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Correspondence

Wideband Maximum Likelihood Direction complete data space and the observations [6], [7]. It is shown that
Finding and Signal Parameter Estimation by even for a moderate number of signals, the performance increases
Using the Tree-Structured EM Algorithm with the use of the tree-structured EM algorithm.
Nail Cadalli and Orhan Arikan IIl. THE DATA MODEL AND ML ESTIMATION VIA THE EM ALGORITHM

For the case ofd wideband signal wavefronts from the directions

Abstract—The expectation maximization (EM) algorithm is presented ‘.91’ 02+ 0 |n(_:|de_nt onto an array of Sensors, thg output of _the
for the case of estimating direction of arrivals of unknown deterministic ¢ th sensor, which is sampled & sampling points with a sampling
wideband signals. Alternative regularized least squares estimation tech- interval of 7T, can be written as
niques for the required signal estimation and a tree structure for the

. . . . . . M
data mapping in the EM algorithm are proposed. Extensive simulation

results are presented for comparison of the proposed algorithms with the yi(t) = Z ai(t, 00) * si(t = 7i(61)) +wi(t)
conventional EM approach and the current high-resolution methods of =1
wideband direction finding. 1<i<P t=0T,....,(N-1)T, (1)

_ Index Terms—Array signal processing, EM algorithm, maximum like-  whereq, (¢, §;) represents the frequency dependent directional sensor
lihood estimation, S|_gnal pqrameter e;tlm_atlon_, source localization, tree- gain knowna priori. The signal emitted from the directiofy is
structured EM algorithm, wideband direction finding. . . . .
denoted as;(¢). The noise at théth sensor isu;(¢), which is zero
mean, spatially, and temporally white circularly symmetric complex
I. INTRODUCTION Gaussian noise, and(4;) is the time delay (with respect to the phase

The problem of direction-of-arrival estimation has been studidgnter of the array) of the signal with the direction of arival equal
extensively both for the narrowband and wideband cases. Althou@hf!- Source signals are assumed to be nonparametric and unknown
the maximum likelihood (ML) estimates are the most preferable, déidt deterministic wideband signals. When a prior parametric model
to its higher computational cost, ML approach has not found mu the source signals is available, this additional information can
use in practice. However, the superposition property of the data acd@adily be utilized within the proposed framework with more reliable
sition system can be exploited by using the expectation maximizatigfiection-of-arrival estimates. The number of the arriving sigidls
(EM) algorithm in order to reduce greatly the complexity of the MLS @ssumed to be known, that is, the detection phase is performed
estimation [1]. The derivation of the EM algorithm for the directiofcCurately with the use of standard algorithms, which are reviewed in

finding problem in the narrowband case is available [2], and it is al$gl- The above signal model assumes the absence of near-field sources
applied to wideband signals [3]. since the added complexity of the data model for arbitrarily located

In EM formalism, the observatiorincomplete datais obtained SCUrCes o_nly _makes_thg presentatior_l of the ideas more difficult. In this
via a many-to-one mapping from theomplete dataspace that €2S€ the impinging mlelquaI wavefields of the far-field sources have
includes signals that we would obtain as the sensor outputs if Wi Same direction of arrival at the sensors, and the curvature effect
were able to observe the effect of each source separately. The giynearfield sources is avoided. The corresponding sensor output in

algorithm iterates between estimating the likelihood of the compleld® frequency domain can be closely approximated by using DFT,
data using the incomplete data and the current parameter estimated/(@ding

step) and maximizing the estimated log-likelihood function to obtain M 2mkri(0])

the updated parameter estimates (M-step). Under mild regularity Yi(k) = Ai(k,60)e " T T Sy(k) + Ui(k)
conditions, the iterations of the EM algorithm converge to a stationary =1

point of the observed log-likelihood function, where at each iteration, 1<i<P, 0<Ek<F (2

the likelihood of the estimated parameters is increased [4], [5]. “whereY;(k), Ai(k,8,), Si(k), and U, (k) are theF-point discrete

