
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 5, MAY 1998 1443

different. The average run time (for the minimization of the objective
function) was reduced to 4.2 s using the MUSIC initial estimates. The
numerical experiment was performed under the following conditions:

1) The array is linear with an intersensor spacing of1

2
in electrical

units (i.e., wavelengths).
2) The array consists of eight sensors. Two targets of equal

strength are placed at�45 from broadside.
3) The noisev(n) is a zero mean complex Gaussian such that

E[v(n)v+(m)] = �mn�
2
n
I.

4) It is clear that for the signal vectorsa(n), the following holds:
E[a(n)a+(m)] = �mn�

2
s
I:

The signal-to-noise ratio is thus given by20 log(�s=�n): For a
given signal-to-noise ratio,N snapshots of the received data are
taken. This procedure is repeated 100 times, and the mean square
error in the estimate is calculated. The mean square error shown
is the average of the mean square errors for the different angles
of arrival. The standard deviation shown is the maximum standard
deviation recorded for any of the estimates. The results are shown
in Figs. 1–4.

From Fig. 1, it is clear that the standard deviation of the estimate
drops to acceptably low levels(� 0.03 rads) if more than 10
snapshots are used. It is also clear that increasing the number of
samples(P ) used to estimate the noise covariance matrix leads to
improved standard deviations for any number of snapshots(N):

From Fig. 2, it is clear that the mean square error drops sharply
as N is increased to ten snapshots. Again, increasingP leads to
improved mean square errors. In Fig. 3, the mean square error is
shown for decreasing signal-to-noise ratios. The standard deviation
versus decreasing signal-to-noise ratios is plotted in Fig. 4. These
figures show that the algorithm degrades gently in the presence of
noise. This should be seen as a direct consequence of the structure
of the algorithm, i.e., of the fact that an experimental estimate of the
noise is used to compute the estimate.

From the simulations, it is clear that the optimalN is at approxi-
mately 20 snapshots. If more than 20 snapshots are used, only minor
reductions in standard deviation and mean square error are achieved.
This does not justify the extra computational time that would be
incurred.

IV. CONCLUSIONS

In this correspondence, a Bayesian approach to the estimation
problem in the presence of arbitrary noise has been adopted. The
resulting algorithm is optimal in themaximum a posteriorisense.
The algorithm differs from recent approaches to the problem, which
also employ a Bayesian approach [1]. These methods assume that the
noise is completely unknown. In the present case, an experimental
estimate of the noise is used. The resulting objective function uses the
estimate, together with the number of samples used to determine the
estimate as input parameters. Thus, the previously derived estimator
[1] reduces to this estimation rule for the case that no experimental
estimate is available.

The algorithm has been studied using numerical simulations. The
results show that the resulting estimator is robust with respect to noise
and degrades gently for increasing signal-to-noise ratios. Increasing
the number of samples used to determine the experimental estimate of
the noise covariance matrix decreases both the mean square error and
the standard deviation of the estimate. It is for this reason that this
estimator should be considered to be an improvement on existing
techniques.
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Robust Direction-of-Arrival
Estimation in Non-Gaussian Noise

Yasemin Yardımcı, A. Enis ¸Cetin, and James A. Cadzow

Abstract—In this correspondence, a nonlinearly weighted least-squares
method is developed for robust modeling of sensor array data. Weighting
functions for various observation noise scenarios are determined using
maximum likelihood estimation theory. Computational complexity of the
new method is comparable with the standard least-squares estimation
procedures. Simulation examples of direction-of-arrival estimation are
presented.

Index Terms—Antenna arrays, direction-of-arrival estimation, impul-
sive noise, maximum likelihood estimation.

