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Transient Analysis of Nonlinear Circuits by Combining
Asymptotic Waveform Evaluation with Volterra Series

Mustafa Celik, Abdullah Atalar, and Mehmet A. Tan

Abstract— A new method is proposed for the transient analysis of
circuits with large number of linear lumped elements and lossy coupled
transmission lines, and with few mildly nonlinear terminations. The
method combines the Volterra-series technique with Asymptotic Wave-
form Evaluation approach and corresponds to recursive analysis of a
linear equivalent circuit.

I. INTRODUCTION

The Volterra functional series [1] have been widely used in the
analysis of weakly nonlinear circuits because of their nice properties:
they are noniterative and computationally efficient [2]. However, most
of the previous research were concentrated on the frequency domain
analysis [3]-[6], and to the best of our knowledge, no work has been
reported so far which uses Volterra-series methods in the transient
analysis.

The Asymptotic Waveform Evaluation (AWE) technique (7] ap-
proximates the dominant poles and residues of a linear circuit
very efficiently using a moment matching technique. It has been
generalized in such a way to handle distributed elements with
frequency domain parameters [8] as well as to generate all of the
dominant poles within the frequency range of interest [9], [10]. The
AWE technique has been also extended for the nonlinear circuits [11],
[12]. However, these approaches require a nonlinear search, usually
by means of a Newton—Raphson iteration.

In this brief, we propose a fast method for the transient analysis
of mildly nonlinear circuits containing elements specified with fre-
quency domain parameters which cannot be analyzed using standard
numerical integration algorithms. This method combines the Volterra
series analysis of nonlinear circuits with the AWE technique. The
proposed method corresponds to successive analysis of a linearized
circuit with different excitations.
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II. THE VOLTERRA SERIES

Consider a single-input single-output nonlinear system with a time
domain relation,

z(t) = f(w(?)) M

where z(t) is output, w(t) is input and f(-) is a real-valued function.
The output x(t) can be expressed as a Volterra functional series of
the input w(t) in the form

z(t) = za(t) @
n=1

where the nth order output is related to the input as

a(t) =/w /w ha(Tiy -y ) w(t — 1) -
cw(t —Tn)dry - dTn. 3)

It can be shown that the series (2) is convergent and the first few
terms of the expansion is generally sufficient to represent the output
if the system is mildly nonlinear. The multidimensional function
hn(T1, -+, Tn) in (3) is the nth order Volterra kernel or the nonlinear
impulse response of the system of order n. The determination of
the kernels—whether algebraically or numerically, is generally very
difficult. Instead, the nth order output can be found directly using
the relation,

20(t) = 55 o Fowien) @

p=0

In the next part of the paper, we propose a method to find the
Volterra series of a general nonlinear circuit. For this purpose we
will use the relation (4). As will be shown later, this relation, in
fact, corresponds to repetitive analysis of a linearized circuit with
different sources each time.

III. THE METHOD

A. Circuit Formulation

Consider a circuit A/ which contains linear lumped elements,
linear subcircuits, and mildly nonlinear terminations. The subcircuits
may contain elements specified with frequency domain parameters
such as lossy coupled transmission lines. Suppose that all the linear
subcircuits are grouped into a single subcircuit A/ 4. Let the subcircuit
N4 be represented by frequency domain terminal equations

I4(s) =Ya(s)Va(s) 3

where 14 and V 4 are the s-domain terminal currents and voltages
of N4, respectively, and Y 4(s) is the admittance matrix in the
s-domain.

Without loss of generality, the modified nodal analysis matrix [13]
equation of the overall circuit A" can be written as [14]

dx(t)
Tt
where x(t) is a vector of size N containing the waveforms of the
node voltages, independent voltage source currents, linear inductor
currents, nonlinear capacitor charges, and nonlinear inductor fluxes;
w(t) is a vector containing the source waveforms; C and G are
constant matrices formed by linear lumped components; f(x) is a
function describing the nonlinear elements; D 4 is a selector matrix,

C +Gx(t)+Daia(t)+£(x(t)) = w(t), for t >0 (6)
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whose entries are 1 or 0, that maps i4(t) into the node space of
the circuit. The relation of node voltages of the circuit fo the node
voltages of the subcircuit A4 can be shown by the equation [14]

va(t) = Dix(1), )
where the superscript T' denotes the transpose.

