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A Saturated Linear Dynamical Network
for Approximating Maximum Clique

Ferhan PekerginOmer Morgil, and Gineyt Gizelis

Abstract—We use a saturated linear gradient dynamical net- ~ This paper employs a saturated linear (gradient) dynami-
work for finding an approximate solution to the maximum clique  cal network for approximating the maximum clique problem
problem. We show that for aimost all initial conditions, any \yhich can be formulated as a special kind of quadratic 0—1
solution of the network defined on a closed hypercube reaches . bl Th drati f - hich i
one of the vertices of the hypercube, and any such vertex corre- 'progr'arnmlng problem. The quadratic cost function, which Is
sponds to a maximal clique. We examine the performance of the indefinite, has been taken as the energy for the network. The
method on a set of random graphs and compare the results with solutions produced by unstable linear dynamics are saturated
those of some existing methods. The proposed model presentspn the hypersurface of closed unit hypercube so that saturated

a simple continuous, yet powerful, solution in approximating ,qe solutions eventually satisfy 0—1 constraints as reaching
maximum clique, which may outperform many relatively complex

methods, e.g., Hopfield-type neural network based methods and "€ Of the vertices of the hypercube. We show that any
conventional heuristics. such vertex is a valid solution to the problem, i.e., it defines

| . i o . a clique and furthermore provides the maximality. Such a
ndex Terms—Combinatorial optimization, gradient systems, . . . .
max clique, neural networks. network model was proposed previously in [3] with a different
parameter setting for the design of an associative memory
where stored patterns correspond to stable vertices. In the
. INTRODUCTION models of [3] and the present paper, bipolarity (or unipolarity)
RADIENT dynamical systems are described by a set ébndition on the optimization variables is provided by the
differential equations in a state equation form whose vegaturation mechanism described above. Such a handling of
tor field is produced by the gradient of a scalar function calletiscrete variable condition is quite unusual in the literature
energy. These systems do not have complex dynamics suchvasre basically two techniques are used. In the first approach
oscillation, so that any bounded solution of them converges[#, [2], penalty terms(z;(1 — x;) for unipolar or1 — z?
one of the equilibrium points which are indeed extrema of tHer bipolar variables) are added to the cost function and
associated energy function [1]. On the other hand, so calltfn discrete constraints are relaxed into continuous ones as
gradient-like systems (e.g., Hopfield-type neural networks) af#ear inequalities defining a hypercube. As discussed in [2]
in fact, not gradient systems although they have the same kiled quadratic cost functions, the resulting cost can be made
of dynamics. As a consequence of their dynamical properti€oncave in this way, and its continuous local minima take
gradient and gradient-like systems have been widely usedmace at the hypercube vertices, but some of these continuous
natural models for solving unconstrained minimization prolminima may not correspond to discrete local minima of the
lems by considering the cost function as the energy (see, eqiginal problem. The second technique that most analog
[2]). Constrained minimization problems can also be solveateural network models exploit is to introduce extra continuous
in the same way, by adding to the cost some penalty functigariables such that original optimization variables take discrete
terms representing constraint violations, hence transformivglues as a function of these new variables. Section IV of
the problem into an unconstrained one. Many continuotisis paper shows how such an approach can be used for the
optimization methods, and almost all analog neural netwogknsidered maximum clique problem.
architectures designed for real-time optimization, are based ormhe problem of finding a maximum clique to which we
the explained gradient systems approach. The application apeapose an approximate solution is an NP-hard discrete op-
of gradient system based methods covers a very broad clasgzation problem [5]. It is computationally intractable even
of optimization problems, including nonlinear, discrete anh approximate with certain absolute performance bounds [6].
combinatorial (even of NP-hard) ones, such as the traveliSgveral practical problems arising in a diverse field, e.g.,
salesman problem. pattern recognition, computer vision, information processing
etc., and also a number of graph theoretic problems can be
transformed into maximum cliqgue problem. It is, therefore,
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been proposed (see, [8], [9], and related references therein)An equivalent characterization of maximum clique problem
All of the existing neural network based methods and ttean be given in terms of independent sets of vertices. Let
method of this paper could be considered in the secotl = (V,F) be an undirected graph. A subsg§tc V of
category. The saturated linear gradient network used herevéstices is called an independent set@fif its vertices are
closely related to the continuous time Hopfield network. Asairwise nonadjacent, that is if verticeg, v; € S, i # j,
stated in [3], this model can be implemented by an analtigen(v;,v,) ¢ E. A maximal independent set éf is a subset
electronic circuit in a configuration the same with those of of vertices whose proper extensions are not independent
RC opamps implementations of Hopfield networks but witkets, i.e., for anys’, if S ¢ S’ and S’ # S, then S’ is not
using ideal (lossless) integrators with saturation instead af independent set. A maximum independent sef;aé an
lossy integrators and nonlinear amplifiers. The model coimdependent set whose cardinality is maximum. Note that, by
sidered in this paper is linear on arydimensional(t = definition a maximum independent set is also maximal, but
