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Signal-Processing Techniques to Reduce the
Sinusoidal Steady-State Error in the FDTD Method
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Abstract—Techniques to improve the accuracy of the finite-dif-
ference time-domain (FDTD) solutions employing sinusoidal exci-
tations are developed. The FDTD computational domain is consid-
ered as a sampled system and analyzed with respect to the aliasing
error using the Nyquist sampling theorem. After a careful exam-
ination of how the high-frequency components in the excitation
cause sinusoidal steady-state errors in the FDTD solutions, the use
of smoothing windows and digital low-pass filters is suggested to
reduce the error. The reduction in the error is demonstrated for
various cases.

Index Terms—Aliasing, digital filters, electromagnetic scat-
tering, finite-difference time-domain, incident-field array,
sampling, signal processing, smoothing windows.

I. INTRODUCTION

T HE finite-difference time-domain (FDTD) method has
been used to solve a wide variety of problems in the area

of computational electromagnetics during the last three decades
[1]–[5], [14]. These problems include “frequency-domain”
problems [2]–[13], where the excitation is a monochromatic
time-harmonic source, in addition to truly “time-domain”
problems containing multifrequency sources. Although the
real power of the FDTD method lies in its ability to handle
multifrequency signals, the simplicity of the method and its
ability to easily model complicated inhomogeneities at no extra
cost cause the method to become a preferable alternative for
single-frequency problems. For instance, in order to compute
the radar cross section (RCS) of an object at multiple frequen-
cies, some researchers preferred to employ the FDTD method
to solve several independent scattering problems, where the
object is illuminated by a single-frequency sinusoidal signal in
each solution.

In this paper, we will investigate the errors due to the prop-
agation of the high-frequency components of signals that are
introduced to the FDTD grid through user-defined excitations.
Specifically, we will investigate the errors observed in the FDTD
solutions when the excitation is sinusoidal. Errors in the form of
nonphysical dc offsets, signal distortions, and added noise have
been reported in the literature [10], [11], [13], [18] when sinu-
soidal excitation is used. Upon gaining a better understanding
of these types of errors in Section II, techniques to reduce sinu-
soidal steady-state errors will be presented in Sections III and
IV.
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Fig. 1. The IFA excitation scheme in the separate-field formulation. The 1-D
source grid (IFA) points in the direction of propagation, which is arbitrary and
not necessarily confined to thex–y plane as shown here. The incident-field
values in the computational domain are interpolated from the two closest
elements of the 1-D source grid (when linear interpolation is used).

The usefulness of the error-reducing techniques presented in
this paper will be demonstrated using plane-wave excitations
with sinusoidal time dependence. However, the applicability of
these techniques are not limited to the plane-wave excitations;
they are valid for any form of sinusoidal excitation. Indeed,
since the plane waves are generated using an incident-field array
(IFA) [4], [24], [25] (in a separate-field formalism [9], [10],
[23]) in this work, even the plane waves are actually generated
using “hard sources” and, thus, the error-reducing techniques
are actually applied to finite-sized sources in the FDTD compu-
tations.

II. SINUSOIDAL INCIDENT-WAVE EXCITATION

When the FDTD method is used to investigate the sinusoidal
steady-state response of an electromagnetic system, the usual
way of supplying the excitation is to turn on a sinusoidal source
at [8]. Then, a finite period of time, whose length de-
pends on the specific problem, must pass before all the transients
vanish and the steady-state is reached at every FDTD node. Fur-
thermore, a few more half periods must pass before sinusoidal
steady-state can be recognized and the required parameters can
be extracted from the maxima of the field variables. A faster
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(a)

(b)

Fig. 2. Error results for the IFA excitation with no smoothing window, and
no digital filter. (a) Maximum error onE in the computational domain. (b)
Frequency-domain representation of the error signal onE at a particular point.

technique to extract the sinusoidal steady-state amplitude of a
signal is outlined in [24, Appendix].