In thg present.stUQy, for the estimation of unknown ;lgnals armvings yrier transformations (DFT) of: (¢), ai(t.8:), si(t), and u;(t),
from different directions to a passive array, alternative regularizedsectively. Since DFT is a unitary transformation, the transformed
estimation schemes to the common least squares solution are iNyRsz. is still a spatially and temporally white complex Gaussian

tigated. It has been demonstrated that when regularized methods gjge sequence. The following definitions are used to simplify the
used in the estimation of the received signals, the EM algorithm hflﬁ)resentation:

better convergence behavior. In addition, motivated with the ideas

. = o e T.
of two former extensions of the EM algorithm, a tree-structured ® =16 62 elf]_i’k,_l@ _j2mkTp(®
hierarchy is used for the description of the relation between the* b(k.6) =[A(k.6)e™ F "%~ .. Ap(k,6)e™" F "1 ]
* B(k,®) = [b(k.61) -+ b(k.01)];
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Using these definitions, (2) can be written 3s= B(®)S + U/ or, It is important to properly choose the regularization paramegter
equivalently, as Some commonly used methods for this purpose have been investi-
gated in [11] and [12]. In our implementations, two adaptive strategies
for the choice ofu are employed. The first one, which is referred to

as RGLS-1, works with the known noise variance, whereas the other

This final compact form of the measurement relation, which is trBene known as RGLS-2 can be used when the noise variance is
same as the signal model of the CerRao lower bound formula unklvwown [13], [14] ’

in [9], is used in our derivations.

Y (k)= B(k,®)S(k) + U(k) 0<k<F. ®)

An alternative to the adaptively regularized least squares estimates

~ The ML estimates fo® andS are obtained by a joint maximiza- ¢, ¢ ;rce signals is the following, which is referred to as LS-SET
tion of the likelihood function of the observations. Direct solutlogolution.

of this maximization problem by using numerical search methods .
is not only computationally demanding, but in addition, due toS(k) = argmin/ 1Y (k) — B(k,®)S(k)|* d®

the usually complicated local maxima structure of the likelihood S(k) )
function, it is not guaranteed to converge to the global maxima. The / 4 B / i ,

= B(k,®)'B(k,®)dO B(k,©®)" dO®|Y(k
EM method of obtaining the ML estimates has been proposed to =z (k,®)'B(k,®) = (k, ®) (k)
overcome the difficulty by an either parallel or sequential iterative 9)

search in much lower dimensional parameter spaces [1]. In our

application, the most commonly used complete data specificati}ff€re < is a set of directions in a neighborhood®t Since, in the

is X;(k) = [Xu(k)-- Xpi(k)]T, which is the spectrum of the cost function of LS_-SET, we use an average penalty in the nel_gh-
signal that would be observed at the sensors if we were ablegh00d of the estimated direction of arrivals, the LS-SET solution

observe the effect dth source separately. The mean of the complefy©Vides signal estimates that is robust to the inaccuracies in the
dataX, (k) is b(k, 6:)S,(k), and its statistics are determined by théi!rect!on-of-arr_lval estimates. For the case of d|scret¢ ne|g_hborhood
additive noise. Then, the many-to-one mapping for all sources frdfiyections, the integrals reduce to summations ovelfadimensional

the complete data space to the incomplete data space can be writtefigs0f L directions in Qagh dimension. The number of required nested
Y (k) =M X,(k)for 0 < k < F. By means of such a mapping, SUmmations over an{-dimensional grid in the above expression

the observed signal is decomposed ifith constituents; hence, in increases with the dimension of the direction ved®r Thus, the
the estimation of; and S;(k), only X, (k) is used along with the computational complexity increases exponentially with being in

observations. At theth iteration of the EM algorithm, the iterative € order of L. Therefore, practically, this alternative, if used as
update formulas are [10] above, is not preferable for large grid sizes and large number of

superposed signals. However, since (9) is solely an alternative for
1 i i i -
E-step X['(k) = b(k,e{‘)sl”(k) + = [Y(k) = B(k, ®")S" (k)] the Ieast_ squares sqlutlon, it can glso_ be used instead of the LS
M EM solution, performing the estimation in each complete data space
(4) separately as

P14 o
) ‘ bt (&, 6)X7 ()X (k)b(k, ) . o ,
M-step 671 = arg max g |fb(k,9;||2 Si(k) = arg 5{111(1111) /zl (IX:(k) — b(k, 8,)Si1(k)||” d6;
(5) . —1r o,
+1 b (k, ;") X] (k) B {/ (k. 0)b(k, 80 dgl} {/ (k.81 del} Xk
ST k)= H—, 6 Z Z
o [ (k67| © (10)