1,2,---,n) faces of the hypercubf, 1]™. This makes the the converse is not necessarily true.
model mathematically and computationally tractable. Despitelt is well-known that the maximum clique problem for a
of its simplicity, as observed from the computer experimentgaph is equivalent to the maximum independent set problem
it has a better approximation performance than the existifgy the complement of the graph. More precisely, (@t=
Hopfield type neural networks and conventional heuristid’, E) be an undirected graph and I& = (V,E) be its
methods. complement, i.e. £ =V x V \ E. Then, it is well known that
This paper is organized as follows. In Section |l we presestis a maximal (maximum) clique of? if and only if S is a
a formulation of the maximum clique problem. In Section llmaximal (maximum) independent set Gf(see, e.g., [10]).
we show that almost all solutions of saturated linear dynamicalThe problems presented above are known to be NP-
network reach some vertices of the unit hypercube and amymplete [5], and even their absolute approximations are
vertex reached corresponds to a maximal clique. In Section NP-hard [6]. Hence, simple algorithms which yield good
we give Grossberg type version of the proposed model whishboptimal solutions in reasonable amount of time may be
is described by state equations with continuous right hand sigigite useful for practical problems related to these problems.
as opposed to the original version. In Section V we present theMaximal independent set problem (or equivalently maximal
results of some computer simulations and give a performarglgjue problem) can be stated as a quadratic 0-1 programming
comparison with some other methods. Finally we give sonpgoblem in various ways, see e.g., [7], [10], [9]. Also, by using
concluding remarks. some well known results, the problem can be transformed
into a continuous and concave minimization problem for a
quadratic cost function on the unit hyperculge1]”, where
Il. FORMULATION OF MAXIMUM CLIQUE PROBLEM n = |V] (see e.g., [4], [2]). Once the problem is formulated
In the following, the definitions of maximum clique andas a continuous and constrained optimization problem, vari-
maximum independent set which indeed corresponds to maxs standard neural optimization schemes could be used to
imum clique in the complement graph will be given. Du@pproximate its solution (e.g., see [2]). Most of these schemes
to its simplicity in formulation, only maximum independenuitilize standard gradient descent type optimization technique.
set problem will be considered and maximum clique problefonsequently, they might converge to a local minimum, and
will then be treated based on an optimization formulatiodhis minimum may not correspond to a valid solution, i.e.,
obtained for maximum independent set. All statements whiehmaximal clique or maximal independent set. Moreover, in
will be made for independent sets could be considered m®st of these schemes there are various parameters which must
the statements for cliques in the complement graph. Althoufk adjusted beforehand. In most of the cases, these parameters
proofs for some facts given in this section are available @ffect the solution crucially, and the setting of them are often
the literature (see, e.g., [10]), they are also repeated herebased on a trial-and-error procedure, which is not a trivial
order to make the paper self-contained. On the other hataksk.
to avoid confusion, note that throughout the paper vertex will We formulate the problem as a quadratic 0-1 optimization
be used alternatingly for hypercube corners and graph nodamblem as follows. Let? = (V, E) be an undirected graph.
Any considered graph will be assumed to have no loop, het » = |V| be the number of vertices, and let € V,
more than one edge associated to a vertex pair and have at 1,2,---,n denote the vertices. Led € {0,1}"*"
least one edge. be the adjacency matrix of, i.e., foré,7 = 1,2,---,n,
Let G = (V, E) be an undirected graph, wheié is the a;; = a;; = 1 if and only if (v;,v;) € E. Note thatA is
set of vertices and® C V x V is the set of edges. A subseta symmetric matrix, and;; = 0 for s = 1,2, .-, n.
S C V of vertices is called a clique if for every pair of vertices We first state the following simple fact:
in S, there is an edge i, i.e., the subgraph induced Ky Fact 1: A € {0,1}™*™ is an indefinite matrix.
is complete. A maximal cliqueS is a clique whose proper Proof: Since A = AT all eigenvalues ofA are real
extensions are not cliques, i.e., for a8y, if S C S/ and numbers, where the superscrifit denotes the transpose.
S # 5 thenS’ is not a cliqgue. A maximum clique o is a Moreover,trace{ A} = 0, hence so is the sum of eigenvalues
cligue whose cardinality is maximum. Note that, by definitionf A. Since the associated graph has at least one edgeAthen
a maximum clique is also maximal, but the converse is nbas rank not less than 1. This implies thitnhecessarily has
necessarily true. both negative and positive eigenvalues, hence is indefinite.
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Fact 2 shows that the adjacency matsxs closely related [ll. SATURATED LINEAR DYNAMICAL NETWORK
to the characterization of independent sets. et V' be @  giaring from (1), let us define the following energy func-
subset of vertices and let® € {0,1}" be its characteristic tion:
vector, i.e.,.z; = 1 if and only if v; € S andz{ = 0 if and
only if v; ¢ Sfori=1,2--- n. V=alAr -z  xc[0,1]" (2)

Fact 2: S is an independent set if and only if its character- ) . .
istic vectorz® satisfies the quadratic equation®)T AzS = 0. and based on (2), let us define the following gradient descent

Proof: First note that(z)? Az > 0 for anyz € {0,1}». dynamics:
Let S be_a_n independent set and let € {0,1}" be its i=-1VV=1le— Ar ©)
characteristic vector. If:j = 1 andz; = 1 for any+,j =
1,2,---,n such thatj # ¢, thena; ; = 0 which easily follows ~ Assume thatr € R™ and let us take the derivative of (2)
from the definitions of independent set and adjacency matrixith respect to time along the solutions of (3). Then we obtain:

i Sy, — 5 S _ .

