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A New Metho 
Periodically Excited Nonline 

Mustafa Celik, Abdullah Atalar, Senior Member, IEEE, and Mehmet A. Tan, Senior Member, IEEE 

Abstract- We propose a new method for the steady state 
analysis of periodically excited nonlinear microwave circuits. It is 
a modified and more efficient form of Newton-Raphson iteration 
based harmonic balance (HB) technique. It solves the convergence 
problems of the HB technique at high drive levels. The proposed 
method makes use of the parametric dependence of the circuit 
responses on the excitation level. It first computes the derivatives 
of the complex amplitudes of the harmonics with respect to the 
excitation level efficiently and then finds the Pad6 approximants 
for the amplitudes of the harmonics using these derivatives. 

I. INTRODUCTION 
TEADY-STATE ANALYSIS methods for nonlinear mi- 
crowave circuits are classified into three categories ac- 

cording to the domain in which linear and nonlinear elements 
are calculated. These are pure time-domain methods [1]-[4], 
pure frequency-domain methods [5] ,  [6], and hybrid time- 
domaidfrequency-domain methods. 

Among these categories, the hybrid frequency-domaidtime- 
domain technique is accepted to be the most suitable one for 
the analysis of nonlinear microwave circuits. This technique, 
which is referred to as harmonic balance (HB) [7], combines 
the efficiency of frequency-domain analysis of linear circuit 
elements and the accurate time-domain analysis of nonlin- 
ear devices. A comprehensive survey of harmonic balance 
technique can be found in [SI-[12]. 

From a mathematical point of view, the harmonic balance 
method converts the problem of solving a set of nonlinear 
differential equations into the problem of solving a set of 
nonlinear algebraic equations. The latter is more preferable 
because it is simpler to solve than the other. The solu- 
tion of the nonlinear algebraic system is usually obtained 
by means of a suitable iterative procedure. Therefore, it 
is clear that the strength of the HB method is determined 
by the iteration process used. The most common iteration 
processes are variable metric (quasi-Newton) [SI, relaxation 
[ 131, reflection [14], continuation [ 151, and Newton-Raphson 
[SI techniques. Among these, the Newton-Raphson method is 
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known to be the most general and efficient iteration technique. 
However, like all other locally convergent methods, it has 
convergence problems. Convergence can be achieved only by 
finding sufficiently close initial values to the solution, which 
is difficult particularly for the cases of high excitation levels. 

This paper describes a new method to obtain the steady-state 
solution of a nonlinear circuit with periodical excitation. It is 
a modified form of HB technique based on Newton-Raphson 
iteration and uses far fewer Newton-Raphson iterations than 
the HB method. It also solves the convergence problems of 
the HB technique at high drive levels. The proposed method 
makes use of the parametric dependence of the circuit re- 
sponses on the excitation level. It first computes the derivatives 
of the phasors of the harmonics with respect to excitation 
level efficiently, and then finds the Pad6 approximants for 
the phasors of the harmonics using these derivatives. This 
approximation is valid for a wide range of excitation levels. 
When the error of approximation grows, a correction is made 
using a Newton-Raphson iteration by using the last result as 
the seed. 

In Section 11, the method of harmonic balance is revisited 
and the Newton-Raphson technique is reviewed. Then, in 
Section I11 we present our method. Section IV presents some 
examples that show the advantage of the proposed method 
over the Newton-Raphson technique. 

11. THE HARMONIC BALANCE APPROACH 

Consider a circuit which contains nonlinear elements, linear 
lumped components, and linear elements specified with fre- 
quency domain parameters. All nonlinear devices in the circuit 
will be assumed to be represented by algebraic equations. 
Let us suppose that the circuit is partitioned into linear and 
nonlinear subcircuits and let N be the number of ports between 
these subcircuits. The linear part of the circuit, therefore, is 
reduced to a N port network which is characterized by a N by 
N Y-parameter matrix r ( j w ) .  Kirchoff s current law requires 
the following set of nonlinear equations for the port voltages 
to be satisfied 