In the above algorithm, direction-of-arrival estimation part of th@his solution is named LS-RSET, as an abbreviation for LS on a
maximization step is (5), whereas (6) is the signal estimation staggsluced set, since the size of the set is much smaller. In that case,
that uses the least squares solution, which is to be called LS-Ei¥¢ summation terms are not nested inside each other; hence, the
from now on. In the maximization step, the direction-of-arrival angomputational load increases only linearly with being in the order
signal estimation phases can be performed either one after the offfef x 3. The EM algorithm with the above alternatives for the
for each! separately, as in the conventional EM algorithm, or thgéignal estimation stage is shown in Table I, and the computational
signal estimation stage can be performed after the direction-of-arrijggues are discussed in [10].

estimation is completed for all Actually, for the latter case®" ™!

is available after (5) and can be inserted into (3). Then, we can solve Ill. TREESTRUCTURED EM ALGORITHM

for §"*'(k) by using a number of alternatives such as the least),, g section, we propose to use a multilevel tree structured

squares (LS) solution, which can be performed to estlmate_i\fbll_ mapping between incomplete and complete data spaces rather than
signal waveforms at once by using all currently updated directiqRe commonly used data set up for the EM algorithm. In this way, we
estimates, giving aim to bring together the superior features of two former extensions
$(k) = [B'(k, ®)B(k, ®)]"'B (£, ®)Y (k). @ of the EM algorithm, namely, the cascade EM (CEM) qlgorithm and
o i the space alternating generalized EM (SAGE) algorithm [6], [7].
This LS estimation has been proposed as a generalization of tReCEM, an intermediate data specification between the complete
EM algorithm to speed up convergence [2]. However, since tigd the incomplete data of the conventional EM method is used,
array manifold matrixB(k, @) is used instead of the steering vecto@nd intermediate EM steps at some iterations are performed. As
b(k, ), the required inversion in (7) may cause numerical instability reésult, faster convergence with fewer computations per iteration
problems during the iterations of the algorithm, especially for tHé achieved when compared with the conventional EM algorithm.
case of sources with small separation. One way to avoid this is e SAGE, the parameters are sequentially updated by alternating

use of more robust regularized least squares (RGLS) estimate between several hidden data spaces, unlike the EM algorithm, where
the parameters are updated simultaneously. Moreover, the complete

S(k) = [B'(k,®)B(k,®) + uI] 'Bf(k,®)Y(k). (8) data spaces are organized such that the maximization step of the
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TABLE |

StePs OF THEEM ALGORITHM WITH ALTERNATIVE SIGNAL ESTIMATION METHODS
Initialization
1. : Setn=0.
2. : Obtain a rough estimate for ©°.
3. : Using @ solve (3) by LS, RGLS or LS-SET for S°(k)
4. : Decompose the observation to complete data by using (4)
5. . Update ©" by using (5) for all {. If LS-EM or LS-RSET is to be used in Step 6,

#," can be updated only.
6. : Update S"(k) if LS, RGLS or LS-SET is used. Update S7*(k) if LS-EM or LS-RSET
is used. Do the latter for each [ if ©®™ is updated in Step 5, otherwise goto Step 5

for the update of 67, ;.

Loop
7. : Increment n by 1 and continue from Step 4.
— X, and complete data, which is not to be updated by the current run. For
Y, instance, to run the EM algorithm f&X; (%) and X.(%), we form
— X, the required incomplete data as
—— X4 7
Yi1(k)=Y(k)— b(k,6,)S:(k
v Y4 X - 11 (k) =Y (k) ,Z (k. 60)Si(k)
— 5 =5
o X3 and
4
Y « You (k) =Y1.1(k) = > b(k.0)Si(k) 11)
1l 2 =3
Yi,j . " where S;(k) and 8; are the current values of the signal and di-
Lo index 2t L—— x, rection of arrival, respectively. After a number of iterations has
been performed on the branch & (%), the EM algorithm is
level run for the branch ofY: 2 (%), which can be found a¥. (k) =

Yi1,1(k) =37, b(k,6:)Si(k), where, in this case§;(k) andé; for
! = 1,2 are the updated values by the EM algorithm applied to the
branch ofY ; (k) before. This switching may be repeated a number
EM algorithm is performed in less informative data spaces providirgf times or until a convergence criterion is satisfied. Having updated
faster convergence. The sequential maximization of the expectetdues of signal and direction of arrivals for= 1---4, the EM
likelihood function in each hidden data space has been reportedreotine can be run for the branch &f; 2 (k) with the same strategy
be the main factor of the superior performance of SAGE comparetidata assignment. The switching between the branchas, of( k)
with the conventional EM algorithm. andY; (k) can be repeated as well. The reason for form¥hg; (%)