I. INTRODUCTION

In many signal modeling problems, including array signal pro-
cessing, the key issue is to estimate the parameters of some basis
signals from the observations. Array processing techniques based on
minimization of the squared model error (`2-norm) have received
considerable attention [1]–[3]. The popularity of least squares (LS)
based methods is justified by the fact that their solutions are equiv-
alent to that of maximum likelihood (ML) for signals embedded in
independent identically distributed (i.i.d.) Gaussian noise.
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Unfortunately, the performance of`2-norm based methods deterio-
rate in nonstationary or non-Gaussian noise environments, especially
when the data contains outliers [4]–[9]. Such deviations may result
from various reasons including changing conditions through the
course of operation and the presence of impulsive noise. Exam-
ples of application areas with non-Gaussian environments are sonar
[10], [11], radar [12], and communication systems [13]. Estimation
schemes based on norms other than two (`p-norm, 1 � p < 2) are
suggested as robust alternatives; however, they are not as efficient as
the standard LS in Gaussian noise [4]. Furthermore, their solutions are
nonlinear functions of the data; therefore, increase the computational
complexity of an optimization solution technique. In this paper, a
direction-of-arrival (DOA) estimation scheme, which is robust and
yet has the computational advantages of the standard least squares
method, is described. Robustness with respect to modeling errors in
the noise distribution is achieved by introducing a nonlinearity that
weights the squared error terms corresponding to snapshots obtained
at different time instants. In our modeling, the noise observations
are assumed to be i.i.d. across the antennas for a given time instant.
Nonlinear weighting functions for various observation noise scenarios
are determined by ML estimation.

II. SIGNAL MODEL AND ROBUST PARAMETER ESTIMATION

In a passive sensor array, the signal generated on thep sensors can
be described by ap � 1 vector

x(t) =

m

i=1

ai(t)si(�i) + w(t) (1)

where

si(�i) steering vectors that are dependent on the parameter vec-
tors �i;

ai(t) amplitude of theith signal vector;
w(t) measurement noise vector;
m number of sources.

The parameter vector�i may be composed of the azimuth and the
elevation angles of theith impinging plane wave for sources in the
far field or coordinates of theith point source in three-dimensional
space for sources in the near field. The sensor output vectors in (1)
can be rewritten in the compact form as

x(t) = S(�)a(t) + w(t) (2)

where� = [�T
1
�T
2
� � � �Tm]

T is theq� 1 composite unknown param-
eter vector that includes the DOA’s,a(t) = [a1(t)a2(t) � � � am(t)]T

is the amplitude vector, andS(�) is the steering matrix whose
columns are formed by them steering vectorssi(�i). The parameter
estimation problem is one of estimating the vector� and the unknown
amplitudesa(t) from the observed signalx(t). In practice, the
observed signalx(t) is sampled so that we have only a sequence ofN

vectorsfx(t1); x(t2); � � � ; x(tN)g from which � anda(tn) should
be estimated. Robust ML-based DOA estimation problem has also
been considered in [14] and [15]. The former models the amplitude
vectors as samples from a random process, thereby adhering to the
unconditional or stochastic model of array snapshot vectors. The latter
reference, which employs the conditional or deterministic model as
we do in this study, assumes the amplitude vectorsa(tn) are known
a priori.

The standard least squares error (LSE) method is based on mini-
mization of the squared error criterion

e[a(t1); a(t2); � � � ; a(tN); �] =

N

n=1

jjx(tn)� S(�)a(tn)jj
2 (3)

with respect to� and a(tn) for n = 1; 2; � � � ; N . In a scenario
where there arem sources andN time samples, estimating theN
m � 1 complex amplitude vectorsa(tn) and theq � 1 composite
unknown parameter vector� requires a multidimensional search in
2Nm + q-dimensional space. Furthermore, the vector� enters the
criterion (3) in a nonlinear manner so that a closed-form solution for
a(tn) and � is not feasible. However, for a given�, the optimum
ao(tn) is given by

a
o
(tn) = [S

�
(�)S(�)]

