IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 5, MAY 1998 1443

different. The average run time (for the minimization of the objective REFERENCES
function) was reduced to 4.2 s using the MUSIC initial estimates. Thc[al] K. M. Wong, J. P. Reilly, O. Wu, and S. Qia8ZEE Trans. Acoust
numerical experiment was performed under the following conditionst Speech, Sig’nal Processiyr‘\g)l. 40, p 2007, 1092EEE Trans. Acoust.:
1) The array is linear with an intersensor spacingc'nh electrical Speech, Signal Processingpl. 40, p. 2018, 1992.
units (i.e., wavelengths). [2] A.J. Willis and R. De Mello KochElectron. Lett.yol. 28, p. 358, 1992.
2) The array consists of eight sensors. Two targets of equem S. Haykin, Adaptive Filter Theory Englewood Cliffs, NJ: Prentice-

strength are placed at45 from broadside Hall, 1986.
. . : . [4] S.S. ReddiJEEE Trans. Aerosp. Electon. Systol. AES-15, p. 1, 1979.
3) The noisev(n) is a zero mean complex Gaussian such that[5] R. O. Schmidt,IEEE Trans. Antennas Propagatpl. AP-34, p. 276,

E[UUL)'UJr(TI'L)] = 8noll. 1986.
4) It is clear that for the signal vectougn ), the following holds:  [6] ’;46 |1 Sziéognkv Radar Handbook. New York: McGraw-Hill, 1970, pp.
T () at _ 5 2 1-26-9.
E[?(n)a (m).] 6".”10.3[' ) [7] H. L. Van Trees,Detection, Estimation and Modulation Theory Part I.
The signal-to-noise ratio is thus given BYlog(s./0,.). For a New York: Wiley, 1968.

given signal-to-noise ratioN' snapshots of the received data are[8] A. J. Willis, B. Spear, A. Klopper, and R. De Mello Koch, iroc.
taken. This procedure is repeated 100 times, and the mean square gEiiAfggRlss%o'm SympAnn Arbor MI, June 28-July 2, 1993, vol.
error in the estimate is calculated. The mean square error sho S. U. Pillai, Array Signal Processing New York: Springer-Verlag,
is the average of the mean square errors for the different angles 1ggg.

of arrival. The standard deviation shown is the maximum standajtb] N. R. GoodmanAnn. Math. Stat.yol. 34, p. 152, 1963.

deviation recorded for any of the estimates. The results are shold#] M. D. Srinath and P. K. Rajasekarain Introduction to Statistical Signal
in Figs. 1-4 Processing with Problems New York: Wiley, 1979.

. - L . 12] R. Maartens, unpublished notes.
From Fig. 1, it is clear that the standard deviation of the estlmaiﬁ,j R. De Mello KocF;\ unpublished notes.

drops to acceptably low level$< 0.03 rads) if more than 10 [14] I. Ziskind and M. Wax EEE Trans. Acoust., Speech, Signal Processing,
snapshots are used. It is also clear that increasing the number of vol. 36, p. 1553, 1988.
samples(P) used to estimate the noise covariance matrix leads to
improved standard deviations for any number of snapshists

From Fig. 2, it is clear that the mean square error drops sharply
as N is increased to ten snapshots. Again, increadihdeads to
improved mean square errors. In Fig. 3, the mean square error is
shown for decreasing signal-to-noise ratios. The standard deviation
versus decreasing signal-to-noise ratios is plotted in Fig. 4. These
figures show that the algorithm degrades gently in the presence of
noise. This should be seen as a direct consequence of the structure
of the algorithm, i.e., of the fact that an experimental estimate of the

noise is used to compute the estimate. . . .
. . . L . Abstract—n this correspondence, a nonlinearly weighted least-squares