Then, necc_assarlly we hayelz); = Ofor'am so thatzy = 1, V= —L|VV|? = —2|| Az — L] 2 @)
for otherwise there must be at least ghe- 1,2,---.n such ] ] ! i )
thata;; = 1 andz$ = 1, which is a contradiction. It then hence the energy is a nonincreasing function of time along the
follows (z5)T AzS = 0. Conversely, let(z5)T AzS = 0 for solutions of (3). Moreover, by Fact 4 is an indefinite matrix.
somez® € {0,1}", and letS C V be the subset of verticesHence, even if (3) has an equilibrium point, it is necessarily qf
whose characteristic vector is given b. Let us haves$ = 1 saddle type. Therefore, (3) represents an unstable dynamics,

and (Az5); = 0. If 25 = 1 for somej, then necessarily we and unless (3) has an equilibrium point an@) belongs to
havea; ; = 0, which #neans that; rUj‘E S and (v;,v;) & E. the stable manifold of that equilibrium point, the solutions of

Hence,S is an independent set. (3) are unbounded. Sincd has both positive and negative

We note that Fact 2 does not characterize maximal indglgenvalues, the union of such stable manifolds always has
pendent sets. A standard characterization of maximum indgeasure zero. It follows that for almost all initial conditions

pendent set problem for & = (V,E) as a quadratic 0-1 z(0), the solutions of (3) are unstable and hence escape
optimization problem is given as follows: from any bounded region iR" in finite time. This does

not contradict (4), which states that the quadratic form (2)

decreases along the solutions of (3), but (2) itself is an

indefinite quadratic form hence is not bounded from below.
The unstable dynamics given by (3) is not useful if not

min f(z) := 2T Az — Tz, xz €{0,1}", (1)

where, A € {0,1}"*" is the adjacency matrix and = restricted to the unit hypercube. To force the solutions to stay
(1,1,---,1)F € R". inside the unit hypercube, including the boundaries, we modify
Fact 3: Any z* € {0,1}" is a (discrete) global minimum (3) as follows:
of f(z) given by (1) if and only if the se§ such thatr® = z* $ —(Az);, if 0 <a; <1 except for the
is a maximum independent set f6. . following cases
Proof: If z* € {0,1}™ is a global minimum, then Y=o, if 2, =1andi — (Az); >0 ()
necessarily we have 0, if ;=0 andg — (Ax); <0.
Note that although the right hand side of the differential
(") Az* = Z 2zjz; = 0. equation given by (5) is discontinuous, for any initial condition
(vi,u;)EE z(0) € [0,1]", there exists a unique solution to (5). Moreover,
) this solution is continuous with respect to time, but not

differentiable.

Otherwise, we can find another vector € {0,1}" yielding a The rationale behind using the discontinuous dynamics
smaller cost. Hence* corresponds to a maximum independerdgiven by (5) is to restrict the dynamics given by (3) to the
set by Fact 2 and the assumptions. This proves the necesasityit hypercube. We will show below that the quadratic form
The sufficiency follows from Fact 2. O given by (2) continuously decreases along the solutions of (5),

The correspondence described by Fact 3 is true alsoand due to the unstable behavior of (5) it eventually reaches
local sense. A point* € {0,1}" is called a (discrete) local to a vertex of the hypercube in finite time and stays there. We
minimum of f(z) if f(zx) < f(z) for any z € {0,1}* will also show that the converged vertex always corresponds
adjacent taz*, i.e., X7 |x; — xf| < 1. to a maximal independent set.

Fact 4: A point z* € {0,1}™ is a discrete local minimum  Theorem 1:For all initial conditionsz(0) € [0, 1]", the
of f(x) if and only if z° = z* defines a maximal independeniguadratic form given by (2) is a nonincreasing function of
set for GG. time along the solutions of (5).

Proof: Suppose that* € {0,1}" is a discrete minimum Proof: Let us consider three cases: when the trajectories
but does not define a maximal independent set. It is cleafr(5) are inside the unit hypercube, when the trajectories are
from the proof of Fact 3 that when the independency or tlem a hypersurface; = 0 or z; = 1.
maximality is violated by a characteristic vectot, the point Case 1: Whenz(t) € (0, 1)™, the dynamics is given by (3);

x* = x5 cannot be a minimum. This proves the necessity, tlamd (4) shows that” decreases along the solutions. There may
sufficiency is clear by the definitions. O be an equilibrium point of (3) irf{0, 1)™, andz(0) may be on
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the stable manifold of this equilibrium point. In such cases, thke hypersurface:; = 1, and for almost allz,.(T") € [0, 1]™,
solutions converge to this equilibrium point. However, uniothe trajectories eventually hit the boundary of the hypersurface
of such stable manifolds has measure zero, and for almostall= 1. As opposed to Case 2, in this case the trajectory cannot
initial conditionsz(0) € (0,1)™, the solutions of (3) grow and leave the hypersurface; = 1 (see Remark 1 below).
eventually hit the boundary of unit hypercube in finite time. For any z(0) € [0,1]", as the corresponding trajectory
Case 2: Assume thatz;(7) = 0 for some timeZ" > 0. evolves in time it will hit the boundary of unit hypercube and
Let 4, € R™ ™ denote the matrix obtained by deletingat least one of the Cases 2 and 3 will be valid. By consecutive
the ¢th row andith column of A wherem = n — 1. Let application of these cases, we conclude that the quadratic form

b, = te. € R™, wheree, = (1,1,---,1)%, and letz, = continually decreases along the solutions of (5). O

