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Numerical Optimization of a Cylindrical
Reflector-in-Radome Antenna System
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Abstract—Accurate numerical optimization based on the rig-
orous solution of the integral equation using the method of
analytical regularization is performed for the cylindrical reflector
antenna in a dielectric radome. It is shown that the multiple
scattering in this system is more significant for the optimum
radome design than any nonplane-wave effects or the curvature of
the radome. We claim that, although the common half-wavelength
design is a good approximation to avoid negative effects of the
radome (such as the loss of the antenna directivity), one can, by
carefully playing with the radome thickness, its radius, reflector
location, and the position of the feed, improve the reflector-in-
radome antenna performance (e.g., increase the directivity) with
respect to the same reflector in free-space.

Index Terms—Moment methods, radomes, reflector antennas.

I. INTRODUCTION

TO ensure protection from dust, wind, rain, and snow,
reflector antennas are commonly covered with spherical

dielectric radomes [1]. Design of such systems is a complicated
engineering task, while an accurate theoretical analysis and op-
timization is a really challenging problem. Normally a number
of assumptions is introduced in order to make it treatable. One
of the earliest ideas was an approximate description of the
radome by using the resistive boundary condition [2] derived
for a very thin dielectric shell, and solving the problem by the
method of moments (MoM). The other traditional techniques
for the analysis of radomes are the plane-wave spectrum,
surface integration [3], and the ray tracing [4]–[6]. Both are
high-frequency asymptotic techniques treating the aperture
field distribution as a series of rays that are traced through the
radome wall. In [5], [6], ray tracing was extended to include
the curvature effects of a circular cylindrical radome. Instead
of locally flat, a locally circular-cylindrical surface model was
proposed in [7]. In [8], the finite-element technique was used
to predict the effect of radome on the far-field pattern. Within
any of these approaches, the multiple scattering between the
source, reflector, and radome is ignored. If any optimization
is performed, it is made for each element of the system
separately.

In general, it is considered that the presence of the radome
in the near zone of reflector is a negative factor in electromag-
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netic sense. Antenna performance normally suffers: the main
beam can be distorted, sidelobe level gets higher, and overall
parameters such as the directivity are lost. A well-known engi-
neering “rule-of-thumb” tells that the radome thickness should
be taken as 1/2 of the wavelength in the radome material, to
minimize the distortions. The radome curvature may effect this
rule, especially for smaller radomes. Free-space analysis tells
that the feed should be shifted toward the reflector [9] due to
the spillover and aberrations. There is no simple rule, unfor-
tunately, to predict the effect of reflector and feed positioning
inside the radome. Approximate high-frequency techniques are
very cumbersome if several scatterers are involved.

Thus, in fact, such antenna systems are not designed in
a self-consistent manner, by taking fully into account all
the interactions between the elements. In this paper, we
analyze a two-dimensional (2-D) problem of this kind by
means of a rigorous integral equation approach applied to
the case of H-polarization mode. The method of solution is
based on the combination of the complex source-point (CSP)
technique [10], Green’s function technique, and the method
of regularization (MoR), and is a further development of
our previous work [11]. The case of E-polarization can be
considered in a similar way. The difference will be in using
the single-layer potential representation for the radiated field
instead of the double-layer one [11].

We demonstrate that an accurate numerical optimization
procedure can bring a different vision of the radome effect. By
a clever play with the radome thickness, its radius, reflector
location inside the radome, and the position of the feed, one
can improve antenna performance with respect to the free-
space reflector. To reach this goal, the optimization code
must be based on solving the integral equation by means
of the numerically exact technique such as MoR providing
a guaranteed accuracy of the solution.

By implementing the MoR technique, we show, in partic-
ular, that the directivity of the antenna in the radome can
be increased as compared to the same antenna in free-space
due to the effect of multiple scattering arising in the entire
reflector-in-radome system.

Within the same approach, one can rigorously analyze the
effect of the radome on other characteristics of antenna, e.g., on
the VSWR at the feed determined by the partial wave reflection
from the radome [12], [13]. However, we do not study these
effects in the present paper since our focus is on the radiation
characteristics.