From the simulations, it is clear that the optinidlis at approxi- method is developed for robust modeling of sensor array data. Weighting
mately 20 snapshots. If more than 20 snapshots are used, only mifa@ttions for various observation noise scenarios are determined using
reductions in standard deviation and mean square error are achievegkimum likelihood estimation theory. Computational complexity of the
This does not justify the extra computational time that would peew method is comparable with the standard least-squares estimation
. procedures. Simulation examples of direction-of-arrival estimation are
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In this correspondence, a Bayesian approach to the estimation
problem in the presence of arbitrary noise has been adopted. The
resulting algorithm is optimal in thenaximum a posteriorsense. . INTRODUCTION
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Unfortunately, the performance 6f-norm based methods deterio-with respect tod and a(¢,,) for n = 1,2, ---, N. In a scenario
rate in nonstationary or non-Gaussian noise environments, especialhere there aren sources andV time samples, estimating th¥
when the data contains outliers [4]-[9]. Such deviations may result x 1 complex amplitude vectors(#,,) and theq x 1 composite
from various reasons including changing conditions through thmknown parameter vect@r requires a multidimensional search in
course of operation and the presence of impulsive noise. ExaPiVm + ¢-dimensional space. Furthermore, the vedoenters the
ples of application areas with non-Gaussian environments are sooiderion (3) in a nonlinear manner so that a closed-form solution for
[10], [11], radar [12], and communication systems [13]. Estimatioa(¢,.) and @ is not feasible. However, for a givefy the optimum
schemes based on norms other than tipenorm,1 < p < 2) are a°(t,) is given by
suggested as robust alternatives; however, they are not as efficientas N -
thggtandard LS in Gaussian noise [4]. Furtherm{)re, their solutions are & (Tn) =[S (O)SE)] 57 (B)x(tn) = ST @) (tn) “)

nonlinear functions of the data; therefore, increase the computatiofere 5*(¢) and S (¢) are the complex conjugate transpose and the
complexity of an optimization solution technique. In this paper, gseudo-inverse of the matri%(¢), which is tacitly assumed to have
direction-of-arrival (DOA) estimation scheme, which is robust ang fy|| column rank. By substituting the optimum amplitudes+,,)

yet has the computational advantages of the standard least squgf@sn by (4) fort = #,, ts, - - -, t~ in (3), a modified criterion
method, is described. Robustness with respect to modeling errors in N

the noise distribution is achieved by introducing a nonlinearity that , o o _ 2
weights the squared error terms corresponding to snapshots obtal%lédul)’ @(tz), - a¥(tn), 0] = Zl 11 = P(&)]e(tn )] ®)

at different time instants. In our modeling, the noise observations "

are assumed to be i.i.d. across the antennas for a given time instinebtained. In this expressio®(¢) = 5(6)S(¢) is the projection
Nonlinear weighting functions for various observation noise scenarigitrix onto the column space 61¢). The minimization problem (5)

are determined by ML estimation. requires a search fdr in only g-dimensional space. Thus, the two-
step procedure significantly reduces the computational complexity
of the problem. Moreover, Golub and Pereyra [16] showed that the
) i global minimizerg? of (5) is also the global minimizer of (3).

In a passive sensor array, the signal generated op $esors can | order to achieve a robust estimate, we employ a generalization

Il. SIGNAL MODEL AND ROBUST PARAMETER ESTIMATION

be described by & x 1 vector of the standard LS as specified by
m N
2(t) = D ai()si(8,) + w(t) @ elat). alta). -+, altn), 8] = 3 wllz(ta) = S(@)at)|] ()
=1 n=1
where wherev(.) is a nonlinear weighting function defined on the positive
s,(8,) steering vectors that are dependent on the parameter vegal axis with argument as the squared err¢t,) = ||z(t.) —
tors 4,; S(#)a(t,)|*. The standard LS corresponds to the choiceyof)
a;(t) amplitude of theith signal vector; as the identity function)(r) = r. The robust estimates éfanda(t)
w(t) measurement noise vector; are obtained by minimizing (6). The gradient of (6) with respect to
m number of sources. the unknown amplitude vectorgt,,) is given by

The parameter vectdt, may be composed of the azimuth and the

: oy . Va t1), a(tz), ---, a(tn), 8
elevation angles of théh impinging plane wave for sources in the amelaltr), altz) > altw), 6]

far field or coordinates of théh point source in three-dimensional = 20||z(tn) — S(B)a(ta)|’]

space for sources in the near field. The sensor output vectors in (1) - {[S*(8)S(8)]a(t.) — ST (8)z(t.)} forn=1,2,---, N

can be rewritten in the compact form as @
2(t) = S(@)alt) + w(t) @) where ¢ denotes the derivative of with respect to its argument.