(z1,@2, i1, Tig1, - Tn)L € R™. Then, (5) reduces to Remark 1: Consider the case; =1 and1/2 — (Ax); > 0

b A 0 el i=19 for somet. Sincex; = 1, thenl1/2 — (Az); < 0 for all j

T =0T St ST I=ELSn such thata; ; = 1. Therefore, as time evolves, any with

J# (6) a;; = 1 cannotincrease, hendg/2—(Az); = 1 —%7_ a; ;7;
z; =0. (7) remains nonnegative. This means that any trajectory that hits

For this case, the quadratic form (2) becomes: the hypgrsurface:i = 1 cannot leave it. . H

T - By using Theorem 1 we can prove the following conver-
Vi=ap Avey — 20, 2y (8) gence result.

Note thatV = V, for z; = 0. By differentiating (8) along  Corollary 1: For almost allz(0) € [0,1]" in finite time,

(6), we get the trajectories of (5) reach one of the vertices of the unit

. 9 hypercube and stay there thereafter.
Vi = =2 Ary = br] ) Proof: By Theorem 1, the quadratic functidhdecreases
which shows that quadratic form (2) continue to decreasgong the trajectories of (5). Since the solutions of (5) are
on the hypersurface; = 0. Note thatA,. is the adjacency bounded and, sinc¥ is bounded below on the unit hypercube,
matrix of the subgraph obtained by eliminatirith vertex it follows thatV, as a function of time, converges to a constant
of graph@G. If the resulting subgraph has no edge, thén V,. Let L = {z € [0,1]"|V(z) = V,} denote the level
becomes a zero matrix. In this case, the reduced system €6) of V. Then, by continuity ofx(-) with respect to time
cannot have an equilibrium point, so the solutions cannot stagd V(-) with respect tar, it follows thatz(¢) converges to
inside the hypersurface. When the subgraph has at least édnast evolves. Since (3) inside the hypercube and (6) and
edge, A4, becomes indefinite, thus representing an unstal{f2) on the hypersurfaces represent unstable dynamics, the
dynamic. Now, there may be an equilibrium point of (6) otrajectories escape from the equilibrium point for almost all
the hypersurfacer; = 0 and (7)) may be on the stable initial conditions. Hence, without loss of generality we may
manifold of such an equilibrium point. In such cases, thessume thaf, does not contain an equilibrium point of (3),
solution converges to this equilibrium point. However, thé), or (12). Note that since the unit hypercube is a compact
union of such stable manifolds has measure zef@,if™, and set, it follows thatL is not empty. Letz € L such that
for almost allz,.(7’) the solutions of (6) grow and eventuallyz(t) — z. Note that if the right-hand side of (5) were a
hit the boundaries of the hypersurface definedzpy= 0 or Lipschitz function ofx, then a trajectory which converges to an
escape from this hypersurface, i.e;, > 0 for some¢ > 7= equilibrium point would not reach it in a finite time. However,
(which means we fall into the first case). since in our case the right-hand side of (5) is discontinuous,
Case 3: Assume that;(T’) = 1 for some timeZ” > 0. Let this conclusion does not hold in general and, as argued in

A, € R™™ andz, € R™ be as defined in Case 2. Let ucorollary 1, any trajectory reaches to a vertex in finite time.
defined, € R™ as follows: If 0 > z; > 1 for somei = 1,2,---,n then by Theorem
. 1 energy continues to decrease. Hence, we Haig < V,

(lj")i =3 ifa;=1 10) v > T, which is a contradiction. Hence, necessatilyis a
(br); =35, ifa;; =0,j#4. (11) vertex ands(t) =z V¢ > T. O
Then (5) reduces to Next, we will show that the vertex € {0,1}" to which (5)
. N ) converges actually corresponds to a maximal independent set.
G =bp — Az, 0<z; <1 j=1,2,---,n, Theorem 2:Let = € {0,1}" be a point to which (5)
Jj#e, (12) converges for some initial conditions{0) € [0,1]". Let S
z =1 (13) be the set of vertices of the gragh= (V, £) such that
For z; = 1 the quadratic form (2) becomes S={v; € Vl]z; =1, i=1,2,---,n}.
Ve =af Apay — 2bF 2, — 1. (14)  Then, S is a maximal independent set.
Note thatV = V, for ; = 1. By differentiating (14) along Proof: First, we will show thatS is an independent set.
the solutions of (12) we obtain Let z; = 1. Then, from (5) it follows that} — (Az); >