We propose to use a multilevel data hierarchy as shown in Figas in (11) is now clear; although assignmen®®f ; (k) corresponds
for the example case of seven sources. The leaves of the tree host
the complete dataX,(k)’s, and the root of the tree denotes the 7
observationY (k). The intermediate nodes correspond to the partial Yo (k) =Y (k) - Zb(k, 6:)Si(k) (12)
conditional incomplete dat¥’; ;(k), which are also updated during =3

the iterations. It should be noted that the intermediate data ai@ assign a value &> (k) via Y1 1 (k) because we want to switch

particular node is not simply obtained by summing the complefssitween nodes 0¥ (k) andY2»(k) and run the EM algorithm to
data of the leaves. The relevant branching indicates the relationshifhance the estimates B0 () - 2 Xa(k). Then. we go for a lower

of the complete and incomplete data of the EM algorithm. Thgyg| switching betweei¥; 1 (k) and Y 2 (k).

associated precise data assignment for the intermediate incompletehe proposed tree structure can be seen as a generalization of the
data is explained below. ) CEM algorithm. Although the algorithm is presented for two levels of

_ In this setting, the EM algorithm can be run for two sources at @ta hierarchy in [6], it is straightforward to formulize it for multiple
time using the incomplete data at the joint node of two leaves, whighe|s. Note that there are three levels of data hierarchy in the binary
is obtained by using the intermediate data at the |bwesinch node tree example in Fig. 1, and a many-to-one mapping takes place from

1Just like in real trees, lower branch or lower level refers to a branch 8Ach level to a lower level of the tree. If we were to update the
level closer to the root of the tree. complete and intermediate data for all the nodes at a particular level

Fig. 1. Binary tree structure for the example case of seven sources.
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at once, that would be the case of CEM algorithm. However, after o :
establishing that mapping structure in a binary tree, we take the route

of the SAGE algorithm and restrict our attention to running EM on -1o
smaller sets of complete data, which can be associated with SAGE

algorithm as being the hidden data spaces. Therefore, not all of the 2o
parameters are updated at a time, but only a subset of parametgrs
are updated sequentially. Note that forming the intermediate dag&so
as given above is also related with the content of the informatiog

carried by intermediate data. By using that data assignment, vge,zto
actually extract, from the observations at the lower branch node, ti§e

information carried by the parameters other than those to be updatz)édsof .
at the current run of the EM algorithm. Hence, most of the noise
in the intermediate data of the lower branch node remains on the.so} ————_ CRLB 1
intermediate data on the branch node where EM is to be applied.
This makes the current branch a less informative space of completezo|- .
data; hence, an increase in the convergence rate can be obtained
[7]. Furthermore, in order to improve the signal estimation step of _gg * : '

the EM algorithm, we use regularized estimators introduced in the -1 N sr?m > 10
previous section. Hence, the TSEM algorithm with the regularized (@)
signal estimation should provide better performance than both the
CEM and SAGE algorithms. -0 ‘
Working in smaller dimensional spaces provides not only speed in LS

convergence but also computational saving since in the tree structure, | LS-EM
two sources are treated at a time with smaller dimensional matrices
resulting in fewer computations per iteration. Therefore, it is suitablg’
to use tree structure especially for a large number of sources afidaol
computationally expensive regularized signal estimation methodé.
The computation required for the overall tree-structured proceduge
depends on the number of switchings between lower branches a@das’
EM iterations performed at each branch and on the computation@l
complexity of the EM algorithm itself, which is determined by the§_4O,

signal estimation methods used in the EM algorithm [10].

" LS-SET,LS-RSET

IV. SIMULATION RESULTS

In this section, we compare the proposed algorithms both with

each other and with the conventional EM approach. In addition, we -5, 5 0 e 0
investigate the performance improvement with respect to one of the SNR
most improved subspace-based wideband direction-finding algorithms (b)

known as the two-sided correlation transformation (TCT) [15]. Fig. 2. (a) DOA estimation error of the EM algorithm together with CRLB

and result of TCT. (b) Magnified view of EM result with different signal

A. Simulation Set | estimation methods.

This part of the simulations include the performance evaluation of

the EM algorithm when, in the signal estimation stage of the maQ\_ccording to that study, performances can be descendingly ordered

imization step, one of the proposed or the former signal estimatigf that of RGLS-2, RGLS-1, LS-SET, and LS, with LS-SET being the