For monotonically increasing weighting functions v > 0, and

the optimum amplitudes obtained through the minimization of the
nonlinear squared error criterion in (6) are given bY(t,) =
S%(8)x(t,)forn =1, 2, .-+, N, which is identical to the solution of
the standard LS problem described by (3). Another desirable property
of the nonlinear weighting function) is that it increases more
slowly thanv(r) = r for large values of- so that the outliers are
deemphasized. Substituting these optimum amplitudes in (6) yields

whered = [#7 8T ... 977 is theq x 1 composite unknown param-
eter vector that includes the DOA'S(t) = [a1(t) as(t) - - - am()]”

is the amplitude vector, an®(¢) is the steering matrix whose
columns are formed by the steering vectors,(8,). The parameter
estimation problem is one of estimating the veét@nd the unknown
amplitudesa(t) from the observed signat(¢). In practice, the
observed signat(t) is sampled so that we have only a sequenc¥ of
vectors{x(t1). z(t2), - -+, z(tn)} from which § anda(t,.) should
be estimated. Robust ML-based DOA estimation problem has also N .
been considered in [14] and [15]. The former models the amplitudela”(t1); a’(t2), ---, a’(tn), 8] = > H{||[l = P(®)]a(ta)|*}
vectors as samples from a random process, thereby adhering to the n=1 ®)
unconditional or stochastic model of array snapshot vectors. The 'aWose solution again requires only @dimensional search. The

reference, which employs the conditional or deterministic model ASinimization of (8) with respect td can be performed through a
we do in this study, assumes the amplitude vecigts ) are known nonlinear programming algorithm -

a priori. . ._Conventionally, noise vectorg(t,),n = 1,2,---, N are as-
,Th? standard least squares erlror.(LSE) method is based on Milined to be complex valued, zero-mean Gaussian vectors with the
mization of the squared error criterion covariance matrix-*I, wheres? is an unknown scalar [2], [3]. In
N this case, the deterministic ML estimator turns out to be equivalent
ela(tr), a(ta), -, a(tn), 8] = Z [|2(t,) — S(8)a(tn)|]” (3) to the standard LS solution of (3) with optimum weighting function
n=1 ¥ (r) = r. In the following subsections, nonlinear weighting functions
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for various observation noise scenarios are obtained by ML estimati®BnNoise with a Spherically Symmetric Distribution

theory. In this case, we assume that the noise sampiés,) are from
a spherically symmetric distribution described by a multivariate
A. ML Estimation in the Presence of Gaussian probability density function (pdf) of the form
Noise with Changing Variance L1 w*w
e Wit | - | fewaga( 52 an
e variance of the Gaussian observation noise may change in b2 b

time. In that casew(t,) ~ A(0, ¢2I), whereo>] is the noise so that the pdf is only a function of the Euclidean norm of the
covariance matrix at time,, for n = 1, 2, ---, N. Then, the LS random vectorw. The scale parametdr controls the spread of
estimator obtained by minimizing (3) is no longer optimal in thé¢he univariate pdf and is the standard deviation for the Gaussian
ML sense, and it is susceptible to severe degradation. If the noiietribution. The class of spherically symmetric distributions include
samples are temporally independent, the joint density function of ttee multivariate Gaussian distributions with covariance matAix*
observed data is given by and the multivariate studentisdistribution, which has the Cauchy
; distribution as a special case. When the noise samples are from a
f[£(tl)V’ z(t2), -+, 2(tx)] spherically symmetric distribution and are temporally independent,
_ H . 1 —exp |:_L2||£(tn) B S(ﬂ)ﬁ(fn)||2:| ©) the joint density function is given by
ST efo2] o2

f[@(ﬁ )7 £(t2)7 et g(t.\’v)]
. B . . . . N
wheredet[o2I] = ¢2P. The log-likelihood function is _ const.H bipg{biz”ﬂfn) _ S(Q)g(tn)||2:|. (18)