where y ( t )  is the inverse Fourier transform of T ( j w ) ,  and v(t) 
is a vector containing the port voltage waveforms, i,(t) is a 
vector containing the Norton equivalent source waveforms, 
i(v) and q(v) are the functions describing the nonlinear 
conductances and capacitances in the circuit, respectively. 
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Let WO be the fundamental angular frequency and H be the 
highest harmonic number that is taken into account. Therefore, 
any waveform in the circuit can be approximated with a finite 
Fourier series 

where K z , k  is used to represent the phasor for the kth harmonic 
of the voltage at port i .  The above relation can be also 
represented in the vector notation as a Fourier series pair 

v(t)  ++ v (3) 

where V = [ V ~ , - H * * . V ~ , O * . *  Vl,H"'VN,-H"'VN,O'" 
VN,HIT. similarly we have, q( t )  H Q, i ( t )  H I ,  and i,(t) H 
I , .  Then, (1) can be written in the form [8], 

F(V)  = I (V)  + jRQ(V) + YV + I ,  = 0 (4) 

where F(V)  is called as the current-error vector and the 
harmonic balance error is defined as the Z2 norm of the 
current-error vector 

E = II~(V)ll2. (5 )  

In (4), the admittance matrix Y has the form 

y11 " '  Y 1 N  

(6) 
YNI ... Y N N  

where the submatrices are equivalent to 

Yij = diag[Tij(jkwo)], k = -H,  . . . , 0, . . . , H (7) 

and finally R is a diagonal matrix such that it has N cycles 
of (-Hwo, e - , 0, - a , Hwo) along its main diagonal. 

A. Newton-Raphson Method 

updated as follows: 
In the Newton-Raphson (NR) method, the phasor vector is 

Vn+' = V" - J(V")-lF(V") (8) 

where J is the Jacobian of F ,  

(9) 

In the above equation 

and the entries of the submatrices A,, are equivalent to 

exp(-j(k - l )wo t )  d t  

It is widely known that the NR method is both locally and 
superlinearly convergent, that is, it is very fast if the starting 
point is close enough to the final solution, but if the converse 
holds it may diverge. The time consuming part of the NR 
method is the evaluation and the inversion of the Jacobian 
matrix J because of its dense structure. One way to accelerate 
the NR technique is Shamanskii method, that is, to reuse 
the inverted Jacobian matrix until the harmonic balance error 
begins to rise. In another approach, the small terms far from 
the diagonal in the Jacobian are set to zero, therefore its density 
is reduced and sparse matrix techniques can be applied. The 
above approaches are attractive in terms of speed and memory 
considerations, however, they are poor in convergence. 

In order to improve convergence, one can make use of 
source stepping concept [ 141. This method approaches the 
desired input level incrementally. The results of a calculation 
at one level can be used as a good initial estimate for the 
next level. However, in order to obtain a starting point lying 
in the region of convergence, the step sizes may have to be 
very small. 

Another technique that can be used to improve the conver- 
gence is the continuation method. Let us consider a system 
of nonlinear equations given in the form, F ( X )  = 0. In the 
continuation method, the problem is replaced by an auxiliary 
one of the form: 

F ( X , p )  = 0 (12) 

where p is called the continuation parameter. Assuming that a 
solution X o  is known for a certain value of the continuation 
parameter, e.g., p = 0, this method generates the solution X 
for the desired value of the parameter p by a step-by-step 
mechanism. In case of electrical circuits, the intensities of the 
RF sources are taken as the continuation parameter. Therefore, 
X o  is the result of the dc analysis. Starting from this result, 
the solution at the desired power level is obtained through 
a sequence of intermediate solutions corresponding to the 
increasing values of p. At each intermediate step the nonlinear 
problem is very well conditioned because the corresponding 
value of p can be made sufficiently close to the that of previous 
solution. 

Convergence of the iterative techniques can be improved 
using the continuation method. However, since it uses a first 
order approximation, the number of intermediate steps in the 
continuation method can be large and therefore very long 
analysis time may be required. 