Although cylindrical reflector antennas are in less wide use
than spherical and paraboloidal ones, they find applications in
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Fig. 1. Geometry of the 2-D reflector in a circular dielectric radome
(D = 2a sin(�ap), f = 0:5a is the focal distance).

airborne navigational antenna design where sharp azimuthal
beams and wide-angle vertical coverages are required [14].

Three-dimesional spherical-reflector antenna in a spherical
radome can also be optimized along similar lines. However,
in this case, analytical regularization should be based on a
different technique [15], and on the use of addition theorems
for spherical wave functions.

The remainder of this paper is organized as follows. In
Section II we formulate the problem of H-polarized radiation
in terms of the full-wave electric-field integral equation (IE).
The IE kernel is determined by the Green’s function of the
circular dielectric radome. We obtain this function in explicit
form using the addition theorems for the cylindrical functions.
Then, assuming that the reflector contour is a circular arc,
we cast the IE to the series equations and invert the static
part of the latter. This yields a regularized matrix equation for
the surface current expansion coefficients. In Section III, we
first present some numerical results for the far-field radiation
pattern of reflector-in-radome antenna, and plot the directivity
as a function of geometrical parameters. Further, we use this
algorithm for a computer-aided optimization of the geometry,
having the maximum directivity as an aim function. Section
IV contains some conclusions of the reported work. A note
should be made that the time dependence is assumed as
and omitted throughout the paper.

II. PROBLEM FORMULATION AND SOLUTION

Consider a 2-D model of antenna shown in Fig. 1, with
cylindrical reflector arbitrary located inside a circular cylin-
drical dielectric radome. Relative dielectric permittivity of the
radome is (relative permeability ), inner radius ,
and outer radius The feed is assumed to be a complex-point
line source radiating a directive incident beam. The beamwidth
is determined by the imaginary part of the source coordinate,
which simulates the aperture width of a realistic horn feed
(see [10]). The feed is assumed to be located on the axis of
symmetry of reflector-in-radome antenna. Hence the free-space
field of such a CSP feed is given by

(1)

where is the free-space wavenumber, is the
complex source position, is the real-space source position,
and is the beam parameter vector. In the polar coordinates

, , and where and
determine the beam width and orientation, respectively. For a
symmetric feeding, or , and Assuming that

and one finds that

(2)

The directivity and the total radiated power of such a source
are and [11],
respectively, where is the modified Bessel function and

is the intrinsic impedance.
In the presence of a reflector enclosed in the radome, the

CSP field is to be completed by the scattered field yielding
the total field

(3)

The requirements for (3) to be a solution of the considered
problem are stated as satisfying the 2-D Helmholtz equation,
the Sommerfeld radiation condition at , the Meixner
condition at the reflector edges, the Neumann boundary condi-
tion at the reflector surface , and the continuity conditions
for the functions and at the inner and
outer surfaces of the radome.

To meet the requirements, we seek the function in the
form

(4)

where is the Green’s function of the circular dielectric shell.
The function takes rigorously into account the geometry
and material parameters of the radome including the curvature
effect, creeping waves, resonances, and the radiation condition
at

In the case of a circular radome, the Green’s function can
be obtained analytically. Indeed, it is found as a solution to
the problem of excitation of the radome by a magnetic line
source. In the radome coordinates , the excited magnetic
field is expanded as

(5)

where each of the lines refers to the relevant region of
or and are the Bessel and

Hankel functions, respectively, and
is the wavelength in the radome material). In the reflector
coordinates

(6)
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where is the shift of the radome with respect to reflector
(Fig. 1). When the boundary conditions at the

radome surfaces are satisfied and the expansion coefficients
found, (5) and (6) represent the Green’s function being of
interest.

The electric-field IE is obtained from (3) by applying the
PEC boundary condition on the contour of the reflector
(H-polarization)

(7)

where is the free-space impedance, is the current
density function to be found, is the
tangential component of the CSP electric field at the reflector
surface, and is the outer unit normal vector.