: P 0. However, sincex € {0,1}", (Az); is necessarily a
Vi = =2l Avz, = bf7. (15) nonnegative integer. Hence, we hajéz); = 0. Therefore,
By using the same argument given in Case 2 just after (9)we havez” Ar = ¥, z;(Az); = 0. By Fact 2,S is an

follows that the quadratic form (2) continually decreases dndependent set.
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Now, let S’ be another set of vertices such thatC S’ converging to a vertex. This property could be summarized
and S # S’. Then, we have a vertex; € V such that as follows.
v; € 8 butv; ¢ S. Hence, by (5) we must have; = 0 Fact 5: For almost allz(0) € [0,1]", the solutionsz(t)
and i — (Az); < 0. Let 2’ € {0,1}" be the characteristic of (18) diverge to infinity. Moreover, there existsZa > 0
vector of &, i.e., («/); = 1 if and only if v; € S for such thats(z(¢)) € {0,1}", and s(z(¢)) = s(=(T)) for all
Jj=1,2,---,n Then,(«);, =1 and sinceS C S/, we must t > 7. Lety* = s(x(T)) and letS denote the set of vertices
have(Az’); > (Az);. Since we havéAz); > 3, this implies corresponding tg/*. ThenS is a maximal independent set of
that (Az’); > 3, hence,(z')* Az’ # 0. By Fact 2,5’ cannot the graphG.
be an independent set. O Proof: These results can be proven by using the ideas
The next corollary follows from Theorem 2 and Fact 4. given in Theorem 1, Corollary 1 and Theorem 2, and thus are
Corollary 2: Let z € {0,1}™ be a point where (5) con- omitted here. O
verges for some initial conditions(0) € [0, 1]*. Then,z is a Remark 3: Note that in (18),z(t) remains unbounded and
discrete local minimum of (1). O s(=(t)) converges to a vertex, which corresponds to a maximal
Remark 2: According to Theorem 1, for all initial condi- independent set. Since (18) is unstabdéz(¢)) reaches a
tions z(0) € [0,1]", the quadratic form given by (2) is avertex in a finite time. Sincex(¢) increases proportional to
nonincreasing function of time along the solutions of (5). Ih asymptotically, at timeZ’ when s(x(t)) € {0,1}" and
fact, it decreases monotonically except whei®) or z(T) s(z(t)) = s(x(T)) t > T, the solutionz(t) will not be too
for someT > 0, corresponding to the instance when th&rge at the tim&@’. The dynamical system (18) should be reset
trajectory hits a hypersurface, is an equilibrium point of thafterwards to avoid further increase. Since the solutions of
associated dynamics. However, such equilibrium points aE8) continue to increase (in norm) and the solutions of (5) are
necessarily of the saddle type and, consequently, the uniestricted to unit hypercube in (5) then, in general, the vertices
of their stable manifolds is not dense 0,1]". Therefore, to which these two models converge might be different.
for almost all initial conditionsz(0) € [0,1]", the quadratic ~ Also note that (18) could be implemented as an analog elec-
form given by (2) continually decreases along the solutiotnic circuit. However, as stated above, due to the unstable
of (5) and reaches a vertex in finite time. This point was aldmehavior ofx(t) this circuit should be turned off when a vertex
confirmed in our simulations, in which we choose the initids reached. O
conditions randomly and, in each case, the corresponding
trajectory reached a vertex. If a trajectory does not reach a

vertex, which is a highly unlikely event, then we can make V. NUMERICAL RESULTS
an arbitrary small change or(0) and the new trajectory will  |n this section, we illustrate the performance of the sat-
almost always converge to a vertex. U urated linear dynamical network (SLDN) on random graphs

of various vertex sizes and densities. As a primary perfor-
mance measure, we consider average maximal clique sizes
found by our method in several experiments. Herein, the
The dynamical system (5) for maximum independent sgterage is taken over the test graphs generated with the
problem is related to a Grossberg-type neural network [2] same characteristics, i.e., the vertex sizes and densities. We
follows. Let the functionh(-): R — R ands(-): R" — R" consider also averages computed for the same test sets but

IV. RELATION WITH A GROSSBERGNEURAL NETWORK

be defined as taking into account only the best results obtained by five (and
1, if y>1 also ten) independent runs of our algorithm on each graph
h(y) = { Ys fo<y<1 (16)  with randomly chosen initial conditions. The first performance
0, if y<0 measure provides an indirect comparison of our results with
s(x) = [M(z1) h(w2) -+ h(z,)]*. (17) those reported in the literature for some methods which have
Consider the following dynamical system: been applied to random graphs with the same characteristics.

