [ l ] ,  the 
existence of such a function f E L 2 ( R )  can be assumed. The 
sequence d[n] is therefore a uniformly sampled version of the function 
f smoothed at resolution scale 2' using the terminology of WT 
representation. The sequence {S l f ( . r ) lL=,L}  is denoted by S f f [u ] .  
For a class of wavelets the following set of 

{{s;,f[71].11 E Z}; {l.r;:f[n].1r E Z . l =  1 . 2 . . " . L ) )  (1) 

where II$f[ir] = f (s)  * 2 - ' L , ( 2 - ' . r ) l J - r t  is called the Discrete- 
time wavelet transform (DWT) of 4711. The recursive computation 
of the DWT of d [ n ]  is now described. The sequences S; , f[n]  and 
Ir;;f[ir] are obtained from S;6f[n] by convolving S$ii[~i] with 
digital filters h and g [4], respectively, i.e., I17i / f [n]  = (Sff * q ) [ n ]  
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and S; ' l f [ r~]  = (Sff * h)[) i ]  where the filters h and y are related to 
the wavelet c '  and the smoothing function o [l]. In general, 

(2) I i$+,f[l /]  = CSl:f * g r ) [ n ]  

s;'l+lf[l/] = * hl)[I/] ( 3 )  

and 

where the digital filters g' and hr are obtained by inserting 2'- 1 zeros 
between each coefficients of the filters y and 11. respectively. This 
implies that H I ( - )  = H ( 2 ' & ' )  and Gl (d )  = G(2 ' j ) .  In this way the 
DWT {{S;Lf[~t]): {1i7;;f[n]./ = 1 .2  :... L } }  are obtained from 
d[n] in a tree-like structure. 

An absolute maximum of the discrete-time signal Ti:,'( f is defined 
as any sample lt:fLf[n] satisfying the conditions (i) lI,I;:f[n]l 2 
l I i ~ ~ , f [ i z - l ] l  and (ii) l l i ~ ~ f f [ ~ l ] l  2 [ll-;'(f[n+l]l. with the following 
qualifiers. If i) is satisfied with equality, then ii) should be satisfied 
with strict inequality along with the restriction that I l~$f [ i i  - 111 > 
IIT:tLf[n - 211. On the other hand if ii) is satisfied with equality, then 
i )  should be satisfied with strict inequality along with the restriction 
that ll,i7i,f[ii + 111 > Ill-;!f[tr + 211. The DWT absolute maxima 
representation of a signal r l [ r i ]  is defined [5] as the absolute maxima 
of Il,, f .  1 = 1 .2 . .  . . . L.  and the samples of the signal Si, f .  The 
signal recovery problem is the reconstruction of d [ n ]  from its DWT 
absolute maxima representation. 

111. ITERATIVE SIGNAL RECOVERY ALGORITHM 

This section describes the new signal recovery algorithm which is 
devised by using the method of projections onto convex sets (POCS) 

The method of POCS has been successfully used in many signal 
recovery and restoration problems [X I .  The key idea is to obtain a 
solution which is consistent with all the available information. In this 
method, the set of all possible signals is assumed to be a Hilbert 
space with an associated norm (in this note the Hilbert space is ( 2  

with Euclidian norm). All (I priori information about the desired 
signal is modeled as convex sets, if possible. Let us suppose that 
the information about the desired signal is associated with -11 sets, 
C,,, . T U  = 1.2 . '  . . . 11. Since, the desired signal satisfies all of the 
constraints it must be in the intersection set C, = n%f,,C,,,. Any 
member of the set C,, is called a feasible solution [SI. If all of the 
sets C,,, are closed and convex then a feasible solution can be found 
by making successive orthogonal projections onto sets, C,,, . Let P,,, 
be the orthogonal projection operator onto the set C,,, . The iterates, 
! ~ A + I  = PI Pr . . . PJI  yr .  li = 0. 1.. . . converge to a member of the 
set C,]. regardless of the initial signal y o .  If the solution is unique 
and C,,, . t i i  = 1.2.  . . . . JI, uniquely characterize the solution, then 
Cc, contains a single element (the solution) and the iterates converge 
to this element. 

Let l17i'lf[//r,]k/ = 1 .2  :... I</ be the DWT absolute maxima 
of the signal d [ n ]  at resolution scale 2'. Corresponding to each 
sample l17;',f[11~,] a set C,, I l  is defined in ( 2 .  The set C21,Ll.(kc = 
1.2. .  . . .I<(: 1 = 1.2. .  . . . L )  is the set of discrete-time signals 
y E ( 2  which have the DWT absolute maximum I ITi l f [ / i r , ]  at the 
resolution scale 2'. i.e., 

~71. 