�1
S
�
(�)x(tn) = S

y
(�)x(tn) (4)

whereS�(�) andSy(�) are the complex conjugate transpose and the
pseudo-inverse of the matrixS(�), which is tacitly assumed to have
a full column rank. By substituting the optimum amplitudesao(tn)
given by (4) fort = t1; t2; � � � ; tN in (3), a modified criterion

e[a
o
(t1); a

o
(t2); � � � ; a

o
(tN); �] =

N

n=1

jj[I � P (�)]x(tn)jj
2 (5)

is obtained. In this expression,P (�) = S(�)Sy(�) is the projection
matrix onto the column space ofS(�). The minimization problem (5)
requires a search for� in only q-dimensional space. Thus, the two-
step procedure significantly reduces the computational complexity
of the problem. Moreover, Golub and Pereyra [16] showed that the
global minimizer�o of (5) is also the global minimizer of (3).

In order to achieve a robust estimate, we employ a generalization
of the standard LS as specified by

e[a(t1); a(t2); � � � ; a(tN); �] =

N

n=1

 [jjx(tn)�S(�)a(tn)jj
2
] (6)

where (:) is a nonlinear weighting function defined on the positive
real axis with argument as the squared errorr(tn) = kx(tn) �

S(�)a(tn)k
2. The standard LS corresponds to the choice of (:)

as the identity function (r) = r. The robust estimates of� anda(t)
are obtained by minimizing (6). The gradient of (6) with respect to
the unknown amplitude vectorsa(tn) is given by

ra(t )e[a(t1); a(t2); � � � ; a(tN); �]

= 2 _ [kx(tn)� S(�)a(tn)k
2
]

� f[S
�
(�)S(�)]a(tn)� S

�
(�)x(tn)g forn = 1; 2; � � � ; N

(7)

where _ denotes the derivative of with respect to its argument.
For monotonically increasing weighting functions , _ > 0, and
the optimum amplitudes obtained through the minimization of the
nonlinear squared error criterion in (6) are given byao(tn) =

Sy(�)x(tn) for n = 1; 2; � � � ; N , which is identical to the solution of
the standard LS problem described by (3). Another desirable property
of the nonlinear weighting function is that it increases more
slowly than (r) = r for large values ofr so that the outliers are
deemphasized. Substituting these optimum amplitudes in (6) yields

e[a
o
(t1); a

o
(t2); � � � ; a

o
(tN); �] =

N

n=1

 fjj[I � P (�)]x(tn)jj
2
g

(8)
whose solution again requires only aq-dimensional search. The
minimization of (8) with respect to� can be performed through a
nonlinear programming algorithm.

Conventionally, noise vectorsw(tn); n = 1; 2; � � � ; N are as-
sumed to be complex valued, zero-mean Gaussian vectors with the
covariance matrix�2I, where�2 is an unknown scalar [2], [3]. In
this case, the deterministic ML estimator turns out to be equivalent
to the standard LS solution of (3) with optimum weighting function
 (r) = r. In the following subsections, nonlinear weighting functions
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for various observation noise scenarios are obtained by ML estimation
theory.

A. ML Estimation in the Presence of Gaussian
Noise with Changing Variance

The variance of the Gaussian observation noise may change in
time. In that case,w(tn) � N (0; �2

n
I), where�2

n
I is the noise

covariance matrix at timetn for n = 1; 2; � � � ; N . Then, the LS
estimator obtained by minimizing (3) is no longer optimal in the
ML sense, and it is susceptible to severe degradation. If the noise
samples are temporally independent, the joint density function of the
observed data is given by

f [x(t1); x(t2); � � � ; x(tN)]

=

N

n=1

1

�det[�2nI]
exp �

1

�2n
jjx(tn)� S(�)a(tn)jj

2 (9)

wheredet[�2nI] = �2pn . The log-likelihood function is

L = �

N

n=1

log � + p log (�
2
n) +

1

�2n
jjx(tn)� S(�)a(tn)jj

2
:

(10)

In order to obtain the ML estimates of� anda(t), this log-likelihood
function is maximized with respect to unknown parameters�, a(tn),
and�2n, n = 1; 2; � � � ; N . Maximization of (10) can be achieved by
minimizing an expression of the form (6) with respect to unknown
parameters�, a(tn), and�2n for n = 1; 2; � � � ; N