In addition to the transients that are related to the physics
of the problem (such as multiple-scattering delays), the FDTD
method also adds other transients to the solution as the problem
is transformed from an analytical description to a computa-
tional representation. Some of these transients may be decaying
very slowly or not decaying at all. Thus, these transients
cause slowly-decaying or resident errors in the FDTD results.
These computational transients (or errors) are controlled by the
parameters of the FDTD method, including the representation
of the excitation.

In order to separate these computational transients from the
physical transients of the problem, FDTD simulations of the ex-
citation and propagation of plane waves in homogeneous media
are considered as shown in Fig. 1. A three-dimensional (3-D)
empty computational domain composed of 3030 30 Yee
cells and terminated by eight-cell-thick perfectly matched layer
(PML) walls [15]–[17] is set up for this purpose. The PML walls
are designed to have a theoretical normal reflection ratio
of 10 and parabolic conductivity profile. The space sampling
period is cm. The time step is selected at the Courant
stability limit as ps. Separate-field formulation
is employed with a total-field region of 18 18 18 cells and
a six-cell-thick scattered-field region. The incident plane-wave
values are computed with the IFA scheme and fifth-order inter-
polation as described in [24] and [25]. The plane wave is in-
cident at and . The incident electric field is
polarized in the direction and its amplitude is unity. The in-
cident magnetic field is polarized in the direction of– . The
time dependence of the incident plane wave is given by

(1)

where GHz and is the unit step function. In other
words, the sinusoidal excitation is started at , similar to the
earlier practice in this area [8]. Fig. 2(a) shows the maximum
value of the error in the component over both the total-field
and scattered-field domains at each time step. It is seen that
the maximum error in the computational domain decreases very
slowly and does not reach its steady-state value after 800 time
steps, which correspond to about 10 periods at 1 GHz.

In order to have a better understanding of the nature of the
error, Fig. 2(b) shows the frequency spectrum of the error in
the component at the first cell the incident wave touches
the total-field domain. With the chosen FDTD time-step ()
value, frequencies up to about 41.5 GHz can be resolved, thus
the spectrum of the error signal is computed (via FFT) from dc
to 41.5 GHz.

Upon examining the error plots of Fig. 2, the following points
become evident.

1) The transient error is yet to diminish even after 800 time
steps.

2) The error is falling very slowly with respect to time.
3) The error is a high-frequency error peaking around

16–17 GHz as seen in Fig. 2(b), despite the fact that the
input signal (the plane-wave excitation) is a sinusoidal at
1 GHz. Fig. 2(a) also displays rapid oscillations, which
clearly indicate the high-frequency nature of the error.

The third observation in the above concerning the high-fre-
quency content of the error signal can be explained by realizing
that the abrupt application of a sinusoidal signal is equivalent
to multiplication by a step function as in (1). The Fourier
transform of the signal in (1) is given by

(2)

The signal itself and the spectrum thereof are shown in Fig. 3.
This signal, which clearly contains frequency components
above 41.5 GHz, is sampled at a rate of GHz and,
consequently, is aliased with an aliasing interval of .
Thus, in terms of the frequency spectrum of as defined in
(2), the frequency spectrum of the sampled signal is given by

(3)

where . The error due to aliasing (AE: Aliasing Error)
is defined as

(4)

in the frequency range from dc to GHz, which
is the highest frequency component that can be resolved by
sampling at a rate of GHz due to the Nyquist sam-
pling theorem [19], [20]. Fig. 4(a) depicts the aliasing error as
defined in (4). Thus, the frequency components of the signal
shown in Fig. 3 above 41.5 GHz contaminate the frequency
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Fig. 3. (a) Time and (b) frequency representations of the input signal in (1). No smoothing window is applied to the input. The sinusoidal signal is multiplied by a
step function att = 0, (c) time, and (d) frequency representations of the input signal in (6). A Hanning window with lengthL = T is used for smoothing att = 0.

band below 41.5 GHz due to aliasing. It can be assumed that
it is these high-frequency components that cause the slowly-de-
caying errors seen in Fig. 2. This assumption will be tested in the
following sections by using techniques to reduce the high-fre-
quency components of the excitation and observing the effect of
this reduction on the aliasing error [as in Fig. 4(a)] and the error
in the FDTD computations (as in Fig. 2).