111. PROPOSED METHOD 
In the following, we propose an extension to the continua- 

tion method. Unlike the continuation method, our technique 
uses higher order approximations, and is faster than the 
conventional HB algorithms. We start by splitting the source 
vector i s ( t )  into two parts as follows: 

i , ( t , p )  = Pi,l(t) + i s 2 ( t )  (13) 

where p is a parameter similar to the one used in the continu- 
ation method. In our method, the parameter p may be used in 
many different ways. For instance, in a practical case, i s l ( t )  

(11) 

The entries of the matrix dQ/aV are similar to those of 
aI/dV with im(t) replaced by qm(t )  in (11). 
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dq - - - 
dV 

may contain all the RF sources while i s 2 ( t )  contains only dc 
sources. In another case, isl( t)  may contain only one of the 
sources (RF or dc). Moreover, the parameter p can be used 
either artificially or naturally in the sense explained as follows. 
Using p artificially refers to the case where the sources in the 
vector isl( t)  are represented by their actual values and the 
solution that corresponds to p = 1 is attempted to obtain. It can 
be also used naturally, that is, i,l(t) contains only one source 
whose value is unity and the parameter p is equivalent to the 
input excitation level. In this case, a solution as a function of 
the input level is sought. 

Having split the sources as in (13), assuming that all port 
voltages are continuous functions of the parameter p, we 
express them in the Taylor series expansion form about a 
particular value of p as follows: 

- &ll(t) %l(t) - 
dv1 ( t )  dviv ( t )  

asN ( t )  &IN ( t )  

~ . . .  ~ 

(20) 

~ . . .  ~ 

- dv1 ( t )  a v N ( t )  - 

Let V" be the phasor equivalent of the nth order derivatives 
of the time waveforms, i.e., 

Then we have 
00 

( P  - Po)" 
n.! ' 

V(p)  = CV". 
n=O 

The aim of this work is to find good approximations for 
the nonlinear dependencies of the Fourier coefficients on the 
parameter p. For this purpose, we first compute the derivatives 
of the Fourier coefficients with respect to the parameter p, then 
using these derivatives we find a rational polynomial function 
of p for each coefficient. 

A. Computation of the Derivatives 

Using (13) we can rewrite (1) as follows: 

Y ( t  - 447, P )  d7 + w, P I )  

and let us suppose that the solution of (1) is known at p = po. 
Then Vo = V ( p 0 ) .  Now, if we take the derivative of (17) with 
respect to p and evaluate at p = p o  we obtain 

k=-H 

and let the vectors I and V contain the Fourier series coef- 
ficients, i . e . , I =  [I-H,...,IH]~ a n d V =  [V-H,...,VH]~. 
Similarly, 

H 

g ( t )  = GkexP(jkwot)  (25) 
k=-H 

and 
H 

c ( t )  = CI,exp(jkwot) .  (26) 
k=-H 

Then, the time domain input output relations given in (21) 
and (22) can be represented in the frequency domain as 

I = G V  (27) 
I =jacv (28) 

where the conversion matrices G and C axe given as 

[ G o  G-l . . .  G - - 2 ~  1 

and 

= diag[kwo], k = -H ,  ,0 ,  . . .  H .  (31) 
'Actually, we have n(t) = C ,  g , ( t )vz ( t )  and s(t)  = ( d / d t ) ( C ,  

c z ( t ) v z ( t ) ) .  However, for simplicity we assume that they are in the form 
(21) and (22). 
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Applying the conversion matrix techniques to (18) we can 

(32) 

C. Approximating the Fourier Coeficients 

Let v, be the phaSOr of the kth harmonic of a port voltage 
of the circuit and consider its Taylor series expansion about po 

obtain a set of linear equations for the first order derivative 

( Y + A + j R B ) . V 1  =-Isl  

where Y is again in the form of (6), but this time its 
submatrices are the conversion matrices of the corresponding 
linear elements, 

Yij = diag[Tij(jkwo)], k = -H,  1 1 , 0, . . . , H (33) 

and the matrices A and B contain the submatrices which are 
the conversion matrices of the time-varying elements, 