L =

N

n=1

 [jjx(tn)� S(�)a(tn)jj
2
] (11)

where

 [r(tn)] = log � + p log(�
2
n) +

r(tn)

�2n
: (12)

For fixed� anda(tn), the ML estimate of�2n is given by

�̂
2
n =

1

p
kx(tn)� S(�)a(tn)k

2
=
r(tn)

p

forn = 1; 2; � � � ; N: (13)

Substituting (13) back into (12), the nonlinearity

 [r(tn)] = log � + p log
r(tn)

p
+ p (14)

is obtained. This corresponds to the minimization problem

min

�; a(tn)

N

n=1

log jjx(tn)� S(�)a(tn)jj
2 (15)

when the constant terms in (14) are ignored. The difference between
(3) and (15) is the nonlinear weighting function (r) = log(r).
Weighting the error termskx(tn) � S(�)a(tn)k

2 in a logarithmic
fashion provides robustness with respect to changes in the noise
variance. Notice that the (r) = log(r) function gives less emphasis
to the high-valued outlying samples and more emphasis to the small
error terms compared with the (r) = r, which is the weighting
function of the standard LS estimation. Minimizing (15) with respect
to the unknown amplitudesa(tn) and substituting the optimum
solutions obtained asao(tn) = Sy(�)x(tn) in (15) yields theq-
dimensional optimization problem

min

�

N

n=1

log jj[I � P (�)]a(tn)jj
2 (16)

which is equivalent to (8) for (r) = log(r).

B. Noise with a Spherically Symmetric Distribution

In this case, we assume that the noise samplesw(tn) are from
a spherically symmetric distribution described by a multivariate
probability density function (pdf) of the form

fw(w)�
1

b2p
g

w�w

b2
(17)

so that the pdf is only a function of the Euclidean norm of the
random vectorw. The scale parameterb controls the spread of
the univariate pdf and is the standard deviation for the Gaussian
distribution. The class of spherically symmetric distributions include
the multivariate Gaussian distributions with covariance matrix�2I1

and the multivariate student’st distribution, which has the Cauchy
distribution as a special case. When the noise samples are from a
spherically symmetric distribution and are temporally independent,
the joint density function is given by

f [x(t1); x(t2); � � � ; x(tN)]

= const.
N

n=1

1

b2p
g

1

b2
jjx(tn)� S(�)a(tn)jj

2
: (18)

The corresponding negative of the log-likelihood function (constant
terms ignored)

L = �

N

n=1

log g
1

b2
jjx(tn)� S(�)a(tn)jj

2 (19)

is to be minimized with respect to the amplitudesa(t1); a(t2);
� � � ; a(tN) and the unknown parameter vector�. If the univariate
function g(r) is a unimodal function with unbounded support, then
the optimum amplitudes are, again, a linear function of the data2 as
ao(tn) = Sy(�)x(tn) forn = 1; 2; � � � ; N: The weighting function
 is

 (r) = � log g
r

b2
: (20)

For the multivariate Gaussian distribution, (r) = � log[g(r=b2)] =
r=b2, as expected. For thep-variate Cauchy distribution with pdf
f [x(t1); x(t2); � � � ; x(tN)] =

N

n=1
(c=b2p)[1 + (1=b2)kx(tn) �

S(�)a(tn)k
2]�[(1=2)(p+1)], the optimum nonlinear weighting function

given by (20) is obtained as (r) = log(1 + r=b2): Recently, this
weighting function was also obtained in [18] within the context of
�-stable distributions.

