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Wideband Maximum Likelihood Direction
Finding and Signal Parameter Estimation by

Using the Tree-Structured EM Algorithm
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Abstract—The expectation maximization (EM) algorithm is presented
for the case of estimating direction of arrivals of unknown deterministic
wideband signals. Alternative regularized least squares estimation tech-
niques for the required signal estimation and a tree structure for the
data mapping in the EM algorithm are proposed. Extensive simulation
results are presented for comparison of the proposed algorithms with the
conventional EM approach and the current high-resolution methods of
wideband direction finding.

Index Terms—Array signal processing, EM algorithm, maximum like-
lihood estimation, signal parameter estimation, source localization, tree-
structured EM algorithm, wideband direction finding.

I. INTRODUCTION

The problem of direction-of-arrival estimation has been studied
extensively both for the narrowband and wideband cases. Although
the maximum likelihood (ML) estimates are the most preferable, due
to its higher computational cost, ML approach has not found much
use in practice. However, the superposition property of the data acqui-
sition system can be exploited by using the expectation maximization
(EM) algorithm in order to reduce greatly the complexity of the ML
estimation [1]. The derivation of the EM algorithm for the direction
finding problem in the narrowband case is available [2], and it is also
applied to wideband signals [3].

In EM formalism, the observation,incomplete datais obtained
via a many-to-one mapping from thecomplete dataspace that
includes signals that we would obtain as the sensor outputs if we
were able to observe the effect of each source separately. The EM
algorithm iterates between estimating the likelihood of the complete
data using the incomplete data and the current parameter estimates (E-
step) and maximizing the estimated log-likelihood function to obtain
the updated parameter estimates (M-step). Under mild regularity
conditions, the iterations of the EM algorithm converge to a stationary
point of the observed log-likelihood function, where at each iteration,
the likelihood of the estimated parameters is increased [4], [5].

In the present study, for the estimation of unknown signals arriving
from different directions to a passive array, alternative regularized
estimation schemes to the common least squares solution are inves-
tigated. It has been demonstrated that when regularized methods are
used in the estimation of the received signals, the EM algorithm has
better convergence behavior. In addition, motivated with the ideas
of two former extensions of the EM algorithm, a tree-structured
hierarchy is used for the description of the relation between the
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complete data space and the observations [6], [7]. It is shown that
even for a moderate number of signals, the performance increases
with the use of the tree-structured EM algorithm.

II. THE DATA MODEL AND ML ESTIMATION VIA THE EM ALGORITHM

For the case ofM wideband signal wavefronts from the directions
�1; �2 � � � �M incident onto an array ofP sensors, the output of the
i’th sensor, which is sampled atN sampling points with a sampling
interval of Ts, can be written as

yi(t) =

M

l=1

ai(t; �l) � sl(t� �i(�l)) + ui(t)

1 � i � P; t = 0; Ts; . . . ; (N � 1)Ts (1)

whereai(t; �l) represents the frequency dependent directional sensor
gain known a priori. The signal emitted from the direction�l is
denoted assl(t). The noise at theith sensor isui(t), which is zero
mean, spatially, and temporally white circularly symmetric complex
Gaussian noise, and�i(�l) is the time delay (with respect to the phase
center of the array) of the signal with the direction of arrival equal
to �l. Source signals are assumed to be nonparametric and unknown
but deterministic wideband signals. When a prior parametric model
of the source signals is available, this additional information can
readily be utilized within the proposed framework with more reliable
direction-of-arrival estimates. The number of the arriving signalsM

is assumed to be known, that is, the detection phase is performed
accurately with the use of standard algorithms, which are reviewed in
[8]. The above signal model assumes the absence of near-field sources
since the added complexity of the data model for arbitrarily located
sources only makes the presentation of the ideas more difficult. In this
case, the impinging individual wavefields of the far-field sources have
the same direction of arrival at the sensors, and the curvature effect
of nearfield sources is avoided. The corresponding sensor output in
the frequency domain can be closely approximated by using DFT,
yielding

Yi(k) =

M

l=1

Ai(k; �l)e
�j

Sl(k) + Ui(k)