III. U SE OFSMOOTHING WINDOWS

One way to reduce the high-frequency components of the
signal shown in Fig. 3(a) is to multiply it by a window that
is smoother than the rectangular window (step function). A
triangular (Bartlett), Hanning (Hann), Hamming, or Blackman
window [19], [21] can be used for this purpose. The triangular

window is also used by Kunz and Luebbers [5]. In this section,
we will investigate the effects of other smoothing windows on
the aliasing and the FDTD errors.

The Hanning, Hamming, and Blackman windows are defined
as (5), shown at the bottom of the page. Fig. 3(c) and (d) shows
a signal

(6)

and its frequency spectrum, respectively, where is a Han-
ning window with . Comparing Fig. 3(d) to (b),
we observe that has smaller high-frequency components
than . Next, we will investigate how the aliasing error as de-
fined in (4) will change using various smoothing windows.

if

if

otherwise

(5)
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Fig. 4. (Continued.) Aliasing errors (AE) versus frequency for smoothing windows: (a) no smoothing window (L = 0). (b) Hanning withL = T =4. (c)
Hanning withL = T =2. (d) Hanning withL = 3T =4. (e) Hanning withL = T , (f) Hanning withL = 3T =2. (g) Hanning withL = 2T . (h) Blackman
with L = 2T . (i) Hamming withL = 2T .

As in (4), the aliasing error (AE) for windowed signals is de-
fined by

(7)

(8)

where and are the Fourier transforms of the win-
dowed signal and the windowing function , respec-
tively. TheAEfor Hanning windows of lengths , ,

, , , and are shown in Fig. 4(b)–(g). Although
theAEis generally reduced as the window length increases, note

that it is lower for the case of than for .
Fig. 4(h) shows that the performance of the Blackman window
of length is very close to the performance of the Han-
ning window of the same length, shown in Fig. 4(g). In fact, this
is the case for all Blackman windows with lengths ,

, , , , and . Only the case is
shown in Fig. 4, since the others perform very similar to the
Hanning windows. The performance of the Blackman window
with length is better than the Blackman window with
length , similar to the Hanning windows. In Fig. 4,
only the case is shown for the Hamming windows.
When Fig. 4(i) is compared to Fig. 4(a), it can be deduced that
the Hamming window reduces theAE, like the other window
types. However, the Hamming window’s performance does not
change with the window length. TheAE results for ,

, , , and are very close to the results for
. That is, no improvement is obtained by increasing

the length of the Hamming window. This is probably due to the
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(a)

(b)

Fig. 5. Error results for the IFA excitation with Hanning window of length
L = T =2: (a) maximum error onE in the computational domain and (b)
frequency-domain representation of the error signal onE at a particular point.

finite jump of the Hamming window at . This jump pre-
vents the smoothing at and induces high-frequency com-
ponents with larger amplitudes than the Hanning and Blackman
windows do.

In order to investigate the effects of the smoothing windows
on the FDTD error, a number of simulations are performed with
the empty computational domain setup described in the pre-
vious section. The results for the Hanning windows of lengths

, , and are shown in Figs. 5–7, respectively.
All of these results show great improvement with respect to the
results obtained with no smoothing, shown in Fig. 2. Figs. 5(a),
6(a), and 7(a) show that the steady-state error level decreases
as the window length is increased. In Fig. 5(b), it is observed
that the dominant frequency component of the error signal is
around 16–17 GHz for the Hanning window of length .
This high-frequency component is suppressed with longer Han-
ning windows, as shown in Figs. 6(b) and 7(b). Fig. 8 shows the
steady-state error level with respect to the length of the Han-
ning window. A comparison of Figs. 4 and 8 reveals the par-
allelism between how the window length influences theAEand
the overall FDTD error, respectively, including the local minima
of both types of errors for .