[Amn]kl = /To '2  ai,(t) exp(-j(k - Z)wot) d t .  (34) 
TO - T 0 / 2  

T o / 2  
exp(-j(k - Z)wot) d t .  (35) 

[Bmnlkl = 1 T 0 / 2  av,(t) 
such that IC = -H,  e a . ,  0 , a . e  , H and 1 = -H,  0 * , 0 ,  e a ,  H 
and finally R is a diagonal matrix such that it has N cycles 
of ( -Hwo, . . . , 0 ,  W O ,  . . * , Hwo) along its main diagonal. A 
closer look reveals that the matrix (Y + A + jRB) is in fact 
the Jacobian J .  

Similarly, taking the derivatives of (17) repeatedly with 
respect to p, one obtains (18) with a different excitation vector 

(36) 

where i"( t ) ' s  are the sources corresponding to the constants 
appearing as the result of derivative operations performed on 
the constitutive relations of the nonlinear elements. Therefore, 
higher order derivatives can be obtained by solving the same 
linear equation set with different source vectors 

J . V "  = -I", n 2 2 (37) 

where I" is the phasor equivalent of the waveform i"(t). 
Once the LU factorization of the Jacobian matrix J has been 
obtained, each derivative can be obtained efficiently only by 
one forward and one back substitution. 

B.. Computation of the Source Vectors 

The nth-order excitation vector, in(t), is a function of 
vZ(t)'s, i = l , . . . , n  - 1, and derivatives of i(v) and q(v) 
with respect to v evaluated at v(t) = v(t, po) up to order n. It 
is cumbersome to represent the recursive dependence of in (t)  
to the lower order outputs in the matrix notation used above. 
The procedure for computing the excitation at the nth-order 
circuit can be best explained at element level. This procedure is 
called the method of nonlinear currents and the details can be 
found in [5 ] .  In the proposed method the symbolic expressions 
for derivatives are generated only once and embedded into 
the simulator. During the analysis they are only numerically 
evaluated and the corresponding computational overhead is 
very small compared the LU factorization of the Jacobian 
matrix J as will be demonstrated in Section IV. 

00 

n=O 

where m, = V,'")/n!. If p is very close to po i.e., Ip-po( << 1, 
above series converges rapidly. It is sufficient to calculate only 
the first few terms. This is also true for weakly nonlinear 
circuits where the coefficients m, 's decay rapidly. Both cases 
correspond to the Volterra series analysis when the expansion 
is performed about p = 0. 

For the general case, however, the series given in (38) may 
be slowly convergent. One can use Pad6 approximation [16], 
to find an approximation to the exact solution Vj(p) .  Pad6 
approximation is preferred over a power series approximation 
because of its good convergence properties. The objective of 
Pad6 approximation is to construct a rational function 

(39) 

i=O 

such that its Taylor series expansion about po has the same first 
2q + 1 coefficients as that of V, given in (38). The coefficients 
of the rational functions, therefore, should satisfy 

a M n _ _  
az(p - Po)z = Cmz(P - POY * 2 bZ(P - P o ) % .  (40) 

a=O 2=o a=O 

Equating the coefficients of the terms of the same degree yields 
the following systems of linear equations for the coefficients: 

bo =mo 

bl = moa1 + ml 

and 

After the ai's have been obtained from (42), the bi's can 
be found from (41) by substitution. Since the matrix in (42) 
is a Toeplitz matrix, an efficient solution is available at the 
complexity of O(q2) [171. 

The approximation obtained for a particular p is valid in 
its neighborhood. When the harmonic balance error grows, a 
correction becomes necessary. For this purpose, a Newton- 
Raphson iteration may be used by using the last result as 
an initial guess. A similar approach using power series ap- 
proximation has been proposed earlier [18]. We use Pad6 
approximation instead, because it provides a much larger range 
of validity. 
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D. The Algorithm 
We can summarize our algorithm as follows. 
1) Set p = po (generally po = 0) and find the solution of 

the circuit using a Newton-Raphson iteration. 
2) Applying (37) compute the derivatives of the Fourier 

coefficients. Then performing Pad6 approximation for 
each coefficient, obtain the estimated solution V(p) .  