B. Finding the Volterra Responses

Now, let us replace the source vector w(t) with pw(t) and write
the output vector, x(t), as a sum of Volterra functional series in the
form

x(t) =Y xa(t), ®)

where x,(t) is the nth order output of the circuit,

xu(t) = 2 (w0

If we take the derivative of (6) with respect to p and evaluate at
p = 0, we obtain a set of linear differential equation for the vector
of the first order outputs,

&)

p=0

t .
c dxdlt( ) +Gxi(t) +Daiar(t) + & xi(t) = wi(t), for t>0
(10)
where w1 (t) = w(t), and fx is a matrix of size N by N:
_ Ofi
(], = Bey| o an
Taking the derivative of (6) with respect to p once more gives
dxa(t .
c —x;T() +Gx2(t) + Daina(t) + £ x2(t) = wa(t), for ¢ >0
(12)
where
dfx
wa(t) = —(%) -x1 () (13)
and its kth element is
N N 8%
k
we(®le==-3_3 5 g B ®La®). a4

i=1 j=1

Similarly, taking the derivatives of (6) with respect to p repeatedly, it
can be shown that the higher order outputs in (8) can be obtained by
solving the same linear differential equation set with different source
vectors each time,

dx,(t)

C 24+ Gxp(t)+Daian(t)+fx xa(t) = W, (2),

T for t >0

(15)
and with the initial conditions, x.(0) = 0. As a summary, the
transient of a nonlinear circuit can be found very efficiently by
computing the transient responses of a linear equivalent circuit
repetitively for different sources.

C. Finding the Source Vectors

The nth order excitation vector, w,(t), is a function of x;(t)’s,
i=1,...,n — 1, and derivatives of f(x) with respect to x evaluated
at x = O up to order n. The expression of w2(t) is given in (14).
However, it is cumbersome to represent the recursive dependence
of higher order sources on the lower order outputs. The procedure
for computing the excitation at the nth order circuit can be best
explained at element level. This procedure is called the method of
nonlinear currents and the details can be found in [3].
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Fig. 2. The output voltage waveform for example #1.
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Fig. 3. First, third, fifth, and eleventh order outputs for example #1.

D. Finding the Transient Response of the Linearized Circuit

To find the transient responses of the linearized circuit we use the
asymptotic waveform evaluation technique. Using (5) and (7), the set
of time domain equations given in (15) for the nth order circuit can

be represented in Laplace domain as
[$C+ G + DaYa(s)DE +£]Xnls) = L{wa()}  (16)

where we have assumed that x(0) = 0. From (16), we can write the
output waveform as

X () = /t Wa(t = 1) 2(r) dr an
0
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Fig. 4. Circuit for example #2.

where the matrix valued impulse response
a(t) = L7 {Z(s)}
and
Z(s) = (sC+ G + DY a(s)D} 4+ £,) 7"

We approximate Z(s) with a g-pole model using the asymptotic
waveform evaluation technique,

2oy =30 o

)
1= 5 T Pl

(18)
or equivalently,

q
[a(t)]is = Y kige Pt (19
=1

To increase the efficiency a single set of poles can be used for
the whole circuit, rather than using a different set of poles for each
entry. However, this approach would reduce accuracy as discussed
in [15]. Moreover, it is not necessary to calculate the dominant pole-
residue set for every matrix entry. Assuming that there is only one
input and one output, we need (N. + 1)N; + N + 1 pole sets,
where Nj is the number of nonzero entries in f(x(¢)) and N, is
the number of elements in x(¢) which are controlling variables of
nonlinear elements, i.e., the arguments of f(x(t)). Therefore, the
efficiency of the proposed method decreases with increasing Ny and
N.. This implies that our method performs best for circuits with
relatively few nonlinear elements where Ny and N, are small,

In the proposed method we deal with the values of signals at some
time points, not the exact waveforms. The signals are assumed to be
linear functions of time between successive time points. Thus, any
input waveform can be decomposed into a set of ramp functions.
The ramp response of the circuit can be found symbolically using
the approximated impulse response poles and residues. The output
response then can be found in an efficient manner by shifting and
scaling the ramp response [15].