1 � i � P; 0 � k < F (2)

whereYi(k); Ai(k; �l); Sl(k); andUi(k) are theF -point discrete
Fourier transformations (DFT) ofyi(t); ai(t; �l); sl(t); and ui(t),
respectively. Since DFT is a unitary transformation, the transformed
noise is still a spatially and temporally white complex Gaussian
noise sequence. The following definitions are used to simplify the
representation:

• � = [�1 �2 � � � �M ]T ;

• b(k; �) = [A1(k; �)e
�j

� � � AP (k; �)e
�j

]T ;
• B(k;�) = [b(k; �1) � � � b(k; �M)];
• S(k) = [S1(k) � � � SM(k)]T ;
• Y(k) = [Y1(k) � � � YP (k)]T ;
• U(k) = [U1(k) � � � UP (k)]T ;
• B(�) = diagfB(0;�) � � � B(F � 1;�)g;
• S = [ST (0) � � � ST (F � 1)]T ;
• Y = [YT (0) � � � YT (F � 1)]T ;
• U = [UT (0) � � � UT (F � 1)]T .
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Using these definitions, (2) can be written asY = B(�)S + U or,
equivalently, as

Y(k) = B(k;�)S(k) +U(k) 0 � k < F: (3)

This final compact form of the measurement relation, which is the
same as the signal model of the Cram´er–Rao lower bound formula
in [9], is used in our derivations.

The ML estimates for� andS are obtained by a joint maximiza-
tion of the likelihood function of the observations. Direct solution
of this maximization problem by using numerical search methods
is not only computationally demanding, but in addition, due to
the usually complicated local maxima structure of the likelihood
function, it is not guaranteed to converge to the global maxima. The
EM method of obtaining the ML estimates has been proposed to
overcome the difficulty by an either parallel or sequential iterative
search in much lower dimensional parameter spaces [1]. In our
application, the most commonly used complete data specification
is Xl(k) = [X1l(k) � � �XPl(k)]

T , which is the spectrum of the
signal that would be observed at the sensors if we were able to
observe the effect oflth source separately. The mean of the complete
dataXl(k) is b(k; �l)Sl(k), and its statistics are determined by the
additive noise. Then, the many-to-one mapping for all sources from
the complete data space to the incomplete data space can be written as
Y(k) = M

l=1Xl(k) for 0 � k < F . By means of such a mapping,
the observed signal is decomposed intoM constituents; hence, in
the estimation of�l andSl(k), only Xl(k) is used along with the
observations. At thenth iteration of the EM algorithm, the iterative
update formulas are [10]

E-step: X
n

l (k) = b k; �
n

l S
n

l (k) +
1

M
[Y(k)�B(k;�n)Sn(k)]

(4)

M-step: �
n+1
l

= argmax
�

F�1

k=0

b
y(k; �)Xn

l (k)X
y

l
(k)b(k; �)

kb(k; �)k2

(5)

S
n+1
l

(k) =
b
y k; �n+1

l
X
n

l (k)

b k; �n+1
l

2 : (6)

In the above algorithm, direction-of-arrival estimation part of the
maximization step is (5), whereas (6) is the signal estimation stage
that uses the least squares solution, which is to be called LS-EM
from now on. In the maximization step, the direction-of-arrival and
signal estimation phases can be performed either one after the other
for eachl separately, as in the conventional EM algorithm, or the
signal estimation stage can be performed after the direction-of-arrival
estimation is completed for alll. Actually, for the latter case,�n+1

is available after (5) and can be inserted into (3). Then, we can solve
for Sn+1(k) by using a number of alternatives such as the least
squares (LS) solution, which can be performed to estimate allM

signal waveforms at once by using all currently updated direction
estimates, giving

Ŝ(k) = [By(k;�)B(k;�)]�1By(k;�)Y(k): (7)

This LS estimation has been proposed as a generalization of the
EM algorithm to speed up convergence [2]. However, since the
array manifold matrixB(k;�) is used instead of the steering vector
b(k; �), the required inversion in (7) may cause numerical instability
problems during the iterations of the algorithm, especially for the
case of sources with small separation. One way to avoid this is the
use of more robust regularized least squares (RGLS) estimate

Ŝ(k) = [By(k;�)B(k;�) + �I]�1By(k;�)Y(k): (8)

It is important to properly choose the regularization parameter�.
Some commonly used methods for this purpose have been investi-
gated in [11] and [12]. In our implementations, two adaptive strategies
for the choice of� are employed. The first one, which is referred to
as RGLS-1, works with the known noise variance, whereas the other
one, known as RGLS-2, can be used when the noise variance is
unknown [13], [14].