Note that in IE (7) we need only the Green’s function with
both the source location point and the observation point

inside the radome Expanding this function in
terms of the azimuthal harmonics in the radome coordinates

and satisfying the continuity conditions on the radome
surfaces, we obtain

(8)

where is the 2-D free-space Green’s
function and is the term accounting for the presence of
the radome in the -polarization mode. When transformed
back to the reflector coordinate system, the Green’s function

takes the form

(9)

where the condition is assumed in order to
present as a single formula everywhere inside the
radome. The factor in (9) accounts for the shift of the
reflector from the concentric position

(10)

and the coefficients account for the presence of the radome
in -polarization mode

(11)

where

, and

Fig. 2. Far-field patterns of the reflector in free space(r0 = 0:5a,
dotted curve, andr0 = 0:533a, dashed curve), and of the optimum
reflector-in-radome antenna system (r0 = 0:560a; t = 0:341��;

L = 4:271�; c = 5:984�; solid curve).

Further, we follow [11] and solve (7) by MoR. To avoid
the numerical integrations for filling the resulting equation
matrix, we take the geometry of parabolic reflector in such
a way as to simulate it by a circular one of the radiusand
the angular width The approximation is known to be
acceptable if the geometries are chosen such that the electrical
error does not exceed 1/16th of the wavelength [1] (see [11,
Fig. 2] for the acceptable range of and parameters).
This enables us to convert (7) to a discrete form through the
so-called dual-series equations (DSE) in terms of the surface
current expansion coefficients as in [11]

(12)

(13)

where

(14)

(15)

Regularization of these equations is based on the analytical
inversion of the static part taking an exact account of the edge
behavior. We refer to [11] for details and present the final
matrix equation

(16)

where

(17)



YURCHENKO et al.: NUMERICAL OPTIMIZATION OF A CYLINDRICAL REFLECTOR-IN-RADOME ANTENNA SYSTEM 671

(18)

(19)

(20)

and the functions are the combinations of the
Legendre polynomials as given in [11]. Due to the Fredholm
second kind nature of (16), its solving is remarkably stable
and always convergent to the exact solution when the number
of equations is increased. However, a special care should be
taken for numerical summation of the Bessel function series
such as in (9) and (10).

III. RESULTS OFNUMERICAL OPTIMIZATION

Based on the numerical solution of (16), we find the far-field
radiation pattern as

(21)

where

(22)

(23)

(24)

and is defined in (11).
On integrating the relevant Poynting vector, the total radi-

ation power is derived as

(25)

and the directivity of the antenna system is found as

(26)

We used the derived equations for numerical optimization of
the complete antenna system considering the total directivity
as the aim function to be maximized. The efficiency of
the algorithm can be understood from the fact that for a
fixed geometry as given below, the complete solution of 50
equations guaranteed a uniform three-digit accuracy in far-field
patterns and required 3 s with a SUNSPARC-20 workstation.

In Fig. 2, we present some sample far-field patterns of
the cylindrical antenna with reflector parameters
and , feed parameters

and (the edge illumination from to
dB depending on ), and radome parameters

and A well-known effect is the focal shift of the
feed: the latter should be placed nearer to the reflector than

(a)

(b)

Fig. 3. (a) Directivity and (b) normalized total radiation power as
functions of the feed positionr0 for the reflector in free space (dotted
curve), in the radome of the “rule-of-thumb” parameterst = 0:5 ��,
L = a cos(�ap) = 4:330�, c = 6 � (dashed curve), and in the fully
optimized radome/reflector system (solid curve).

the geometrical optics (GO) focus , to achieve a
higher directivity [9]. In Fig. 3(a) we show several comparative
plots of the directivity versus the feed position. They confirm
this result of approximate high-frequency analysis, although
in our numerical example the reflector is of moderate size.
The similar dependences of the normalized total radiation
power are given in Fig. 3(b). They reveal that the optimum
positioning of the feed is accompanied with a slight reduction
of the radiated power.