N

n=1
L=— Z |:]og 7+ p log (a‘i) + 12 [lz(tn) — S(Q)Q(fn)||2:|, The corresponding negative of the log-likelihood function (constant
w1 T terms ignored)
(10) N 1 ,
L=-— lo —||z(tn) — S(8)a(t, 19
In order to obtain the ML estimates éfanda(t), this log-likelihood 2 & {g{bz lz(t) Batt)l H (19)
functi;)n is maximized with respect to unknown parameters(t.), is to be minimized with respect to the amplitudest:), a(t2),
andoy,, n = 1.2, ---, N. Maximization of (10) can be achieved by... a(ty) and the unknown parameter vectr If the univariate
minimizing an expression of the form (6) with respect to unknowfunction gr) is a unimodal function with unbounded support, then
parameterd, a(t,), ando, forn =1,2,---, N the optimum amplitudes are, again, a linear function of the?daga
N a’(t,) = ST(8)z(t,)forn =1, 2, ---, N. The weighting function
L= dlllz(ta) — S(B)a(ta)]|’] 1) wvis
n= /. r
' v(r) = —1log [9(55)]- (20)
where I . R 2
(¢ For the multivariate Gaussian distributiaf(r) = —log[g(r/b°)] =
Y[r(tn)] = log @ + p log(oz) + r(tn) Z) (12) r/b*, as expected. For thp-variate Cauchy distribution with pdf
7 fle(t), a(ta), - w(tn)] = Tz, (/6L + (1/6%)]a(ta) ~
For fixedf anda(t,), the ML estimate ob2 is given by S(®)a(t,)|*)7 /2@ the optimum nonlinear weighting function
‘ 1 s r(tn) given by (20) is obtained as(r) = log(1 + /). Recently, this
6o = 5||£(tn) - S@)a(ta)|® = T” weighting function was also obtained in [18] within the context of
forn=1,2. -, N. (13) a-stable distributions.
Substituting (13) back into (12), the nonlinearity C. ML Estimation in Gaussian-Mixture Noise
, ~ 7(tn) Another deviation from the model assumptions of [2] and [3] may
Y[r(tn)] = log p log —= 4 14 L S . .
Vlr(ta)] = log m+ p log P T (14) occur if noise vectors at some time instants have much higher variance
is obtained. This corresponds to the minimization problem than the others. A commonly employed model for such deviations
N from the nominal model of noise samplest., ) is thee-contaminated
min g o (s — C(g 2 Gaussian distribution whose cumulative distribution function (cdf) is
9, altn) ; tog [le(tn) = S(@)altn)ll @3 given by

2 2
when the constant terms in (14) are ignored. The difference between Fﬂ(_ﬂ) = (1= ) o71) + e®(u; UZ_I) (2,1)
(3) and (15) is the nonlinear weighting functian() = log(r). Where<I>(1f_J; I)is thg cdf of the zero mzean Gazussmn veoiomth
Weighting the error term§lz(t.,) — S(8)a(t.)||? in a logarithmic the covariance ma_1tr_|1, €€ [0, 1], ande? a_mdcr2 are the variances
fashion provides robustness with respect to changes in the nd¥dhe samples originating from the nominal and the contaminating
variance. Notice that the (r) = log(r) function gives less emphasisd!ZStr'bUg'O”Sv respectively. T_yplcally,ls a number clo_se to zero, a_nd
to the high-valued outlying samples and more emphasis to the snfall< 72 The second term in (21) models the outlying observations.
error terms compared with the(r) = r, which is the weighting BY carrying out an ML analysis as above, we get
function of the standard LS estimation. Minimizing (15) with respect ;. = 15p(z) — log {17:‘ exp <_’7{)) + LZ exp <_Lo>}
to the unknown amplitudeg(t,,) and substituting the optimum oi? oy o5? 73
solutions obtained ag’(t,) = ST(8)x(t.) in (15) yields theq- (22)
dimensional optimization problem

. N 1A random vector with an arbitrary covariance maffbelongs to the class
min ) _ 2 of elliptically symmetric distributions and can be converted to a spherically
9 Z log |1 = P(&)]a(t.)]] (18)  invariant distribution by an affine transformation.

, 2In fact, it is shown in [17] that for multivariate distributions with finite
which is equivalent to (8) for)(r) = log(r). variance, linear regressions imply spherical symmetry.

n=1
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Weighting functions for§;=1, £=0.001, 0.2 and 0.4

70(

(p=12,%=10)
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(p=12,4=2)

20

(p=2,%=10)

0 . . . . . . . . . )
0 10 20 30 40 50 60 70 80 90 100

sum-of-squared error, r

Fig. 1. Optimum+> functions fore-contaminated distributions with the nominal distribution standard deviation= 1. The parametep stands for the
number of sensorszs is the standard deviation of the contaminating distribution, and for each selectiprantl o2, the nonlinearityy(r) is plotted
for three different contamination rates = 0.001, 0.2, and 0.4.

20 T T T T T T T
Gaussian mixture nonlinearity for epsilon=0.5 N -

0 5 10 15 20 25 30 35 40

-5 1 1 I ! L 1 )
0 5 10 15 20 25 30 35 40
(b)

Fig. 2. Comparison of the nonlinear weighting functions for the cases of changing variance and Gaussian mixture noise with contamirat{@p rate
e = 05.(b)e = 0 ande = 1.

as the weighting function. A plot of this function is shown in Fig. las shown in Fig. 2(a). Moreover, the two curves are tangent to
for various number of sensogs contamination rates, and noise each other when(t,,) = poi andr(t,) = po3 for ¢ = 0 and
variancess? and 3. e = 1, respectively. This is demonstrated in Fig. 2(b). It turns out
For any givens?, o3, andr, the optimum nonlinear weighting that the optimum nonlinear weighting for the “changing variance”
function (22) takes values equal or greater than that of the optimwase yield estimates similar to those of weighting with (22). The

nonlinear weighting function for the “changing variance” case (14honlinear weighting function (22) can be effectively approximated
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by two intersecting lines so that 300 , ; : :