C. ML Estimation in Gaussian-Mixture Noise

Another deviation from the model assumptions of [2] and [3] may
occur if noise vectors at some time instants have much higher variance
than the others. A commonly employed model for such deviations
from the nominal model of noise samplesw(tn) is the�-contaminated
Gaussian distribution whose cumulative distribution function (cdf) is
given by

Fw(w) = (1� �)�(w; �
2
1I) + ��(w; �

2
2I) (21)

where�(w; I) is the cdf of the zero mean Gaussian vectorw with
the covariance matrixI, � 2 [0; 1], and�21 and�22 are the variances
of the samples originating from the nominal and the contaminating
distributions, respectively. Typically,� is a number close to zero, and
�21 � �22 . The second term in (21) models the outlying observations.
By carrying out an ML analysis as above, we get

 (r) = log(�)� log
1� �

�
2p
1

exp �
r

�21
+

�

�
2p
2

exp �
r

�22

(22)

1A random vector with an arbitrary covariance matrix� belongs to the class
of elliptically symmetric distributions and can be converted to a spherically
invariant distribution by an affine transformation.

2In fact, it is shown in [17] that for multivariate distributions with finite
variance, linear regressions imply spherical symmetry.
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Fig. 1. Optimum functions for �-contaminated distributions with the nominal distribution standard deviation�1 = 1. The parameterp stands for the
number of sensors.�2 is the standard deviation of the contaminating distribution, and for each selection ofp and �2, the nonlinearity (r) is plotted
for three different contamination rates� = 0:001; 0:2, and 0.4.

(a)

(b)

Fig. 2. Comparison of the nonlinear weighting functions for the cases of changing variance and Gaussian mixture noise with contamination rate�. (a)
� = 0:5. (b) � = 0 and � = 1.

as the weighting function. A plot of this function is shown in Fig. 1
for various number of sensorsp, contamination rates�, and noise
variances�21 and �

2

2 .
For any given�21 , �

2

2 , and r, the optimum nonlinear weighting
function (22) takes values equal or greater than that of the optimum
nonlinear weighting function for the “changing variance” case (14),

as shown in Fig. 2(a). Moreover, the two curves are tangent to
each other whenr(tn) = p�

2

1 and r(tn) = p�
2

2 for � = 0 and
� = 1, respectively. This is demonstrated in Fig. 2(b). It turns out
that the optimum nonlinear weighting for the “changing variance”
case yield estimates similar to those of weighting with (22). The
nonlinear weighting function (22) can be effectively approximated
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by two intersecting lines so that

 (r) =

r

�21
+ k1; for 0 � r � ro

r

�22
+ k2; for ro < r <1

(23)

wherek1 = log(�)+2p log(�1); k2 = log(�)+2p log(�2)� log �,
andro = (k1�k2)(1=�

2
1�1=�22)

�1. Hence, the optimum function
behaves like a linearly weighted LS method with weight inversely
proportional to�21 for small values ofr, whereas the weight is
inversely proportional�22 for large values ofr. The effect of the
contamination rate� is to shift the second line by an amount of
log(�) so that the smaller the contamination, the more the weighting
function  behaves likes the standard LS.

D. Unknown Distribution Case

If there is no prior information regarding the contaminating dis-
tribution, then a heuristically selected nonlinear weighting function
may be used. The effect of outlying samples can be reduced by
selecting as a function that saturates for increasing positive values
of its argument. Among a multitude of such functions, we used the
sigmoid function of neural networks (r) = a[1 � exp(��r)] and
 (r) = a[1 � exp(��r)]=[1 + exp(��r)] as well as a soft-limiter
similar to Huber’s estimator [4]

 (r) =

r

�21
for 0 � r � a�21

a for a�21 < r <1.
(24)

All of these nonlinearities exhibit linear behavior around the origin so
that the samples with smaller squared-error values contribute to the
criterion (6), as they would for (3). Since criterion (3) is equivalent
to the ML estimation for the temporally i.i.d. Gaussian distribution,
linear behavior around the origin is especially appropriate if the
nominal distribution is the Gaussian. The upper bound of provides
robustness to the undesired outlying samples by limiting their effect
to the overall cost term (6). We observed that these nonlinearities
yield similar results for similar values of the upper bounda. When
the noise distribution is known, the upper bound can be selected by
referring to the optimum nonlinear function. If this information is not
available, then the upper bound can be selected as twice the median
of the sum-of-squared errors so that the effect of samples with high
residual errors is limited.