.1 The second measure is related to the ability of the method to
&= ze— As(x). (18) find different search directions when it is started by different
Clearly, (18) can be considered as a Grossberg-type neundtial points. Considering the best solution among many
network. To understand the behavior of (18) let us assuromes is a natural performance improvement technique, used
that z(0) € (0,1)". Then, s(z) = = and the dynamics (18) frequently for such local search methods. However, not every
becomes equivalent to (3). Therefore, the solutions of (1B)cal method has this kind of improvement possibility.
increase and eventually hit the boundary of unit hypercube.We performed a set of direct comparisons between our
If z; < 0, then(s(x)); = 0 and the dynamics associatednodel and a continuous Hopfield network proposed by Jagota
with the rest of the variables reduces to (6). Alsozif> 1, in [8]. The reason for this comparison is the following: our
then (s(z)); = 1 and the dynamics associated with the reshodel and the one proposed in [8] are both continuous and
of the variables reduce to (12). The difference between theadient-like systems. They are very similar also in some other
behavior of (18) and (5) is the following. In (5) the solutionsespects. On the other hand, this continuous Hopfield network
are restricted to the unit hypercube. However, in (18) the compared in [8] with several other algorithms applied to
solutionz(¢) continues to grow even if it reaches the boundarhe maximum clique problem. The information given in [8]
of the hypercube, bui(z(t)) eventually becomes bounded asbout the performance of the methods available in the literature
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TABLE |
AVERAGE CLIQUES SizEs FOuND FOR 100-, 400-,AND 1000-VERTEX GRAPHS wWiTH DENSITIES 0F0.25, 0.50,AaND 0.75
Overall Average | Av. over Bests among 5 Runs | Av. over Bests among 10 Runs
|V| | Density | SLDN | CHD | SLDN CHD SLDN CHD
025 | 483 | 448 | 521 458 5.30 462
100 | 0.50 807 | 7.38 | 847 7.59 8.60 7.66
0.75 | 15.05 | 13.87 | 15.63 14.24 15.76 14.40
0.25 570 | 553 | 6.34 5.96 6.56 6.08
400 0.50 9.91 9.24 10.70 10.03 10.96 10.30
075 || 20.44 | 1879 | 218 19.93 22.24 20.28
0.25 617 | 603 | 695 6.50 7.10 6.60
1000 | 0.50 | 10.93 | 1025 | 12.05 11.10 12.50 114
0.75 || 23.19 | 21.26 | 2445 22.45 24.8 23.0
TABLE I TABLE Il
PERCENTAGE OF THEBETTER (B), EQUAL (E) AND WORSE (W) QuUALITY DISTRIBUTION OF SOLUTIONS FounD BY SLDN
SoLUTIONS OF THE SLDN wiTH RESPECT TOTHOSE OF CHD For 100-, 400-, AND CHD FoR 0.25 DENSITY RANDOM GRAPHS
AND 1000-VERTEX GRAPHS WITH DENSITIES OF0.25, 0.50,AND 0.75 . .
Clique Size
QOver all runs Best among 5 runs || Best among 10 runs |V| | Trial No. | Method | 3 4 5 6 7 8
V| |Density | B | £ | W | B| E W B E w 1 SLDN 282 602 116
0.25 40.8 | 474 | 11.8 || 55 | 43 2 56 | 44 0 CHD 34 458 504 04
100 0.50 59.6 | 29 | 114 | 70 | 26 4 70 | 28 2 100 5 SLDN 3 73 24
Lo 678 23 | 92 |73 21 6 74 | 22 4 CHD | 2 39 58 1
025 | 354|414 232 |4l |52 7 52 | 42 6 10 SLDN 70 30
400 | 050 54232413455 39 6 56 | 38 6 CHD | 2 36 6 2 _
075 | 744| 15 | 106 || 87| 7 6 92| 4 4 1 SLDN 102 12 364 524 938
025 | 37 | 38 | 25 || 55(35| 10 || 50|50 0 100 _ o 36 122 B4 28
1000 | 0.50 56 | 28 | 16 || 70 | 20 10 80 | 10 10 ° CHD n s 7
0.75 78 14 8 90| 5 5 80 | 10 10 10 SN 4G
L CHD 2 88 10
) . ) ) 1 SLDN 16 52 31 1
provides us with an evaluation of the performance quality and CHD 16 65 19
TP H : : : : 1000 5 SLDN 10 8 o
efficiency of our simple method in comparison with relatively | am 0 50
more complex ones. i0 SLDN 90 10
Our SLDN, defined by the differential equations in (5), was — 1 CHD 060
implemented by using the Forward—Euler algorithm. The step
size was set to the minimum ¢0.01, 1/maximum degrep TABLE IV
The initial state was chosen as a random vector with arbitrary DISTRIBUTION OF SOLUTIONS FOUND Bv SLDN
. . . L .. AND CHD FoRr 0.50 DeNsITY RANDOM GRAPHS
direction in the vicinity of the origin0 < z;(0) < 0.01 for
. Clique Size
all <. ) ] ] ) V| |TrialNo. {Method | 6 7 & 9 10 11 12 13 14
Continuous Hopfield dynamics (CHD) was implemented 1 SLDN | 06 228 5l 236 2
exactly as described in [8]. Jagota suggests to bound the iter- : SCL%‘ID\_ 13.8 461-4 2575 12‘-16 3
ation number with the cardinality of vertex set. We observed cup | 6 41 34 19
from the experiments that the given discretization scheme R A
for CHD may not yield convergence aftad/| iterations i SR IR Y B U Y]
to a hypercube vertex. Thirteen such cases, which vyield to CHD 1 172 438 284 72 02
nonmaximal cliques, were observed over 600 runs on larg€® | ° | %28 Lo a2t
graphs with high densities (i.e}]}’| > 400 and density of 10 SLDN 2 62 14 2
0.75). To obtain a complete comparison on the whole set we - SCL}]’)I])\ —
allowed the CHD algorithm to continue the iterations until CHD 17 47 30 6
convergence, and we used the cardinality of the maximaf®| > SN o R
clique so found. 10 | SLDN 10 4 40 10
In the simulations, we generated random graphs of 100, 400, CHD 10 40 50