An alternative to the adaptively regularized least squares estimates
for source signals is the following, which is referred to as LS-SET
solution:

Ŝ(k) = argmin
S(k) Z

kY(k)�B(k;�)S(k)k2 d�

=
Z

B(k;�)yB(k;�)d�
�1

Z

B(k;�)y d� Y(k)

(9)

whereZ is a set of directions in a neighborhood of�. Since, in the
cost function of LS-SET, we use an average penalty in the neigh-
borhood of the estimated direction of arrivals, the LS-SET solution
provides signal estimates that is robust to the inaccuracies in the
direction-of-arrival estimates. For the case of discrete neighborhood
directions, the integrals reduce to summations over anM -dimensional
grid ofL directions in each dimension. The number of required nested
summations over anM -dimensional grid in the above expression
increases with the dimension of the direction vector�. Thus, the
computational complexity increases exponentially withM being in
the order ofLM . Therefore, practically, this alternative, if used as
above, is not preferable for large grid sizes and large number of
superposed signals. However, since (9) is solely an alternative for
the least squares solution, it can also be used instead of the LS-
EM solution, performing the estimation in each complete data space
separately as

Ŝl(k) = arg min
S (k) Z

kXl(k)� b(k; �l)Sl(k)k
2
d�l

=
Z

b
y(k; �l)b(k; �l) d�l

�1

Z

b
y(k; �l) d�l Xl(k):

(10)

This solution is named LS-RSET, as an abbreviation for LS on a
reduced set, since the size of the set is much smaller. In that case,
the summation terms are not nested inside each other; hence, the
computational load increases only linearly withM being in the order
of L � M . The EM algorithm with the above alternatives for the
signal estimation stage is shown in Table I, and the computational
issues are discussed in [10].

III. T REE-STRUCTURED EM ALGORITHM

In this section, we propose to use a multilevel tree structured
mapping between incomplete and complete data spaces rather than
the commonly used data set up for the EM algorithm. In this way, we
aim to bring together the superior features of two former extensions
of the EM algorithm, namely, the cascade EM (CEM) algorithm and
the space alternating generalized EM (SAGE) algorithm [6], [7].
In CEM, an intermediate data specification between the complete
and the incomplete data of the conventional EM method is used,
and intermediate EM steps at some iterations are performed. As
a result, faster convergence with fewer computations per iteration
is achieved when compared with the conventional EM algorithm.
In SAGE, the parameters are sequentially updated by alternating
between several hidden data spaces, unlike the EM algorithm, where
the parameters are updated simultaneously. Moreover, the complete
data spaces are organized such that the maximization step of the
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TABLE I
STEPS OF THEEM ALGORITHM WITH ALTERNATIVE SIGNAL ESTIMATION METHODS

Fig. 1. Binary tree structure for the example case of seven sources.

EM algorithm is performed in less informative data spaces providing
faster convergence. The sequential maximization of the expected
likelihood function in each hidden data space has been reported to
be the main factor of the superior performance of SAGE compared
with the conventional EM algorithm.

We propose to use a multilevel data hierarchy as shown in Fig. 1
for the example case of seven sources. The leaves of the tree host
the complete dataXl(k)’s, and the root of the tree denotes the
observationY(k). The intermediate nodes correspond to the partial
conditional incomplete dataYi;j(k), which are also updated during
the iterations. It should be noted that the intermediate data at a
particular node is not simply obtained by summing the complete
data of the leaves. The relevant branching indicates the relationship
of the complete and incomplete data of the EM algorithm. The
associated precise data assignment for the intermediate incomplete
data is explained below.