E. Nonlinear Programming Method

We minimize the criterion (8) using the Gauss–Newton nonlinear
programming technique. It is based on iteratively modifying the
parameter to be estimated� by a perturbation vector�. In order
to efficiently achieve the desired minimum, a step-size scalar� is
usually incorporated to adjust the perturbation vector. At thekth step
of the Gauss–Newton method, the parameter vector�k is updated as

�
k+1 = �

k + �k�
k
: (25)

The perturbation vector�k can be shown [19] to be given by

�
k = �

N

n=1

_ fk[I � P (�k)]x(tn)k
2
grealfJ�n(�

k)Jn(�
k)g

�1

�

N

n=1

_ fk[I � P (�k)]x(tn)k
2
grealfJ�n(�

k)[I � P (�k)]x(tn)

(26)

Fig. 3. Mills–Cross array with two incident signals from 21 and 25�.

TABLE I
EFFECT OFDIFFERENT WEIGHTING SCHEMES ON THEROOT MEAN SQUARE

ERRORS(DEGREES) FOR THE DOA’S UNDER CAUCHY NOISE (DOA = 25
�)

where the Jacobian matricesJn(�k) are defined as

Jn(�
k) =

@

@�k1
[I � P (�k)]x(tn)

...
@

@�k2
[I � P (�k)]x(tn)

... � � �
...
@

@�kq
(I � P (�k)]x(tn) for 1 � n � N (27)

and closed-form expressions for the partial derivatives are given in
[1], [16], and [19] as

@

@�kl
[I � P (�k)]x(tn) = � (I � P�)

@S(�k)

@�lk
S(�k)y x(tn)

� (I � P�)
@S(�k)

@�lk
S(�k)y

�

x(tn):

(28)

The step-size scalar�k is usually selected large at early iterations
and reduced at later stages of the optimization procedure. A simple
procedure that has been observed to be successful is to select a
geometrically decreasing sequence of step sizes, i.e.,

�k = 1; 1
2
; 1
4
; 1
8
; � � � ; 1

2

i
; � � � (29)

until an improving value for the updated parameter vector�k+1 is
obtained.
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(a)

(b)

Fig. 4. Statistical comparison of the standard LS algorithm with logarithmic weighting under changing variance of�20 dB around nominal SNR. (a) Initial
estimates are from sequential orthogonal projection algorithm. (b) Initial estimates are from weighted sequential orthogonal projection algorithm.

When the noise distribution is known, the Gauss–Newton method
can be used directly as described above. For the unknown distribution
case, the upper bound of the nonlinear weighting function should
be determined from the data as well. In the initial iterations of the
Gauss–Newton method, the residual error vectors[I � P (�k)]x(tn)
are generally large because the current estimates of the parameters are
far from their actual values. In this case, a low value for the upper
bound adversely affects the speed of convergence of the nonlinear
programming technique. Around the vicinity of the correct value of

the parameter, however, the residual errors are typically small, and
hence, a predetermined upper bound may be too high to limit the
effect of the outliers. We selected the upper bound as twice the median
of the sum-of-squared residual errors at each step so that it adapts to
the changes in the residuals throughout the optimization algorithm.

Finally, we implemented the Gauss–Newton method with a
Gram–Schmidt orthogonalization step by decomposing the steering
matrix S(�) as the product of an orthonormal matrixQ(�) and an
upper matrixR(�) as described in [1] and [19].
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(a)

(b)

Fig. 5. Statistical comparison of the standard LS algorithm with logarithmic weighting under changing variance of�12 dB around nominal SNR. (a) Initial
estimates are from sequential orthogonal projection algorithm. (b) Initial estimates are from weighted sequential orthogonal projection algorithm.