We note that the source vectors in the proposed method are
obtained in the time domain, by multiplying lower order output wave-
forms. The multiplications in the time domain spread the spectrum in
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Fig. 5. The output voltage waveform for example #2.

the frequency domain. Consequently, if a single point low-frequency
AWE approximation is used to find the response of the linearized
circuit, it produces error even in the low-frequency components of
the source vectors and the error propagates in the recursive process.
Therefore, multipoint moment matching techniques such as complex
frequency hopping [9] or multipoint Padé approximation [10], must
be applied to find the impulse response poles and residues. These
techniques produce accurate results for very broad frequency regions
and therefore the error is minimized.

E. Examples

Example 1: The first example is a low-pass filter implemented with
transmission lines which is shown in Fig. 1. All transmission line
sections are \/8 long at f = 4 GHz. The characteristic impedances
are: Zl = Z5 = 64.9 Q,Zz = Z4 = 217.5 Q, Z3 = 70.3 €.
The filter is terminated by a load which is defined by the nonlinear
function, i = v + v>. The input is a 5 ns pulse with 0.1 ns rise and
fall times. In the first step of the analysis, the circuit is linearized by
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replacing the nonlinear load by a 1 €2 resistor. The dominant impulse
response poles and residues of the circuit are then calqulated using
AWE technique. For this circuit, two sets of poles and residues are
required: from input to output and from a current source connected
parallel to load to output. The first order response is then obtained
using the first set of pole-residue by exciting the circuit with the actual
input. Subsequently, the input is killed and the higher order responses
are calculated by exciting the circuit with a current source connected
parallel to load and using the second set of pole-residue. The order
is increased until the algorithm converges. The output waveforms,
obtained with the proposed method and HSPICE, are given in Fig. 2
for comparison. The first, third, fifth, and eleventh order outputs are
shown in Fig. 3.

Example 2: The second example, which is shown in Fig. 4, has
been taken from [16]. The nonlinear elements are defined as: I, =
0.001V2, I, = V4/750 + 0.002V%, and I, = 0.001V3,, The
applied input voltage waveform for this circuit is 4.5 ns pulse with
1.5 ns rise and fall times. The amplitude of the input pulse is 5
volts. The output waveform obtained using the proposed method is
compared with HSPICE result in Fig. 5.

IV. CONCLUSION

A new method has been proposed for the transient analysis of
circuits with relatively few and mildly nonlinear terminations. In
this approach, the method of Volterra-series analysis of the nonlinear
elements is combined with AWE-based techniques for the linear part
of the circuit. The method is noniterative and corresponds to recursive
analysis of a linear circuit with different excitations. Therefore, it has
no convergence problem. Since it is based on AWE technique, it
uses a very small number of LU decompositions with respect to the
traditional methods.
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On Lyapunov Control of the Duffing Equation

Henk Nijmeijer and Harry Berghuis

Abstract—In this brief, we develop feedback control strategies for a
chaotic dynamic system such as the Duffing equation. Our controllers are
of the so-called Lyapunov-type and are inspired by robot manipulator
feedback controls. The different controllers we propose include observer-
based controllers that even can cope with parametric uncertainties of
the original system. Some simulation examples support the developed
methods.

I. INTRODUCTION

Recently, an increasing interest has been developed in controling
chaotic nonlinear systems as arising in physics and engineering; from
the various relevant references we mention [4]-[8], [12], [13], [15],
and references therein. A very essential element in the control of
chaos is that, in many cases, the uitimate goal of control is to decrease
random effects and to stabilize the system at an equilibrium point, or
more general, about a given reference trajectory. In such cases, one is
in fact naturally led to reduce or even more completely annihilate the
chaotic dynamics that an uncontrolled system may exhibit. Depending
on the specific desired behavior of the system, several methods for
controlling chaotic systems have been proposed, see, e.g., (6], [13].
Among the methods given there, a prominent role is played by the so-
called Lyapunov-type methods. At the same time and earlier, various
authors have investigated stabilizing control schemes for second-order
mechanical systems, as in particular robot manipulators. Let us give
a sample of relevant references [1], [10], [14], [17], [19], noting
that also this field is strongly progressing at the moment. It should
be noted that also in this context Lyapunov-type methods are very
popular and useful.

The purpose of this paper is essentially to develop a controller-
observer scheme for controlling a chaotic second-order system such as
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