3 )  Increase p until the harmonic balance error, as defined 
in (5) ,  becomes larger than a predefined tolerance, €1. 
Then, at that particular value of p, find the solution using 
Newton-Raphson method with last result as a seed (i.e., 
decrease the HB error to another tolerance €2 ( € 2  < €1)). 
Go to step 2. 

Iv.  RESULTS 

The algorithm proposed in this paper is not a completely 
new analysis technique, but a modified form of Newton- 
Raphson based harmonic balance technique and it may be 
adopted in existing harmonic balance simulators to reduce 
the number of iterations drastically. Therefore, we prefer 
the following method for performance comparison, which 
we believe is a fair one. To count the number of iterations 
required for our method, we used a commercial simulator: 
Microwave Harmonica from Compact Software [19]. In Mi- 
crowave Harmonica, one can provide initial solution estimate 
to the simulator using the xxx.vcIr file. The simulator reads 
this file and starts Newton Raphson iterations from this initial 
guess. All the iterations reported in the paper are carried out 
by Microwave Harmonica and we believe that the iteration 
comparison (whether they are Shamanskii or actual Newton- 
Raphson) in this way is homogeneous. Moreover, the simulator 
is more likely to use Shamanskii iteration in our case because 
our initial estimates are already very close to the actual 
solution. 

In order to demonstrate the efficiency of the proposed 
method we examine some example circuits. 

Example 1: We first consider a doubler circuit whose 
schematic is shown in Fig. 1. The diode in the circuit has 
the following characteristics: 

(43) 

where I ,  = l e  - 06 and V, = 1/35. This circuit was 
analyzed as a function of input excitation level, using the 
method proposed in this paper. The first four harmonics of 
the load voltage are plotted in Fig. 2. The HB error is shown 
in Fig. 3 as a function of the input power. In the same 
figure, the stars indicate the points where a Newton-Raphson 
iteration is needed, and the numbers below them indicate 
how many such iterations are performed. In the small-signal 
region, our method and the Volterra series approach performs 
similarly. As p is growing, the error increases. When the error 
exceeds €1 = Newton-Raphson iterations are performed 
to reduce the error below €2 = lop7. The approximation 
obtained from the new solution is valid in about 10 dB range. 
In Fig. 4, our method is compared with Microwave Harmonica 
in terms of number of Newton-Raphson iterations. The circuit 
was analyzed with 2 dB increments in Microwave Harmonica, 

I = Is[exp(V/K) - I] 

R1 I=f(V) 

Fig. 1. Doubler circuit (R1 = 830, C1 = 0.1592F, L1 = 0.1592H, 
R2 = 1R, C2 = 0.0796F, L2 = 0.0796H, R3 = 5 9 0 )  

I I '  ,/ '4 I , ,  
-14.d~ -io -,o A 10 io i o  40 A 

input power, dBm 

Fig. 2. Powers of the harmonics at the load (doubler circuit) 

-*/ 
-4t i 

-16 -I4[ :I 
-l8IJ 1 

-20 - 7 0  0 I O  20 3b 4'0 20 
input power, dBm 

Fig. 3. Harmonic balance error versus input power 
(el  = l O W 5 , e 2  = l op7)  (doubler circuit). 

where the error limit was set to In order to obtain the 
response of the circuit for an input power range from -30 
to f50 dBm, Microwave Harmonica needs a total of 300 
Newton-Raphson iterations while our method finds the same 
result with only 20 iterations. 

In Figs. 5, 6, and 7, we compare the performance of the 
Pad6 approximation with the Taylor series approximation for 
the dc component, the first harmonic and the eighth harmonic 
of the voltage waveform on the diode of the doubler circuit. 
Using the solution of the circuit at V,, = 4 V, we computed the 
first 16 derivatives of the Fourier coefficients. As seen from 
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e ’  
5 1  
$0006+ 

0004; 

0 

- 

; 

I 

, 

0 

$0 -20 . IO 0 I O  20 30 40 
input power, dBm 

Fig. 4. 
cuit). 