III. DOA ESTIMATION AND SIMULATION RESULTS

Let us assume thatm narrowband plane waves with center fre-
quency!o are incident on an array ofp sensors. Thep� 1 snapshot
vector setx(tn); n = 1; 2; � � � ; N corresponds to samples of the
p sensor signals. Vector componentxk(tn) contains thenth sample
of thekth sensor signal. The steering vectorsi(�i) for the ith plane
wave is specified by

si(�i) = [e
�j! �

e
�j! �

� � � e
�j! �

]
T (30)

where�i; k is the time it takes for theith plane wave to travel from
thekth sensor to the origin. With� designating the medium’s speed
of propogation, the time delays�i; k can be expressed as

�i; k =
1

�
[zk(1) cos(�i) + zk(2) sin(�i)] for 1 � k � p (31)

where the DOA of theith incident plane wave is designated by�i,
and zk(1) and zk(2) are thex and y coordinates of thekth sensor
on the z plane.
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Fig. 6. Statistical comparison of the standard LS algorithm with nonlinear weighting in the presence of data outliers with variance 20 dB less than nominal
SNR. � = 0:3. Initial estimates are from weighted SOP algorithm.

Let us now consider the Mills–Cross array, which was used in an
experiment between San Diego, CA, and Ottawa, Ont., Canada. This
array is composed of 12 sensors (p = 12) positioned on thez plane
at [�287.5 0], [�187.5 0], [�87.5 0], [87.5 0], [187.5 0], [287.5
0], [0 �287.5], [0�187.5], [0�87.5], [0 87.5], [0 187.5], and [0
287.5], where the units are in feet. Two incoherent plane waves with
azimuth angles 21� and 25� and a center frequency of 14.85 MHz
impinge on this array, as shown in Fig. 3. The speed of propogation is
3�10

8 m/s. The complex valued envelope is generated from a zero-
mean unit variance Gaussian process. A total of 40 delayed samples
(N = 40) of the input signal are obtained at each sensor.

A. Case I: Changing Variance

In this section, we compare the performance of the standard LS
with the ML solution of logarithmic weighting (11) under changing
variance conditions. The noise sequence is generated as ap-variate
Gaussian distribution(p = 12) with covariance matrix�2nIp. The
variance for thenth snapshot�2n for 1 < n < N is obtained so that
the signal-to-noise ratio (SNR) takes values uniformly within a range
of �20 dB around a nominal SNR. One hundred trial runs of both
methods are performed at “nominal” SNR’s starting from 0–50 dB in
steps of 5 dB. The Gauss–Newton optimization method in conjunction
with Gram–Schmidt orthogonalization is used for optimization.

The effectiveness of the Gauss–Newton descent method is highly
dependent on the selection of the initial estimates. When the initial
estimates are far from their actual values, the algorithm may converge
to a relative minimum. The sequential orthogonal projection (SOP)
algorithm, which is also known as the coordinate descent algorithm
[20], is shown to be successful for Gaussian noise with constant
variance [1], [2]. A weighted version of the SOP algorithm is
described in [19]. To test the effectiveness of the initial estimates
from the weighted SOP method, the experiments are performed with
initial estimates from the weighted and standard SOP methods. For
the weighted SOP algorithm, the nonlinear weighting function is
chosen as the weighting function corresponding to the log-likelihood

function (14). The root-mean-squared (RMS) error versus nominal
SNR plots for the plane wave with 25� as the azimuth angle are shown
in Fig. 4(a) and (b). For low SNR’s, the initial estimates obtained
from the standard SOP method are frequently far from the actual
DOA’s. As a result, the Gauss–Newton method may converge to a
relative minimum. When the weighted SOP method [19] is employed,
the initial estimates are generally closer to the actual DOA’s. Hence,
the weighted SOP algorithm provides more reliable initial estimates.

Another set of simulations are performed with noise samples whose
variance varies in the range�12 dB around a nominal SNR. In this
case, the noise samples typically do not have as high variances as
the previous example for a given nominal SNR. Hence, the effect
of weighting in the initial estimates is recognized at lower nominal
SNR’s. Fig. 5(a) and (b) depicts the performance of the optimally
weighted and LSE algorithms with respect to each other when the
initial estimates are obtained through the standard and weighted SOP
algorithms.