L‘Fkl? foro <r <,
af

vir) =4 , (23) 200} ! 1
— + ka2, forr, <r<oo
T35
wherek; = log(w)+2p log(o1), k2 = log(m)+2p log(oz2)— log e, 1001 A il
andr, = (k1 —k2)(1/0f—1/03)~ . Hence, the optimurg function /

behaves like a linearly weighted LS method with weight inversely
proportional too? for small values ofr, whereas the weight is
inversely proportionab3 for large values ofr. The effect of the
contamination rate is to shift the second line by an amount of
log(e) so that the smaller the contamination, the more the weighting  -1001 1
function ¢» behaves likes the standard LS.

y-coordinate  (ft)
=)
®»
®
®
®
ES
*

D. Unknown Distribution Case 2007 i
If there is no prior information regarding the contaminating dis-

tribution, then a heuristically selected nonlinear weighting function . , % . .

may be used. The effect of outlying samples can be reduced by  -300 -200 -100 0 100 200 300

. . . . . x-coordinate  (ft
selectingy as a function that saturates for increasing positive values @

of its argument. Among a multitude of such functions, we used tig. 3. Mills—Cross array with two incident signals from 21 and 25
sigmoid function of neural networks(r) = a[1 — exp(—/r)] and

Y(r) = a[l —exp(—7r)]/[1 + exp(—73r)] as well as a soft-limiter TABLE |

similar to Huber’s estimator [4] EFFeCT OF DIFFERENT WEIGHTING SCHEMES ON THEROOT MEAN SQUARE
. , ERRORS (DEGREEY FOR THE DOA’s UNDER CAUCHY NoIse (DOA = 25°)

()= ot s s (24) 20logb «b(L)S : 1 (I\L/IL+ 1) | log(r) | =

a for ac} < r < oo. 8 DT | 98 g 2+ 80

15 47.0001 0.2413 0.2418 | 0.3255

All of these nonlinearities exhibit linear behavior around the origin so 20 48.0533 0.1254 0.1257 | 0.1653

that the samples with smaller squared-error values contribute to the 25 33.1822 0.0725 0.0726 | 0.0953

criterion (6), as they would for (3). Since criterion (3) is equivalent 30 33.0244 0.0385 0.0385 | 0.0585

to the ML estimation for the temporally i.i.d. Gaussian distribution, 35 5.7376 0.0208 0.0208 | 0.0412

linear behavior around the origin is especially appropriate if the 10 1.7866 0.0132 0.0133 | 0.0267

nominal distribution is the Gaussian. The upper bound girovides 45 2.8684 0.0071 0.0071 | 0.0205

robustness to the undesired outlying samples by limiting their effect 50 0.3258 0.0044 0.0044 | 0.0157

to the overall cost term (6). We observed that these nonlinearities

yield similar results for similar values of the upper boundwhen

the noise distribution is known, the upper bound can be selectedwijere the Jacobian matricds (6*) are defined as
referring to the optimum nonlinear function. If this information is not
available, then the upper bound can be selected as twice the mediﬁnrwk) _ {i[l _ P(ek’)]x(z‘n):'i[j' _ P(ek)]w(tn)
of the sum-of-squared errors so that the effect of samples with high "~ ° 8% =T oek o

residual errors is limited. 3
:"':W(I—P(e’“)]x(tn)} forl <n <N (27)
E. Nonlinear Programming Method !

We minimize the criterion (8) using the Gauss—Newton nonlineand closed-form expressions for the partial derivatives are given in
programming technique. It is based on iteratively modifying thEl], [16], and [19] as
parameter to be estimatetl by a perturbation vectof. In order

A P k
to efficiently achieve the desired minimum, a step-size scalis W[I — P(#")]z(t,) = — {(I — Py) Og(ﬁ )S(Qk')"}g(tn)
usually incorporated to adjust the perturbation vector. Atitthestep t “k .
of the Gauss—Newton method, the parameter vet'tds updated as _ {(I - P) af}ig )S(Qk)f:| ().