Comparison of number of Newton-Raphson iterations (doubler cir- 

_ _ _  Pade approx. 

oov 5 Ib 15 40 ;5 i o  i5 ‘lo b 
I 

excitation level (volts) 

Fig. 5. 
nent (doubler circuit). 

Comparison of Pad6 and polynomial approximations for dc compo- 

the figures, the @/SI Pad6 approximations of the dc component 
and first harmonic remain valid up to V;, = 40 V, while the 
fifteenth-order Taylor series approximation is valid only up 
to V;, = 8 V. For higher harmonics the region of accuracy is 
smaller compared the lower harmonics due to smaller accuracy 
in higher harmonics, but as shown in Fig. 7, the approximation 
of the eighth harmonic (highest harmonic) is still valid for a 
very broad range (up to V;, = 30 V). 

Example 2: The second example is a GaAs MESFET cir- 
cuit whose nonlinear equivalent circuit is shown in Fig. 8. The 
following relation was used for drain current [14]: 

Id = (A0 + AlV, + A2V; + &V’) tanh(aVd) (44) 

where A0 = 0.5304,Al = 0.2595,A2 = -0.0542,A3 = 
-0.0305, and a = 1. Using the proposed method, we analyzed 
the circuit as a function of the input power level. We used [7/8] 
Pad6 approximations and we chose c1 = 
First, we found the dc operating points by setting the RF 
drive level to zero. Then, we obtained an approximation about 

and €2 = 

0. 
- Exact 

Polynomial approx. 
Pade approx. _ - _  

0.02, I 

o.oo2/, 1 Pade approx. - _  

0; ’ ; 1; 15 io ;5 i o  3; 40 a5 

I 

excitation level (volts) 

Fig. 7. 
tude of the eighth harmonic (doubler circuit). 

Comparison of Pad6 and polynomial approximations for the ampli- 

zero excitation level which is valid up to +32 dBm. The new 
approximation found at +32 dBm remains accurate up to +36 
dBm. We used only 10 Newton-Raphson iterations. However, 
Microwave Harmonica needs approximately 150 Newton- 
Raphson iterations to find the response of the circuit from 0 
dBm to $36 dBm with 1 dB increments. First three harmonics 
of the load voltage are plotted in Fig. 9. Fig. 10 shows how 
the HB error is changed during the analysis procedure in our 
method. Again the stars indicate the points where a Newton- 
Raphson iteration is needed, and the numbers below them 
indicate how many iterations have been performed. 

Example 3: The next example is a doubly balanced diode 
mixer circuit shown in Fig. 11. It is taken from Microwave 
Harmonica manual. The diodes are identical and have the 
characteristics given in (43). The circuit is chosen as an exam- 
ple in the manual, because it has convergence problems when 
only Newton-Raphson iteration is used and it is suggested 
to analyze the circuit with 10 quasi-Newton and convergence 
factor of 0.5. We chose the RF and LO frequencies as 3 and 2 
Hz, respectively, and analyzed the circuit using the proposed 
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E 
B -10- 
0 

g-20- - 
m 
5 -30- 

-40 

-50 

-60 

Fig. 8. Mesfet circuit (Vbl = -O.SV,Vb, = 12V, Rgen = R1 = 50R, 
Lb 1OOOH, Cb = IOOOF, R, = 10, R, = 0.7R, Cds = 0.006F, 
Cd = O.O02F, C, = 0.03F) 

> 

- 2 

- ,' 3 

- 

- 1  ' I  

Fig. 10. Harmonic balance error versus input power (€1 = 
€ 1  = IO-*) (mesfet circuit). 

method for a LO power level of 20 dBm and a RF power 
range from -30 to +25 dBm. The magnitudes of the various 
harmonics at the IF port are shown in Fig. 12. In Fig. 13, 
the HB error is plotted. Our method needs only 18 iterations 
provided that the solution for +20 dBm LO and zero RF level 
is known. To find the solution for that case, our method needs 
additional three corrections with 13 iterations. On the other 

1:11 c';7 6R 

Fig. 11. Doubly balanced diode mixer circuit. 