In this setting, the EM algorithm can be run for two sources at a
time using the incomplete data at the joint node of two leaves, which
is obtained by using the intermediate data at the lower1 branch node

1Just like in real trees, lower branch or lower level refers to a branch or
level closer to the root of the tree.

and complete data, which is not to be updated by the current run. For
instance, to run the EM algorithm forX1(k) andX2(k), we form
the required incomplete data as

Y1;1(k) = Y(k)�

7

l=5

b(k; �l)Sl(k)

and

Y2;1(k) = Y1;1(k)�

4

l=3

b(k; �l)Sl(k) (11)

where Sl(k) and �l are the current values of the signal and di-
rection of arrival, respectively. After a number of iterations has
been performed on the branch ofY2;1(k), the EM algorithm is
run for the branch ofY2;2(k), which can be found asY2;2(k) =
Y1;1(k)�

2

l=1
b(k; �l)Sl(k), where, in this case,Sl(k) and�l for

l = 1; 2 are the updated values by the EM algorithm applied to the
branch ofY2;1(k) before. This switching may be repeated a number
of times or until a convergence criterion is satisfied. Having updated
values of signal and direction of arrivals forl = 1 � � � 4, the EM
routine can be run for the branch ofY1;2(k) with the same strategy
of data assignment. The switching between the branches ofY1;1(k)
andY1;2(k) can be repeated as well. The reason for formingY1;1(k)
as in (11) is now clear; although assignment ofY2;1(k) corresponds
to

Y2;1(k) = Y(k)�

7

l=3

b(k; �l)Sl(k) (12)

we assign a value toY2;1(k) viaY1;1(k) because we want to switch
between nodes ofY2;1(k) andY2;2(k) and run the EM algorithm to
enhance the estimates forX1(k) � � �X4(k). Then, we go for a lower
level switching betweenY1;1(k) andY1;2(k).

The proposed tree structure can be seen as a generalization of the
CEM algorithm. Although the algorithm is presented for two levels of
data hierarchy in [6], it is straightforward to formulize it for multiple
levels. Note that there are three levels of data hierarchy in the binary
tree example in Fig. 1, and a many-to-one mapping takes place from
each level to a lower level of the tree. If we were to update the
complete and intermediate data for all the nodes at a particular level
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at once, that would be the case of CEM algorithm. However, after
establishing that mapping structure in a binary tree, we take the route
of the SAGE algorithm and restrict our attention to running EM on
smaller sets of complete data, which can be associated with SAGE
algorithm as being the hidden data spaces. Therefore, not all of the
parameters are updated at a time, but only a subset of parameters
are updated sequentially. Note that forming the intermediate data
as given above is also related with the content of the information
carried by intermediate data. By using that data assignment, we
actually extract, from the observations at the lower branch node, the
information carried by the parameters other than those to be updated
at the current run of the EM algorithm. Hence, most of the noise
in the intermediate data of the lower branch node remains on the
intermediate data on the branch node where EM is to be applied.
This makes the current branch a less informative space of complete
data; hence, an increase in the convergence rate can be obtained
[7]. Furthermore, in order to improve the signal estimation step of
the EM algorithm, we use regularized estimators introduced in the
previous section. Hence, the TSEM algorithm with the regularized
signal estimation should provide better performance than both the
CEM and SAGE algorithms.

Working in smaller dimensional spaces provides not only speed in
convergence but also computational saving since in the tree structure,
two sources are treated at a time with smaller dimensional matrices
resulting in fewer computations per iteration. Therefore, it is suitable
to use tree structure especially for a large number of sources and
computationally expensive regularized signal estimation methods.
The computation required for the overall tree-structured procedure
depends on the number of switchings between lower branches and
EM iterations performed at each branch and on the computational
complexity of the EM algorithm itself, which is determined by the
signal estimation methods used in the EM algorithm [10].

IV. SIMULATION RESULTS

In this section, we compare the proposed algorithms both with
each other and with the conventional EM approach. In addition, we
investigate the performance improvement with respect to one of the
most improved subspace-based wideband direction-finding algorithms
known as the two-sided correlation transformation (TCT) [15].

A. Simulation Set I

This part of the simulations include the performance evaluation of
the EM algorithm when, in the signal estimation stage of the max-
imization step, one of the proposed or the former signal estimation
methods is used. The methods are termed as LS-EM, LS, RGLS,
LS-SET, and LS-RSET, corresponding to (6)–(10) respectively. The
scenario is as follows: Two wideband signals with true direction
of arrivals �� = [35� �20�]T with respect to the normal of the
array are incident onto a linear array of 19 sensors. The number
of the sensors is chosen by using the result of another simulation,
which is done to reveal the performance of the EM algorithm with
changing sensor number [10]. Signals are taken as coherent linear
FM waveforms with a bandwidth 116 MHz, a center frequency 106
MHz, N = 128 time samples, andF = 256 FFT points. For each of
the signal estimation alternatives, the EM algorithm is run, within a
convergence criterion and maximum number of iterations of 40, with
an initial direction-of-arrival estimate�0 = [32� �17�]T for 10
realizations andsignal-to-noise ratioranging from�10 dB to 10 dB
with 5-dB increments. For initialization of the procedure, the initial
signal estimation is performed by using RGLS-2, which is chosen by
using the result of another simulation, where we have compared the
performance of LS, RGLS and LS-SET in solving (3), given� [10].