methods is used. The methods are termed as LS-EM, LS, RGI'.%"’}I_St sensitive of the methods to the errprin ini_tial directior_1 estimates.
LS-SET, and LS-RSET, corresponding to (6)—(10) respectively. The he performance of the EM algorithm with alternative signal

scenario is as follows: Two wideband signals with true directioﬁsnmation methods is evaluated in terms of both the direction of
of arrivals ® — [35° _200]1* with respect to the normal of the arrival and the signal estimation error, which are defined as

array are incident onto a linear array of 19 sensors. The number = 1 X o

of the sensors is chosen by using the result of another simulation, €© = ®—-© &= MN Z Z |5:(1) — s1(H)[7 (13)
which is done to reveal the performance of the EM algorithm with =1 1=0

changing sensor number [10]. Signals are taken as coherent linehere® ands;(t) are the true direction of arrival and the true signal
FM waveforms with a bandwidth 116 MHz, a center frequency 106aveform and® and 3;(¢) are their estimates.

MHz, N = 128 time samples, and’ = 256 FFT points. For each of  The direction-of-arrival estimation error of the EM algorithm using
the signal estimation alternatives, the EM algorithm is run, within different signal estimation methods is shown in Fig. 2(a) together
convergence criterion and maximum number of iterations of 40, withith the Crangér—Rao lower bound on the variance of the estimates
an initial direction-of-arrival estimat@®® = [32° —17°]" for 10 and the results produced by applying the TCT algorithm to our
realizations andignal-to-noise raticanging from—210 dB to 10 dB problem. As seen in Fig. 2, the performance of the RGLS method,
with 5-dB increments. For initialization of the procedure, the initialvhich is almost the same for RGLS-1 and RGLS-2 algorithms,
signal estimation is performed by using RGLS-2, which is chosen lsgems to be superior to the others at the simulated SNR values.
using the result of another simulation, where we have compared fhigis behavior is apparent, especially at low SNR values, where
performance of LS, RGLS and LS-SET in solving (3), giv@n10]. the performance of LS degrades due to the numerical instability

M N-—1
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signal estimation methods.

7 T T T
effect, which was mentioned earlier. Since, if it converges, the EM

algorithm provides the same estimates as those of CEM and SAGE
algorithms (where the signal estimation is performed by ordinary leasf}
squares techniques), the ordinary least squares performance curves i
this figure also correspond to the performances of CEM and SAG:E
algorithms. LS-SET and LS-RSET, having almost identical behavigy
throughout the range of SNR values, also do better than LS or LS-
EM for low SNR regions. Correspondingly, it is clear from Fig. 32
that the RGLS method is superior in producing signal estimata§.
The LS-SET performs slightly better than LS-RSET, both of whicl 3
produce less error than the LS or LS-EM, which are almost on tig
same curve. As expected, these two figures reveal the fact that ‘fhg
signal and direction-of-arrival estimations are closely related. The
TCT algorithm has not produced good results in the simulations. This
may be due to the large bandwidth of the signals used. In addition;
the large number of frequency bins used in our simulations may
cause difficulty in focusing different signal subspaces associated with, ; i J ‘ \ ‘
particular frequency bins to a common focusing subspace. 5 10 P ERATION NUMBER > 30
We have also investigated the convergence behavior of the EM i
algorithm, which employs the signal estimation alternatives. The Fig. 5. TSEM versus EM.
configuration is the same as in the previous set of simulations. The
simulation is done for SNR= 0 dB and the direction-of-arrival g simulation Set II

error is traced as the EM algorithm iterates. The result shown in . . .
Fig. 4 is the average error of direction-of-arrival estimates over 1_0In this part of the simulations, the tree-structured EM (TSEM) algo-

realizations as a function of iteration number of the EM algorithn{!thm is compared with the conventional EM algorithm for the case of

. . _ =0 o =0 o1T —
In the EM algorithm, if the complete data were available, then tﬁgursou_rges f.rom'dlrectlor®. =1[35° =20 _Z”O _600 ] ?;[SIEST_
best estimate of the signals would be given by LS-EM. Howevet,dB- Initial directions are given a®, = [32° —17° —47° 57°]".