IV. USE OFDIGITAL FILTERS

The smoothing windows of the previous section reduce the
high-frequency components of the input signal. This helps to
increase the accuracy since the FDTD algorithm cannot prop-
erly handle the sampled and, hence, aliased signals containing
high-frequency components.

The goal of suppressing the high-frequency components of
the input signals can also be achieved by using a low-pass filter.
However, note that in order to prevent the aliasing, a low-pass

(a)

(b)

Fig. 6. Error results for the IFA excitation with Hanning window of length
L = T : (a) maximum error onE in the computational domain and (b)
frequency-domain representation of the error signal onE at a particular point.

(a)

(b)

Fig. 7. Error results for the IFA excitation with Hanning window of length
L = 2T : (a) maximum error onE in the computational domain and (b)
frequency-domain representation of the error signal onE at a particular point.

filter should be usedbefore the sampling of the input signal.
That would require ananalogfilter, which would be difficult to
implement and would increase the incident-field computation
time enormously. Instead, adigital low-pass filter can be used
on the already sampled input signal before it is fed into the hard
source of the IFA. Note that a digital filter usedafter the sam-
pling cannot prevent the aliasing. Nevertheless, it still reduces
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Fig. 8. Steady-state error level versus length of the Hanning window used for
smoothing in termsT —the period of the incident wave.

Fig. 9. The frequency response of the digital filter.

the FDTD error since it reduces the high-frequency input to the
computational domain.

The frequency response of the 32-point digital filter [26],
[27], [28] used in the FDTD simulations is shown in Fig. 9. This
filter has unity gain and 10-GHz cutoff. Figs. 10 and 11 show
the error plots obtained by using this filter on two input signals:
1) with no smoothing window and 2) with Hanning window of
length , respectively. A comparison of Figs. 2 and
10 shows the improvement in the error results when the input
signal in (1) is passed through the filter before it is fed into the
hard source. A similar comparison can be made for Figs. 5 and
11. The steady-state error is decreased below the 10level, as
shown in Fig. 11(a). Fig. 11(b) shows that the component of the
error signal around 16–17 GHz is significantly reduced by using
the filter together with the Hanning window. The dominant fre-
quency component of the error in Fig. 11(b) is 1 GHz, which is
the operating frequency of the incident wave. The amplitude of
the 1-GHz component of the error cannot be reduced by using
smoothing windows or filters since it is produced by the nu-
merical dispersion. Examining the Figs. 5(b), 6(b), 7(b), 10(b),
and 11(b) carefully, it can be observed that the amplitude of the
1-GHz component of the error remains the same regardless of
the smoothing window or the filter used. Thus, the 1-GHz com-
ponent constitutes a threshold for the error level.

Comparing Figs. 2(a) and 11(a), we note that, in addition to
reducing the level of the steady-state error considerably, the use
of smoothing windows and filters also helps shorten the tran-
sient period required to reach the steady state. However, we also

(a)

(b)

Fig. 10. Error results for the IFA excitation with the digital filter, but no
smoothing window: (a) maximum error onE in the computational domain and
(b) frequency-domain representation of the error signal onE at a particular
point.

(a)

(b)

Fig. 11. Error results for the IFA excitation with the Hanning window of length
L = T =2 and also passed through the digital filter: (a) maximum error onE
in the computational domain and (b) frequency-domain representation of the
error signal onE at a particular point.

note that these calculations are performed in an empty compu-
tational domain and that the duration of the transient period will
be mostly determined by the size of the inhomogeneity in FDTD
calculations involving large objects.
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TABLE I
MAXIMUM STEADY-STATE ERRORLEVELS ON THEAMPLITUDE OFE

AT NORMAL INCIDENCE

(a)

(b)

Fig. 12. Results for the metal-plate scattering problem. The incident fields are
computed with the IFA excitation using no smoothing window or digital filter.
(a) Amplitude of the induced currentJ at a particular point. (b) Amplitude
of the far-zone electric-field componentE in the direction of� = 90 , � =

�45 .