(a)

(b)

Fig. 2. (a) DOA estimation error of the EM algorithm together with CRLB
and result of TCT. (b) Magnified view of EM result with different signal
estimation methods.

According to that study, performances can be descendingly ordered
as that of RGLS-2, RGLS-1, LS-SET, and LS, with LS-SET being the
least sensitive of the methods to the error in initial direction estimates.

The performance of the EM algorithm with alternative signal
estimation methods is evaluated in terms of both the direction of
arrival and the signal estimation error, which are defined as

�� = k�̂� ��k2 �s =
1

MN

M

l=1

N�1

t=0

jŝl(t)� �sl(t)j
2 (13)

where �� and�sl(t) are the true direction of arrival and the true signal
waveform and�̂ and ŝl(t) are their estimates.

The direction-of-arrival estimation error of the EM algorithm using
different signal estimation methods is shown in Fig. 2(a) together
with the Craḿer–Rao lower bound on the variance of the estimates
and the results produced by applying the TCT algorithm to our
problem. As seen in Fig. 2, the performance of the RGLS method,
which is almost the same for RGLS-1 and RGLS-2 algorithms,
seems to be superior to the others at the simulated SNR values.
This behavior is apparent, especially at low SNR values, where
the performance of LS degrades due to the numerical instability
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Fig. 3. Signal estimation performance of the EM algorithm with different
signal estimation methods.

effect, which was mentioned earlier. Since, if it converges, the EM
algorithm provides the same estimates as those of CEM and SAGE
algorithms (where the signal estimation is performed by ordinary least
squares techniques), the ordinary least squares performance curves in
this figure also correspond to the performances of CEM and SAGE
algorithms. LS-SET and LS-RSET, having almost identical behavior
throughout the range of SNR values, also do better than LS or LS-
EM for low SNR regions. Correspondingly, it is clear from Fig. 3
that the RGLS method is superior in producing signal estimates.
The LS-SET performs slightly better than LS-RSET, both of which
produce less error than the LS or LS-EM, which are almost on the
same curve. As expected, these two figures reveal the fact that the
signal and direction-of-arrival estimations are closely related. The
TCT algorithm has not produced good results in the simulations. This
may be due to the large bandwidth of the signals used. In addition,
the large number of frequency bins used in our simulations may
cause difficulty in focusing different signal subspaces associated with
particular frequency bins to a common focusing subspace.

We have also investigated the convergence behavior of the EM
algorithm, which employs the signal estimation alternatives. The
configuration is the same as in the previous set of simulations. The
simulation is done for SNR= 0 dB and the direction-of-arrival
error is traced as the EM algorithm iterates. The result shown in
Fig. 4 is the average error of direction-of-arrival estimates over 10
realizations as a function of iteration number of the EM algorithm.
In the EM algorithm, if the complete data were available, then the
best estimate of the signals would be given by LS-EM. However,
since only the incomplete data is available, the greatest increase in
the complete data likelihood is obtained by jointly estimating all of
the signal components given the currently updated direction values
[2]. Notice in Fig. 4 that when joint signal estimation is performed
as in LS, RGLS, or LS-SET, convergence improvement over LS-EM
and LS-RSET is obtained. Furthermore, with the same reasoning,
a regularized signal estimator that provides better signal estimates
than an ordinary least squares estimate is expected to increase the
estimated likelihood further. In accordance with our expectations,
the convergence of RGLS methods clearly outperforms the others,
providing a significant gain in the number of iterations that should be
performed to reach a satisfactory convergence level. The argument
that better signal estimates and joint signal estimation enhance the
convergence is totally supported by the results in Figs. 3 and 4.

Fig. 4. Trace of direction of arrival error.