, ,  
-45 [, , , , ' 
-50 ,' I 

I '  I 
-30 -20 -10 0 10 20 

RF power, dBm 

Fig. 12. Powers of the harmonics at the IF port (mixer circuit) 

I 0.' 

J 

i 
I 

-20 -10 0 10 20 
1 0 - ~ 0 ~  

-30 
RF power, dBm 

Fig. 13. Harmonic balance error versus input power (€1 = l ow4 ,  
€1 = l o p 8 )  (mixer circuit). 

hand, Microwave Harmonica needs thousands of iterations (3 1 
quasi-Newton and 6905 Newton-Raphson iterations) to find 
the response for RF power range from -30 dBm to +25 dBm 
with 1 dB increments. 
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The example above also demonstrates how the proposed 
method helps convergence. To find the solution for 20 dBm 
LO and zero RF level, Microwave Harmonica needs 36 quasi- 
Newton and 25 Newton-Raphson iterations. Our method solves 
this problem by using 13 Newton-Raphson iterations without 
requiring any quasi-Newton iterations. quasi-Newton is a more 
robust but slower method that is used in some HB simulators 
when NR technique fails to converge. This example shows that 
our method is more efficient than the conventional techniques, 
even at single level analysis. For power sweep applications, 
however, the proposed method becomes much more efficient 
as the above three examples illustrate. 

Our algorithm introduces a computational overhead mainly 
due to the evaluation of derivatives and Pad6 approxima- 
tion. Determination of this overhead is necessary for a fair 
assessment of our algorithm. Unfortunately, a direct CPU 
time comparison is not possible since we did not have an 
access to the FORTRAN source code and were unable to 
integrate our algorithm into the commercial package. Instead, 
this part of the computation was programmed using MATLAB 
[20]. MATLAB reports the computational burden in mflop 
(mega floating point operations) units. Experiments indicate 
that a MATLAB (an interpreter rather than a compiler) code 
containing many loops will run 10 to 20 times slower than 
a FORTRAN counterpart in the same machine. Using above 
figures and mflop/s rating of the SPARC 2 machine we 
estimate that computational overhead is equivalent to one to 
two iterations. For example, double balanced mixer circuit 
requires 2.5 mflop for the derivative computation in one 
expansion point. With a machine with 5 mflop/s peak rating, 
this computation can be done in 0.5 to 1 s using FORTRAN 
or C. (MATLAB on the same machine calculates the same 2.5 
mflop in 11.5 s, consistent with the slowdown figures above). 
On the other hand, one Microwave Harmonica iteration on the 
same machine takes about 0.5 s. Therefore, the computational 
overhead is approximately equivalent to one or two iterations. 
Hence, for a fair comparison we should increase the number 
of iterations at each correction point by one or two. Even so, 
our algorithm introduces a significant improvement over the 
conventional HB algorithm. 

V. CONCLUSIONS 
In this work, we have proposed a new method for the steady- 

state analysis of nonlinear microwave circuits. Our method has 
mainly three advantages over the conventional HB method: i) 
it finds a parametric solution with respect to the input power 
level; ii) it is much more efficient than the HB method in terms 
of number of Newton-Raphson iterations; iii) it provides faster 
convergence compared to the HB method. 

This paper has presented examples to illustrate the efficiency 
of the proposed method over the conventional HB method. 
For this purpose, we have used the commercial simulator 
Microwave Harmonica (version 2.0) and observed that the 
required number of NR iterations reduces drastically when the 
proposed method is used. We have to note that version 2.0 is 
not the latest release of the software. The latest releases of the 
HB simulators make use of all recently proposed techniques 

and are more efficient compared the previous ones. Had one 
of these modern simulators been used instead of old version 
we used in our experiments, the reduction in the number of 
NR iterations would not have been so dramatic. However, we 
are confident that our method can improve the efficiency of 
these new simulators even further. 
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