V. OTHER INTERESTINGCASES

A. Normal Incidence

The special case of normal incidence is obtained when the
direction of the incident wave is , , or . For such spe-
cial cases, the FDTD algorithm may generate exactly zero error,
which was defined in the previous sections as the difference of
the total-field and incident-field values. However, this does not
mean that the total-field signal is free of errors in the sense that
it is exactly the same as the desired perfect sinusoid. The rea-
sons behind this are explained in [25], Section VI.

Table I uses a definition of the error that is different from that
of the previous sections to present the error in the case of normal
incidence. The error is defined as the maximum difference of
the amplitude (computed at every time step using the method
outlined in [24, Appendix]) of the total-field signal from unity
for steady state (after 500 time steps).

The nonzero error presented on the first line of Table I, when
no smoothing window or digital filter is applied to the input,

(a)

(b)

Fig. 13. Results for the metal-plate scattering problem. The incident fields
are computed with the IFA excitation using a digital filter, but no smoothing
window. (a) Amplitude of the induced currentJ at a particular point. (b)
Amplitude of the far-zone electric-field componentE in the direction of
� = 90 , � = �45 .

suggests that there is still room for improvement. Table I shows
that the error level is decreased by about two orders when either
a digital filter or a Hanning window of length is used,
and by another three orders when both of them are used.

B. Scattering from a Patch

The problem of scattering from a square metal plate of size
Yee cells is used to demonstrate the effects of re-

ducing the high-frequency components of the input. The plate
lies on the - plane, in the middle of a computational do-
main consisting of 40 20 40 cells, which is divided into
a total-field region of 28 8 28 Yee cells and a six-cell-thick
scattered-field region. The incident plane wave is identical to
the one in Section II. The center of the bright face of the plate is
called “the origin” of the 3-D grid and given the index .
Figs. 12(a) and 13(a) show thecomponent of the induced sur-
face current observed at the point on the bright face
of the plate.

Figs. 12(b) and 13(b) present thecomponent of the far-zone
electric field, , which is extrapolated at a far-zone point,

. A time-domain far-zone ex-
trapolation scheme [22] is used for this purpose. The integration
surface used for the far-zone transformation is a parallelepiped
located two cells out of the total field/scattered field interface.

The results shown in Fig. 12 are obtained by using the input
given in (1); that is, no smoothing windows or filters are used
to reduce the high-frequency components of the input. Fig. 13
shows the results obtained when the digital filter in Fig. 9 is ap-
plied to the input in Fig. 12. The oscillations in the final periods
of the amplitude levels can be regarded as convergence errors,
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since the amplitudes are expected to converge to a final value as
the transients die. Comparing Figs. 12 and 13, it is observed that
the convergence error is reduced in the near-field and far-field
signals by using a digital filter. The results obtained by using
a Hanning window of length , alone and together with the
filter, are not presented here since they are very close to the re-
sults shown in Fig. 13.

VI. CONCLUSIONS

In this paper, we have demonstrated that the high-fre-
quency components present in the input signal have adverse
effects on the accuracy of the FDTD calculations. By consid-
ering the FDTD computational domain as a sampled system,
we have clearly identified and discussed the origins of the
FDTD errors for sinusoidal excitations using the Nyquist
sampling theorem and the concept of the aliasing error. The
use of smoothing windows and digital low-pass filters in
reducing the error has been demonstrated. Using these tech-
niques, it has been possible to reduce both the sinusoidal
steady-state FDTD error by more than two orders of mag-
nitude and shorten the transient period to reach the steady
state. The amplitude and phase calculations of sampled si-
nusoidal signals are performed by using a fast two-point
extraction technique, as outlined in [24, Appendix].
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GÜREL AND OĞUZ: TECHNIQUES TO REDUCE SINUSOIDAL STEADY-STATE ERROR IN FDTD METHOD 593
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