and 1000 vertices with 0.25, 0.50, and 0.75 densities. The test
sets of 100- and 400-vertex graphs include 50 instances, while
the 1000-vertex graph sets have ten instances for each dendt

d density, SLDN finds larger maximal cliques on average

As the SLDN and CHD algorithms are run ten times on eaéﬂgn CHD. When WS consider overall results, SLDN cllqu_es
instance, our comparisons report on a total of 3300 solutiof®® generally 6-8.5% larger. SLDN performances are fairly
for each method. The scheme used to generate random gr on low-density graphs with 2.98 and 2.26% larger cliques
may be summarized as follows. Initially ta& as empty set. than those of CHD for 400- and 1000-vertex graphs of 0.25
Then, for all4, € V with ¢ < j include an edge td& with density. However, the cliques found are at least 7% larger in
a probability equal to the density. the case of 0.75 density graphs. When we consider the best
Table | summarizes the simulation results as giving thesults among five or ten runs for each instance, we observe
average clique sizes found by SLDN and CHD. For every sitleat SLDN yields 6-12% larger cliques in all cases. Another
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TABLE V

DiISTRIBUTION OF SOLUTIONS FOUND BY SLDN AND CHD FOR 0.75 DeEnsITY RANDOM GRAPHS

Method &

V] Trial No. 11 12 13 14 15 16 17

Clique Size

18 19 20

21 22

23

24 25

26

SLDN 1 02 12 9.8
CHD 1 14 108 252

21
32.6

29.6
19.6

25.2
10.4

9.2

3.8

100 SLDN 5 2

CHD 5 5 21

16
33

29
25

13

7

SLDN 10 2
CHD 10 4 20

10
34

28
26

12

5

SLDN 1
CHD 1

0.6

0.2 3 12.2

25.6

48 182

31.2

278
18

400 SLDN 5

CHD 5 2

37

SLDN 10
CHD 10

24 36

SLDN 1
CHD 1

1000 SLDN 5

CHD 5

SLDN 10
CHD 10

10

interesting remark is on the improvement of the solution
quality with multiple running of the algorithms. For up to ten

TABLE VI
INDIRECT COMPARISONS AMONG SLDN AND DIFFERENT METHODS
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trials, the improvement rate of the SLDN is higher than that! |

p-annealing | MFA

SSD(,[V]

)

S5D(V,[V]) | SLDN-1 | SLDN-5

SLDN-10

806 |8

.50 8.36

8.60

M 807

[ 847 8.60

of the CHD. This shows the ability of the SLDN to capturégg

10.34

[ 10.36

10.80

11.04

[ 91

| 10.70 10.96

new directions without losing the quality of the solutions.
Table Il compares SLDN with CHD from another point of
view. That is the probability to find a solution of better, equal,
or worse quality obtained by SLDN with respect to CHD.
When the algorithms are run only once, in the less favorable
case SLDN finds a better result for 35.4% of the runs and a

@

4

Density [ RLN

SLDN-1

SLDN-5

SLDN-10

0.25 5.16
0.50 8.48
0.75 16.31

4.83
8.07
15.05

5.21
8.47
15.63

5.30
8.60
15.76

1000

0.50 11.10

10.93

12.05

12.50

worse result in 23.2%. In the interesting case of 1000-vertex
high-density graphs, the percentage of the better and worse
: 0 0 .
results are, respectively, 78% and 8%. When the tnal_s %‘la%h V' as a solution and acts in the opposite sense. The
repeated, the results become more favorable to SLDN with, ai .
most, 10% worse and 50-80% better quality solutions Th%?rformances of these algorithms, de_notedSS@(@, |V|).
' ' d SSD(V, [V]), are calculated by taking the best solution

, i . ; a
confirms our previous remark about the diversity of the gooo(gtained in[V’| runs on each instance.

SleCh dlrecu%ns ::aptured Ey the SLDN. ¢ | q In Table VI(a), we show the average clique sizes found by

verage and re ative per ormances are requepty US€d @8 methods studied in [8] and by the SLDN executed one, five,
comparison tools, but the distribution of the solution qualltgnd ten times for 0.5 density random graphs. After only five
provides more detailed statistical data about the behaviorstlg?‘fj‘IS the SLDN provides cliques as large as the MFA algorithm

the methods. Tables IlI-V give the percentages of clique Sizgg g qoes. When we consider the best results found within
accomplishes better

found by SLDN and CHD. Distributions given in these tablel%,n trials of SLDN, only thesSD(V, V)