Another well-known recommendation, based on the analysis
of the plane wave incident on a flat slab, is to take the
radome thickness as of the free-space wavelength

However, in reality neither the radome is flat nor
the radiation field is a plane wave. The presence of a curved
PEC reflector inside the radome is an additional reason for
more complicated scattering. This is especially important for
smaller radomes. Full-wave analysis by solving (7) shows that
the actual optimum thickness yielding a maximum directivity
is shifted to a smaller value [Fig. 4(a)]. Note that the normal-
ized radiation power displays a similar oscillating behavior
[Fig. 4(b)], with a unit value around the optimum thickness
points.

If the thickness has been optimized, then varying the radome
radius and the reflector position has a smaller effect on the
directivity. However, the feed position should be corrected
with respect to the free-space optimum after finding the best
thickness (see Fig. 3.) Returning to Fig. 2, compare two free-
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(a)

(b)

Fig. 4. (a) Directivity and (b) normalized total radiation power as functions
of the radome thicknesst in the optimum system (r0 = 0:560a, solid curve)
and in the “rule-of-thumb” radome with the feed positionr0 = 0:533a

(dashed curve) andr0 = 0:5a (dotted curve).

space radiation patterns (for nonoptimized in-GO-focus feed,
and for the optimized one) with a pattern for the completely
optimized reflector-in-radome antenna system. One can see
that the improvement of the directivity is obtained at the
expense of the first sidelobe level. To have both the directivity
and the sidelobe level reduced, one should search for an
extremum of another aim function taking into account the two
parameters simultaneously.

Figs. 5(a) and 6(a) give a vision of the dependence of the
directivity on the radome inner radius and the radome position,
respectively. The both dependences display an oscillating
behavior around some average level determined mainly by
the size of the reflector. In Figs. 5(b) and 6(b) the similar
dependences of the normalized total radiation power are given.
Like the thickness dependence, they show that in the optimized
antenna system this value is near unity.

Notice that the scale of or variations providing the
variations of directivity from its minimum to maximum value
is while the scale of the relevant variations of the radome
thickness is, respectively, times less. Dependence of the
directivity on the feeder position is, however, of another scale
determined by the reflector radius since it is controlled,
basically, by the laws of geometrical optics.

It is also worth noting that the effect of the radome radius
and the reflector location on directivity is considerably greater
in the optimized system than in nonoptimized one. This is
explained by the resonant character of the optimization, due
to accurate taking into account all the multiple scattering

(a)

(b)

Fig. 5. (a) Directivity and (b) normalized total radiation power as functions
of the radome inner radiusc (the legend is the same as in Fig. 4).

(a)

(b)

Fig. 6. (a) Directivity and (b) normalized total radiation power as functions
of the radome positionL (the legend is the same as in Fig. 4).

interactions between the radome and the reflector. We may
say that the radome acts as a resonant lens in this case,
compressing the radiation along the main beam direction.
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IV. CONCLUSIONS

One can see that taking a radome thickness is
actually a good recommendation even for a 5-reflector in a
6- radome. If it is satisfied, the effect of varying the radome
position is minimum. However, provided that the thickness is
slightly unmatched one can enhance the directivity. This is
obviously the result of a greater sensitivity of the unmatched
radome to the multiple internal reflections. It is only due to
a resonance that the directivity is greater than of the same
reflector in free-space.

Summarizing, we note that the multiple scattering in the
reflector-in-radome antenna system is generally more signif-
icant for the optimum radome design than both nonplane-
wave effects and the curvature of the radome. Therefore, the
IE analysis of the whole system is mandatory and can be
hardly substituted by studying an approximately formulated
problem. For the same reason, solving the full-wave IE with
conventional MoM is also insufficient since the latter is heavily
inaccurate near the resonances [16]. Contrary to this, the MoR-
based numerical solution is uniformly accurate and can be
efficiently used in the numerical antenna optimization code.
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