C,l,I, = {!/: ( ! I  * ' d [ l i I , ]  = ll-;l,f[lrI,]}. 
( k l  = 1.2 :" .1~ ' :1=  1 . 2 . ' " . L )  (4) 

where the digital filter '(1 is the inverse Fourier transform (FT) of 
' Q d )  = G(2'-1-') x r I - 2  ,="H(2 '&, ) .  for 1 > 1. and ' G ( 2 )  = G ( L ) .  
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The filter ' g  is obtained by noting that W $ f [ n ]  is recursively 
constructed from d [ n ]  in 1 stages. In the first stage, Si l  f [ n ]  is obtained 
by convolving d[n]  with h. In the second stage W $ f [ n ] ( S $ f [ n ] )  
is obtained by convolving S,d,f[n] with gz(hz ) ,  and so on. 

Let yl and y2 be any arbitrary members of C 2 ~ , k I .  The convex 
combination, y t  = t y l  + (1 - t ) y 2 . 0  < t < 1 ,  of y1 and y2 satisfies 
(yt * ' g ) [nk , ]  = M $ f [ n k , ]  which means that y t  E C,I k l ,  too. 
Therefore the set C,I l i l  is convex. The closure of C21 k l  can be 
established as in [7]. 

For any given sample M$f[n,] of the signal Vfy l f  a set CI 
is defined as in (4), i.e., 

The set C I , ~ ,  is also closed and convex in ( 2 .  Therefore we can 
associate convex sets with the minima of the signals r;l',"lf,Z = 
1,2,... . L ,  as well. 

Similarly, corresponding to the sample s,d,f[n,,] of the signal 
S iL  f. Cs,,,,, ( m ~  = 1 , 2 , .  . . , ML) is defined as the set of discrete- 
time signals y E &* which have the sample value S ,dL f [nmL]  at 
resolution 2 L ,  i.e., 

where the filter L h  is defined as the inverse FT of L H ( - . )  = 

For any given WT absolute maximum i$;dlf[nk,] one can define 
a set which assures local maximality as well. Let C; k l  = {y: ( y  * 

W ,  f [ n k , ] }  with qualifiers similar to those mentioned in Section 11. 
The sets C; k l  and CZ;,kl assure the local maximality of the value 
M'$ f [ n k [ ]  Actually, one can combine them and define a new set 

rI;=i1 H ( 2 ' 3 ) .  

' g ) [nk [  + l ]  5 W,dlf [nk[ l> and C G , k l  = {y: (y * ' g ) [ n k i  - l1 5 

C;[,k, = {Y: (Y  * ' g ) [nk [  * 1 )  5 ~ ~ * ~ l f [ j l k ~ ] > ~  (7) 

All of the sets C;,,, , Cz;,.kl and C;, are closed and convex in J z .  
Another convex set which can be used in the recovery algorithm 

is the bounded energy set, C, = {y: IIyll; 5 E " }  which is the set of 
sequences whose energy is bounded by eo [9], [lo]. 

The proofs of closure and convexity of the above sets are omitted 
in this short paper. 

The key operation of the method of POCS is the orthogonal 
projection onto a convex set. The projection, yp. of any sequence 
yo E 0 2  onto the set, Cz[ ,k l ,  is the solution of the following 
constrained minimization problem 

min IIY - ~ ~ 1 1 2 ,  subject to (Y * 'g)[nn,I = I l $ f [ n k , ] .  (8) 

We obtain the solution of (8) by assuming that the filters h and g are 
FIR filters (therefore the filters 'g,1 = 1 , 2 , .  . . , L and h are FIR 
filters as well). The projection vector y, = {yp[n]) is given by 

k 

= -p ,  - p  + 1.. ' . , 0 ,  1 ,2 ," .  . q  (9) 

where we assumed that yo is a finite-extent sequence with p + q + 1 
possibly nonzero samples. Solution for IIR filters and infinite-extent 
sequences can also be obtained. In practice mostly FIR filters are 

used and the signals that we consider are finite-extent sequences or 
images [5], [6]. 

The projection y, of any sequence yo E [*(yo E CS., , ,~),  onto 
the set CS m L  can be obtained in a similar manner. The projection 
vector y, = { y p [ n ] }  is given by 

= - p . - p +  1 . ~ " . 0 . 1 . 2 . ~  " . q .  (10) 

Let us describe the signal recovery algorithm from WT maxima. 
The algorithm starts with an arbitrary initial estimate yo E 1' which 
is successively projected onto the sets C,I , k l .  k ,  = 1,2,. . . , I<', 1 = 
1 , 2 .  . . . , L. and CS,", L .  m L = 1.2. . . - . ni L by using (9) and (10). If 
the energy information is wished to be used then the current iterate is 
projected onto the set C, , too. The order of projections is immaterial. 
In this manner the first iteration cycle is completed and the first iterate 
y1 is obtained. The procedure is repeated until a satisfactory level of 
error difference in successive iterations is obtained. 

If the WT minima information is available, then this information 
can also be used in the signal recovery algorithm because convex sets 
can be associated with the WT minima. 