]\»
oM = 0" + au”. (25) (28)
The perturbation vectaf, can be shown [19] to be given by The step-size scalar;. is usually selected large at early iterations
and reduced at later stages of the optimization procedure. A simple
. N . ) o A - procedure that has been observed to be successful is to select a
8" = = [ DIl = Pzt P real 5 (6%) . (6")} geometrically decreasing sequence of step sizes, i.e.,
n=1

A ar = 1, %w 411_/ éw(%)77 (29)
> T = PO )]t *Yreal Ty (6%)[T = P(6")]a(t,)

n=1 until an improving value for the updated parameter vesfor' is
(26) obtained.
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Fig. 4. Statistical comparison of the standard LS algorithm with logarithmic weighting under changing varian2e dB around nominal SNR. (a) Initial
estimates are from sequential orthogonal projection algorithm. (b) Initial estimates are from weighted sequential orthogonal projection algorit

When the noise distribution is known, the Gauss—Newton methtite parameter, however, the residual errors are typically small, and
can be used directly as described above. For the unknown distributi@nce, a predetermined upper bound may be too high to limit the
case, the upper bound of the nonlinear weighting function shouddfect of the outliers. We selected the upper bound as twice the median
be determined from the data as well. In the initial iterations of thef the sum-of-squared residual errors at each step so that it adapts to
Gauss—Newton method, the residual error vectbrs P(¢")]x(t,) the changes in the residuals throughout the optimization algorithm.
are generally large because the current estimates of the parameters &ally, we implemented the Gauss—Newton method with a
far from their actual values. In this case, a low value for the upp&ram—-Schmidt orthogonalization step by decomposing the steering
bound adversely affects the speed of convergence of the nonlinssatrix S(#) as the product of an orthonormal matix(¢) and an
programming technique. Around the vicinity of the correct value afpper matrix?(¢) as described in [1] and [19].
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Fig. 5. Statistical comparison of the standard LS algorithm with logarithmic weighting under changing variant2 dB around nominal SNR. (a) Initial
estimates are from sequential orthogonal projection algorithm. (b) Initial estimates are from weighted sequential orthogonal projection algorit

Ill. DOA ESTIMATION AND SIMULATION RESULTS whereT; , is the time it takes for théth plane wave to travel from
Let us assume thak narrowband plane waves with center frethe kth sensor to the origin. Witlr designating the medium’s speed

quencyw, are incident on an array gf sensors. The x 1 snapshot ©f Propogation, the time delays, » can be expressed as

vector setz(t,), n = 1,2, ---, N corresponds to samples of the 1

p sensor signals. Vector component(t, ) contains thenth sample ~ Ti,k = ;[:k(l)coswi) + z1(2) sin(6;)]

of the kth sensor signal. The steering vectotd,) for the ith plane

wave is specified by where the DOA of theth incident plane wave is designated &y
and z; (1) and z;(2) are thex andy coordinates of théth sensor

5,(8,) =[e 7w e IWeT2 LTI Tip] T (30) on thez plane.

fortl <k <p (31)
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Fig. 6. Statistical comparison of the standard LS algorithm with nonlinear weighting in the presence of data outliers with variance 20 dB lesg#ttan nom
SNR. ¢ = 0.3. Initial estimates are from weighted SOP algorithm.

Let us now consider the Mills—Cross array, which was used in danction (14). The root-mean-squared (RMS) error versus nominal
experiment between San Diego, CA, and Ottawa, Ont., Canada. TBNR plots for the plane wave with 2%s the azimuth angle are shown
array is composed of 12 sensofs=£ 12) positioned on the plane in Fig. 4(a) and (b). For low SNR'’s, the initial estimates obtained
at [-287.5 0], 187.5 0], 87.5 0], [87.5 0], [187.5 0], [287.5 from the standard SOP method are frequently far from the actual
0], [0 —287.5], [0 —187.5], [0 —87.5], [0 87.5], [0 187.5], and [0 DOA's. As a result, the Gauss—Newton method may converge to a
287.5], where the units are in feet. Two incoherent plane waves witative minimum. When the weighted SOP method [19] is employed,
azimuth angles Z1and 25 and a center frequency of 14.85 MHzthe initial estimates are generally closer to the actual DOA’s. Hence,
impinge on this array, as shown in Fig. 3. The speed of propogatiortie weighted SOP algorithm provides more reliable initial estimates.
3 x 10® m/s. The complex valued envelope is generated from a zero-Another set of simulations are performed with noise samples whose
mean unit variance Gaussian process. A total of 40 delayed samplasance varies in the rangel2 dB around a nominal SNR. In this
(N = 40) of the input signal are obtained at each sensor. case, the noise samples typically do not have as high variances as

the previous example for a given nominal SNR. Hence, the effect
of weighting in the initial estimates is recognized at lower nominal
A. Case |: Changing Variance SNR’s. Fig. 5(a) and (b) depicts the performance of the optimally

In this section, we compare the performance of the standard Wgighted and LSE algorithms with respect to each other when the
with the ML solution of logarithmic weighting (11) under changinghitial estimates are obtained through the standard and weighted SOP
variance conditions. The noise sequence is generatedpasadate algorithms.