Fig. 5. TSEM versus EM.

B. Simulation Set II

In this part of the simulations, the tree-structured EM (TSEM) algo-
rithm is compared with the conventional EM algorithm for the case of
four sources from directions� = [35� �20� �50� 60�]T at SNR=

0 dB. Initial directions are given as�0 = [32� �17� �47� 57�]T .
In TSEM, the EM algorithm, which uses the LS-RSET in its signal
estimation, is run for two sources at a time, with a maximum number
of iterations of five at each branch. After five iterations at one
branch, the algorithm switches to the other branch. This switching
is also repeated eight times. Therefore, in total, 40 iterations of
the EM algorithm are performed for each direction of arrival. The
reason we use LS-RSET solution for the signal estimation stage
is that this method is robust to inaccuracies in the initial direction
estimates as LS-SET because of the smoothing it performs over a set
of neighboring directions. Furthermore, it needs fewer computations
than LS-SET.

For comparison purposes, the EM algorithm is also run for four
sources with a maximum number of iterations of 40; hence, the
number of EM iterations performed on each source is the same in both
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cases. The direction-of-arrival estimation error is traced throughout
the processes and displayed in Fig. 5, where it can be clearly seen that
the tree-structured EM algorithm has a significantly higher speed of
convergence. In addition to this important speedup, the tree structure
provides savings in each iteration due to the smaller size of matrices
and vectors handled in the algorithm. Notice also that Figs. 2 and 3
present comparison results between the TSEM and EM algorithms
at their converged estimates. Moreover, since it is known that both
CEM and SAGE algorithms provide the same estimates as the EM,
only more efficiently, those figures also provide comparison between
the converged estimates of TSEM and CEM and SAGE when the
curves of EM are interpreted as those of CEM and SAGE.

V. CONCLUSION

For the case of estimating direction of arrival of unknown determin-
istic wideband signals arriving from different directions to a passive
array, a generalization on the expectation-maximization algorithm
is proposed by using a tree-structured multiple-level data mapping.
It is demonstrated by simulations that the proposed tree-structured
EM (TSEM) algorithm converges faster than the conventional EM
algorithm. In addition to speeding up the convergence, it provides
considerable saving in computation, especially for a large number of
superposed signals, since in the tree structure, two signals are pro-
cessed at a time with lower dimensional data, unlike the conventional
EM algorithm, where the size of data matrices is larger.

In order to obtain reliable estimates, even at low signal-to-noise
ratio, and to speed up the convergence of the EM algorithm, alterna-
tive regularized least squares estimation techniques are proposed with
significant improvement over the standard least squares techniques. It
is shown that with better signal estimation during the iterations, the
EM algorithm converges faster to more reliable direction-of-arrival
and signal estimates.
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Time Series Analysis in the Frequency Domain

Rik Pintelon and J. Schoukens

Abstract—This correspondence presents a parametric frequency do-
main identification algorithm for autoregressive moving average (ARMA)
processes that does not suffer from spectral leakage errors. It is based
on an extended transfer function model that takes into account the
begin and end effect of the finite data record. The relationship with the
one-step-ahead prediction error method is established. The advantages
of the proposed method are easy prefiltering and leakage-free spectral
representation of the raw data.

Index Terms—Autoregressive moving average processes, frequency
domain analysis, time series.

I. INTRODUCTION

Time series analysis has a lot of applications such as forecasting
in econometrics [1], spectral estimation in signal processing [2], and
parametric noise modeling in time-domain system identification [3]. It
consists of modeling a time seriesy(t) as an autoregressive moving
average (ARMA) process

y(t) = H(q; �)e(t) t = 0; 1; � � � ; N � 1 (1)

where e(t) is a zero mean, white noise sequence with unknown
variance�2. q stands for the backward shift operator,H(q; �) for
the parametric noise model

H(z�1; �) =
C(z�1; �)

D(z�1; �)
=

1 +

n

m=1

cmz
�m

1 +

n

m=1

dmz�m

(2)

and � = [c1; c2; � � � ; cn ; d1; d2; � � � ; dn ]T for the noise model
(ARMA) parameters. Note that in (2), the parameter constraints
c0 = d0 = 1 have been imposed in order to make the estimation
problem identifiable [�2 = var(e(t)) is unknown]. Since (1) depends
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