B. Case II: A Spherically Symmetric Distribution

In this case, noise samples are generated from ap-variate Cauchy
density function. The scale parameterb in (17) is selected so that
�20 log b = 5k for k = 3; 4; � � � ; 10. One hundred trial runs
are performed at every value ofb with the following selection of
nonlinear functions:

1) standard LSE [ (r) = r];
2) ML estimator [ (r) = log(r=b2 + 1)];
3) logarithmic weighting [ (r) = log(r)];
4) a heuristically selected nonlinearity o(r) = r=(r2 + �o).

The nonlinear function o(r) = r=(r2 + �o) is not monotone
increasing but of the redescending type. It is included to add variety.
This nonlinearity is expected to limit the effect of the samples
at the tails of the Cauchy distribution more than the other three
functions. However, the Gauss–Newton method is more likely to
converge to a local optimum for this nonlinearity especially when
the initial estimates are far from their actual values. At every
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iteration of the Gauss–Newton method, the parameter�o is selected
so that the nonlinear function o(r) takes its maximum value at
r = 2:medianfr(t1); r(t2); � � � ; r(tN)g. In this way, most of the
samples are guaranteed to be to the left of its maximum point, and
the Gauss–Newton method is less likely to diverge.

The RMS errors of the DOA estimates obtained with the above
weighting functions are shown in Table I. It is clear that standard
LS methods yield inferior and often unacceptable estimates of the
DOA’s. The ML weighting scheme performed the best, and the simple
logarithmic weighting performed almost identically. The heuristically
selected nonlinearity o(r) yields acceptable results, but it is inferior
to the ML and logarithmic weighting.

C. Case III: Outliers in Data

To test the performance of the nonlinear least squares algorithm
with different weighting functions, 30% of the 40 snapshots are
randomly selected to have an SNR of 20 dB less than their nominal
value. The initial estimates are obtained by the weighted SOP
technique with optimal weighting of (22). With these initial estimates,
the Gauss–Newton method is used to minimize the weighted squared
error criterion with weighting function as obtained from

1) the ML weighting function in (22);
2) logarithmic weighting (r) = log(r);
3) the sigmoid (r) = a[1� exp(��r)] with the upper bound as

twice the median of the squared error;
4) the standard LS method.

This experiment is repeated 100 times for the same set of nominal
SNR’s as in Case I. As depicted in Fig. 6, the nonlinear weighting
functions yield better results than the standard LS. The performance
of the sigmoid is close to that of the ML solution and is a viable
alternative in cases where information on the contamination rate and
variance are not available. The simple logarithmic weighting again
performed similar to the ML weighting function, as mentioned in
Section II-C.

The same experiment is repeated for the case in which 10% of
the snapshots have a SNR of 20 dB less than nominal SNR. A
smaller contamination level� resulted in a smaller gap between
RMS errors of the standard LS and the nonlinear weighting. Finally,
another experiment with 30% of the snapshots having an SNR of 12
dB less than nominal value is performed. The nonlinear weighting
still outperformed the standard LS; however, the difference is not
as significant. The advantage of employing a nonlinear function
is apparent when either the difference between variances of the
nominal and the contaminating distributions is significant, and/or the
contamination level� is large.

IV. CONCLUSIONS

In this correspondence, a robust DOA estimation method is devel-
oped. The robustness is achieved by introducing a nonlinear function
that weights the squared error term in the sum-of-squared-error
criterion. Weighting functions for various observation noise scenarios,
including the Gaussian noise with time-varying variance, the class
of spherically symmetric distributions, and�-contaminated Gaussian
noise, are determined by the ML estimation theory. It is seen that
an appropriately selected nonlinear weighting function improves the
estimates of the parameters, and yet, computational complexity of the
parameter estimation problem does not increase significantly.
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