Gaussian distributiorip = 12) with covariance matrixs2I,. The

varia_nce for thethh sn_apshotfﬁ forl <n <N i_s obtaine_d so that B. Case II: A Spherically Symmetric Distribution

the signal-to-noise ratio (SNR) takes values uniformly within a range ) ) )

of £20 dB around a nominal SNR. One hundred trial runs of both N this case, noise samples are generated frorvariate Cauchy
methods are performed at “nominal” SNR’s starting from 0-50 dB iqensity function. The scale parametein (17) is selected_ so that
steps of 5 dB. The Gauss—Newton optimization method in conjunctio_r?[) log b = 5k for k = 3, 4, 10. One hu_ndred trla_l runs
with Gram—Schmidt orthogonalization is used for optimization. &€ performed at every value ofwith the following selection of

The effectiveness of the Gauss—Newton descent method is highRnlinear functions:
dependent on the selection of the initial estimates. When the initiall) standard LSE«(r) = r];
estimates are far from their actual values, the algorithm may converg®) ML estimator {(r) = log(r/b* + 1)];
to a relative minimum. The sequential orthogonal projection (SOP)3) logarithmic weighting ¢(r) = log(r)];
algorithm, which is also known as the coordinate descent algorithm4) @ heuristically selected nonlinearity, (r) = r/(r* + 3,).

[20], is shown to be successful for Gaussian noise with constantThe nonlinear functions,(r) = r/(r* + 3,) is not monotone

variance [1], [2]. A weighted version of the SOP algorithm isncreasing but of the redescending type. It is included to add variety.
described in [19]. To test the effectiveness of the initial estimatdis nonlinearity is expected to limit the effect of the samples
from the weighted SOP method, the experiments are performed wéththe tails of the Cauchy distribution more than the other three
initial estimates from the weighted and standard SOP methods. Fanctions. However, the Gauss—Newton method is more likely to
the weighted SOP algorithm, the nonlinear weighting functioirs converge to a local optimum for this nonlinearity especially when
chosen as the weighting function corresponding to the log-likelihodle initial estimates are far from their actual values. At every
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iteration of the Gauss—Newton method, the paraméteis selected

so that the nonlinear functiog,(r) takes its maximum value at

r = 2.mediafr(t1), r(t2), ---, r(tx)}. In this way, most of the (1]

samples are guaranteed to be to the left of its maximum point, and

the Gauss—Newton method is less likely to diverge. 2]
The RMS errors of the DOA estimates obtained with the above

weighting functions are shown in Table I. It is clear that standar

LS methods vyield inferior and often unacceptable estimates of th

DOA'’s. The ML weighting scheme performed the best, and the simplgy

logarithmic weighting performed almost identically. The heuristically[5]

selected nonlinearity.(r) yields acceptable results, but it is inferior

to the ML and logarithmic weighting.

[71

To test the performance of the nonlinear least squares algorithm
with different weighting functions, 30% of the 40 snapshots args]
randomly selected to have an SNR of 20 dB less than their nominal
value. The initial estimates are obtained by the weighted SOI[Dg]
technique with optimal weighting of (22). With these initial estimates,
the Gauss—Newton method is used to minimize the weighted squared
error criterion with weighting function as obtained from [10]

1) the ML weighting function in (22);

2) logarithmic weightingy(r) = log(r);

3) the sigmoidy(r) = a[l — exp(—/3r)] with the upper bound as

twice the median of the squared error;
4) the standard LS method.

This experiment is repeated 100 times for the same set of nominad)
SNR'’s as in Case |. As depicted in Fig. 6, the nonlinear weighting
functions yield better results than the standard LS. The performance
of the sigmoid is close to that of the ML solution and is a viabl
alternative in cases where information on the contamination rate and
variance are not available. The simple logarithmic weighting agajms]
performed similar to the ML weighting function, as mentioned in
Section II-C. 1

The same experiment is repeated for the case in which 10% [o?]
the snapshots have a SNR of 20 dB less than nominal SNR. A
smaller contamination levet resulted in a smaller gap between[17]
RMS errors of the standard LS and the nonlinear weighting. Finally,
another experiment with 30% of the snapshots having an SNR of
dB less than nominal value is performed. The nonlinear weighting
still outperformed the standard LS; however, the difference is nfi9]
as significant. The advantage of employing a nonlinear function
is apparent when either the difference between variances of {7al
nominal and the contaminating distributions is significant, and/or the
contamination levek is large.