A simulation example is now described to show 
the use of the algorithm. Consider the cubic spline 
wavelet cl, [ 5 ]  and the corresponding filters { h [ n ] )  = 
{... ,0.0.625.0.25,0.375.0.25.0.0625.0:), and { g [ n ] >  = 
{... . -0.00008,0.0164.0.10872.0.59261.0.0.59261,0.108~2, 
0.0164,0.00008,~ . .> described in [5]. The digital filter 
h [ n ]  is an FIR filter and the coefficients of g[n]  decay 
exponentially (for all practical purposes g[n] can be arbitrarily 
closely approximated by an FIR filter). Let {d[n]> = 
{. . . , 0 ,  100,100,200,200.175,150.125.100,100,0,~ . .} be 
the test signal. The coarse signal S $ f ,  and the signals bi$ f and 
Vl;d,f are determined in order to generate the data for testing the 
algorithm. The signal recovery problem is the reconstruction of 
the signal d [ n ]  from S $ f .  and the absolute maxima of the signals 
I$;d,f and It7il,4f. An all zero sequence is selected as the initial 
estimate for the iterative algorithm, the choice for the initial estimate 
being arbitrary. In each iteration cycle, successive orthogonal 
projections onto the sets C, I ,~ , .  k l  = 1 . 2 , 3 ,  C 2 2 , k Z ,  k 2  = 1,2,  and 
C ' ~ . , ~ ~ m z  = 1 . 2  :".22 are performed using (9) and (10). The 
percent error 100 x (lyl; - d ~ ~ 2 / \ \ d ~ ~ z  where ~k is the kth iterate 
versus the number of iteration cycles is shown in Fig. 1. Clearly, we 
recover the original signal with negligible error. 

In all the examples tried, a consistent behavior of the algorithm 
was observed. 

The procedure can also be the basis of a scheme for information 
storage using the DWT maxima representation described earlier. In 
such a scheme the DWT maxima can be readily used for feature 
analysis, and when necessary, the signal information can be at least 
partially recovered using the iterative algorithm. With some variation 
the iterative algorithm is applicable to the cases that involve either 1) 
all absolute extrema, 2) absolute maxima, 3) extrema, or 4) maxima, 
of the DWT. Recently we became aware of two recent reports [ l  11, 
[ 121 by Mallat er al. In these reports, a convergent iterative algorithm 
using different convex sets is developed for signal recovery from 
Continuous-time WT (CWT) maxima. 

It was shown [12]-[I41 that the local WT maxima do not uniquely 
characterize an arbitrary signal. However, it was experimentally 
observed in [ 121 that for most practical signals WT maxima provide a 
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Fig. 1. Percent error versus the number of iterations cycles. 

good representation of the original signal. We verified this observation 
in this paper. If there are multiple solutions of the signal recovery 
problem then our algorithm converges to one of the solutions because 
every solution is a member of the intersection set, CO,  as described 
in the beginning of this section. 

The signal recovery technique can also be extended to multidi- 
mensional wavelets. 
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Inverting Periodic Filters 

Ching-An Lin and Chwan-Wen King 

Abstract-We consider linear periodic filters. We give simple necessary 
and sufficient conditions for the filter to he invertible and a simple 
formula to compute its inverse. If the filter is not invertible, we propose 
a method to compute its optimal approximate inverse. An illustrative 
example is given. 

I. INTRODUCTION 

Periodic filters have been found useful in speech scrambling [3], in 
filtering of cyclostationary signals [ 1 J, and in decimator-interpolator 
filter design to reduce the required computations 171. The inverse or 
an “approximate inverse” of a periodic filter is required to recover the 
scrambled signal [3]. Inverting a class of periodic filters is discussed 
in [IO].  

We study the problem of finding the inverse or an approximate in- 
verse of a linear periodic filter. We use the state equation description. 
We give necessary and sufficient conditions for the existence of the 
inverse, and we give a simple formula to compute it as a periodic 
filter with the same period. In case the inverse does not exist, i.e., 
in not implementable as a causal filter, we propose a method to find 
an approximate inverse which has a property that, when it cascades 
with the original periodic filter, the overall cascade connection is a 
pure delay of minimal possible length. 

In our analysis, a single-input single-output (SISO) AT-periodic 
digital filter is represented as an -Y x S proper rational matrix in : 
with strictly proper upper off-diagonal entries, as discussed in [5] and 
[8J. This model corresponds to the block signal processing structure 
[9, ch. 101. This representation yields considerable simplification in 
analysis. 

In Section 11, we state precisely the problem under consideration 
and the transfer matrix representation for periodic filters. In Section 
111, we derive the necessary and sufficient condition for the existence 
of the inverse and a simple formula for computing it. A method of 
finding the optimal approximate inverse is proposed in Section IV. 
An illustrative example is given in Section V. Section VI is a brief 
conclusion. 
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