since only the incomplete data is available, the greatest increasd"inl SEM, the EM algorithm, which uses the LS-RSET in its signal

the complete data likelihood is obtained by jointly estimating all g#Stimation, is run for two sources at a time, with a maximum number
the signal components given the currently updated direction valudsiterations of five at each branch. After five iterations at one
[2]. Notice in Fig. 4 that when joint signal estimation is performegg)ranch, the algorithm switches to the other branch. This switching
as in LS, RGLS, or LS-SET, convergence improvement over LS-Ei also repeated eight times. Therefore, in total, 40 iterations of
and LS-RSET is obtained. Furthermore, with the same reasoniff@e EM algorithm are performed for each direction of arrival. The
a regularized signal estimator that provides better signal estimafg@son we use LS-RSET solution for the signal estimation stage
than an ordinary least squares estimate is expected to increaseigH@at this method is robust to inaccuracies in the initial direction
estimated likelihood further. In accordance with our expectationgstimates as LS-SET because of the smoothing it performs over a set
the convergence of RGLS methods clearly outperforms the othe®$ neighboring directions. Furthermore, it needs fewer computations
providing a significant gain in the number of iterations that should bban LS-SET.

performed to reach a satisfactory convergence level. The argumenfor comparison purposes, the EM algorithm is also run for four
that better signal estimates and joint signal estimation enhance #oeirces with a maximum number of iterations of 40; hence, the
convergence is totally supported by the results in Figs. 3 and 4. number of EM iterations performed on each source is the same in both
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cases. The direction-of-arrival estimation error is traced throughdu®] H. D. Vinod, “Survey of ridge regression and related techniques for
the processes and displayed in Fig. 5, where it can be clearly seen that impfgi"legnlts 1‘3’% ordinary least squareRgv. Econ. Statvol. 60,

the tree-structured EM algorlthm has a significantly higher speed ﬁ%l gp AV B éwamy, J.S. Mehta, and P. N. Rappoport, “Two meth-
convergence. In addition to this important speedup, the tree Structlire’ qs of evaluating Hoerl and Kennard's ridge regressig®gmmun.
provides savings in each iteration due to the smaller size of matrices Stat.—Theory Methodsol. A7, no. 12, pp. 1133-1155, 1978.

and vectors handled in the algorithm. Notice also that Figs. 2 and13} F. Chebil, “Robust estimation of unknowns in a linear system of
present comparison results between the TSEM and EM algorithms i?]tliztri;)”%"r’lig mggle'irl‘gQUY”CE“ai”“esf' Master's thesis, Bilkent Univ.,
at their converged estl_mates. Mqreover, since It |§ known that b ] S. Valaée andyls. Kaybal, “Wideband array processing using a two-sided
CEM and SAGE algorithms provide the same estimates as the EM,” correlation transformation[EEE Trans. Signal Processingol. 43, pp.
only more efficiently, those figures also provide comparison between 160-172, Jan. 1995.

the converged estimates of TSEM and CEM and SAGE when the

curves of EM are interpreted as those of CEM and SAGE.

V. CONCLUSION

For the case of estimating direction of arrival of unknown determin- Time Series Analysis in the Frequency Domain

istic wideband signals arriving from different directions to a passive
array, a generalization on the expectation-maximization algorithm
is proposed by using a tree-structured multiple-level data mapping.
It is demonstrated by simulations that the proposed tree-structure@psiract—This correspondence presents a parametric frequency do-
EM (TSEM) algorithm converges faster than the conventional EMain identification algorithm for autoregressive moving average (ARMA)
algorithm. In addition to speeding up the convergence, it provid@gcesses that does not suffer from spectral leakage errors. It is based
considerable saving in computation, especially for a large numberQf " extended transfer function model that takes into account the
dsi s since in the tree structure. two signals are bel Jin and end effect_of_ the finite data reqord. Thg relationship with the

superpose _s|gna_ ’ ) g 1 9 - RIE-step-ahead prediction error method is established. The advantages
cessed at a time with lower dimensional data, unlike the conventiomlthe proposed method are easy prefiltering and leakage-free spectral
EM algorithm, where the size of data matrices is larger. representation of the raw data.

I_n order to obtain reliable estimates, even at low sgnal-to-nmsemdex Terms—Autoregressive moving average processes, frequency
ratio, and to speed up the convergence of the EM algorithm, alter@main analysis, time series.
tive regularized least squares estimation techniques are proposed with
significant improvement over the standard least squares techniques. It
is shown that with better signal estimation during the iterations, the . INTRODUCTION
EM algorithm converges faster to more reliable direction-of-arrival Time series analysis has a lot of applications such as forecasting
and signal estimates. in econometrics [1], spectral estimation in signal processing [2], and
parametric noise modeling in time-domain system identification [3]. It
consists of modeling a time serigét) as an autoregressive moving
average (ARMA) process
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