C. Case llI: Outliers in Data

[11]

[12]

IV. CONCLUSIONS

In this correspondence, a robust DOA estimation method is devel-
oped. The robustness is achieved by introducing a nonlinear function
that weights the squared error term in the sum-of-squared-error
criterion. Weighting functions for various observation noise scenarios,
including the Gaussian noise with time-varying variance, the class
of spherically symmetric distributions, arecontaminated Gaussian
noise, are determined by the ML estimation theory. It is seen that
an appropriately selected nonlinear weighting function improves the
estimates of the parameters, and yet, computational complexity of the
parameter estimation problem does not increase significantly.

ACKNOWLEDGMENT

The authors would like to thank Associate Editor H. Messer-Yaron
and the anonymous reviewers for their positive criticism.

1451

REFERENCES

J. A. Cadzow, “Least squares error modeling with signal processing
applications,TEEE Acoust., Speech, Signal Processing Mpg. 12-31,
Oct. 1990.

I. Ziskind and M. Wax, “Maximum likelihood localization of multiple
sources by alternating projectionEEE Trans. Acoust., Speech, Signal
Processing vol. 36, pp. 1553-1560, Oct. 1988.

J. Boheme, “Estimating the source parameters by maximum likelihood
and nonlinear regression,” iAroc. ICASSP1984, pp. 7.3.1-7.3.4.

P. J. HuberRobust Statistics. New York: Wiley, 1981.

S. A. Kassam and H. V. Poor, “Robust techniques for signal processing:
A survey,” Proc. IEEE,vol. 73, pp. 433-481, Mar. 1985.

J. M. Singer and P. K. Sen, “Asymptotic relative efficiency of multi-
variate M -estimators,"Commun. Statist.-Simul. Compuial. 14, no. 1,

pp. 29-41, 1985.

S. G. Oh and R. L. Kashyap, “A robust approach for high resolution
frequency estimation,"EEE Trans. Signal Processingol. 39, pp.
627-643, Mar. 1991.

M. Shao and C. L. Nikias, “Signal processing with fractional order
moments: Stable processes and their applicatidhst. IEEE,vol. 81,

pp. 986-1009, July 1993.

H. Messer and P. M. Schultheiss, “On time delay estimation in non-
Gaussian noise,” irProc. IEEE Seventh SP Workshop Statist. Signal
Array Process.June 1994, pp. 67-70.

G. Veitch and A. R. Wilks, “A characterization of Arctic undersea
noise,”J. Acoust. Soc. Amerwpl. 77, pp. 989-999, 1985.

M. Bouvet and S. C. Schwartz, “Underwater noises: Statistical modeling,
detection, and normalizationJ. Acoust. Soc. Amewpl. 83, no. 3, pp.
1023-1033, 1988.

V. H. Hansen, “Detection performance of some nonparametric rank tests
and an application to radar/EEE Trans. Inform. Theoryol. IT-16,

pp. 309-318, May 1970.

P. A. Bello and R. Esposito, “A new method for calculating probabilities
of errors due to impulsive noise|lEEE Trans. Commun. Technolol.
COMM-17, pp. 368-379, June 1969.

D. B. Williams and D. H. Johnson, “Robust estimation of structured
covariance matrices,IEEE Trans. Signal Processingsol. 41, pp.
2891-2906, Sept. 1993.

D. D. Lee and R. L. Kashyap, “Robust maximum likelihood bearing esti-
mation in contaminated Gaussian noid&EE Trans. Signal Processing,
vol. 40, pp. 1983-1983, Aug. 1992.

G. H. Golub and V. Pereyra, “The differentiation of pseudo-inverses
and nonlinear least squares problems whose variables sep&8bd/’

J. Numer. Anal.pp. 413-432, Apr. 1973.

I. Nimmo-Smith, “Linear regressions and sphericitgiometrika,vol.

66, no. 2, pp. 390-392, 1979.

P. Tsakalides and C. L. Nikias, “Maximum likelihood localization of
sources in noise modeled as a stable proceS&sEE Trans. Signal
Processingyol. 45, pp. 2700-2713, Nov. 1995.

Y. Yardimci, “New results in point source location problem,” Ph.D.
dissertation, Vanderbilt Univ., Nashville, TN, 1994.

D. G. LuenbergerDptimization by Vector Space MethodNew York:
Wiley, 1969.