present a low dispersion for the SLDN results and a 90Qflan our approach for 400-vertex graphs, but this is the best
improvement rate for repeated trials. solution found by 400 runs of the SSD algorithm. In the case
The performance of the CHD algorithm reported here ang 100.vertex graphs, SLDN attains, within ten trials, the same
in [8] is very similar for the graphs characterized with th%]uality as the results provided by 100 runsS8D(V, |V ).
same characteristics. In the two cases common to both eXxThe |ast algorithm that we compare with SLDN is the relax-
periments, the average clique sizes found by the CHD Hjion labeling network (RLN) of Pelillo [9]. This algorithm,
[8] are, respectively, 7.44 and 9.16 for 100- and 400-vertgyich is based on a different formulation of the maximum
graphs of 0.5 deﬂSity, versus 7.38 and 9.24 in our eXperimel’t’tﬁque prob|em’ y|e|ds genera"y very good results so we
Therefore, we consider the test sets used in [8] and in gHElude it in our comparison. However, the RLN may converge
study to bestatistically equivalentThus, we can compareto infeasible solutions. It lacks a direct comparison because
the performance of the SLDN to those of the other methog§ accurate comparison on the same test set may require
considered in [8]. In our comparisons, we choose only the besany more computational efforts. Therefore, we summarize
four algorithms among nine ones (derived from five differerdy Table VI(b) the RLN’s performance reported in [9], as
methods) presented in [8]. Two of themannealing and mean compared to that of the SLDN for parameter sets common
field annealing (MFA), use an annealing scheme while the both methods. Since the RLN starts always with the same
others, which are different versions of the stochastic steepgstial state, it does not have the possibility of improving the
descent (SSD) algorithm, perform a randomized search. Té@ution quality by repeating trials with different initial states.
first version of SSD starts with an empty solution set arithble VI(b) shows that when RLN converges to a feasible
progressively includes vertices, while the second one stastdution, it provides larger maximal cliques as compared to

(b)
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TABLE VII time " and remain there for > 7', and any such vertex
RATIO OF THE AVERAGE ITERATION NUMBER TO |V| FOR corresponds to a maximal (but not necessarily a maximum)
SLDN ALGORITHM EXECUTED ON RANDOM GRAPHS . . .
cligue. We also presented some simulation results for random

v o Dgf‘;':y 7 graphs and compared our results with some existing methods.

100 355 1276 1177 We note that in most of the cases, maximal clique obtained by

400 | 3.60 | 2.70 | 1.61 our method may be considered as a reasonable approximation

1000 j| 3.50 | 2.71 | 1.64 of maximum cliqgue and is obtained in a reasonable amount
of time.

The proposed method can directly be extended to weighted

the SLDN, which is run only once. However, the best results_ . : : .
aximum clique and to weighted forms of other equivalent

found by SLDN in five trials are as good as those of RL . . i )
. . roblems. Since the model used has binary connection weights
except for the 0.75 density case, where RLN is clearly bettéer. : : X d L

and requires only simple saturation nonlinearity, it is more

With the knowledge of that, the RLN's results are close tguitable for VLSI implementation than some other networks
optimal and the results of the SLDN obtained by ten trials can P

be considered as very good approximations. It should be no%)fjplhed to the same problem. The linearity of the model on

that SLDN has very good relative performance (with five an inear subre_g!(_)ns, namely_ fac_es of the ur_ut hype_rcube,
.gives the possibility of resorting linear analysis techniques,

ﬁ:;ﬂlals\z\,;orrézguc ?ﬁgto;330Cr;-\;ertce;(ng\:]/rea;pgst;\/?noi.:fsaegill hich might lead further improvements on the approximation
Y L . y 9 "% maximum cligue and also might provide a useful framework
solution which is not a clique, whereas SLDN always provides . . )
: . ) : oo in seeking solutions for some related theoretical problems.

a maximal clique. This fact constitutes a significant advantage

of the SLDN over the RLN algorithm.

Above we presented an evaluation in order to show the
solution quality of SLDN. In the sequel, we will discuss some[l] M. W. Hirsch and S. Smaldifferential Equations, Dynamical Systems,
computational featres of the digital computer implementation, 3" Lhear Aoebra, San Degs, CAc acadenic, 1500,
of SLDN. In fact, the results given on the iteration number are ~ signal Processing New York: Wiley, 1993.
meaningful also in the case of a possible hardware implemef] J.-H. Li, A. N. Michel, and W. Porod, “Analysis and synthesis of a class
tation of SLDN as an analog electronic circuit. In order to f’éé‘g“{ﬂnftgﬁcrﬁ;Ls'gif;osl}'g%e’";;offgastﬂ%zc’; fa\lg\',?slegd8g}'perC“be’
give a rough estimation on the execution time, Table VIl ig4] P. M. Pardalos and F. B. Rosen, “Constrained global optimization:
formed to give the ratio of the average iteration number to the g'g?”th‘S_a”d f\"/ppl”cati%g?" inecture Notes in Computer Science
vertex set cardinality}’|. The average amount of computation (s, M(.?rl‘\l’r.LGaFr)(rel)r/]%irt-i gr f]ngohns.oﬁpmputers and Intractability: A Guide
required by SLDN implemented on a digital computer can be  to the Theory of NP-CompletenessSan Francisco, CA: Freeman 1993.
simply obtained from the iteration number by multiplying it (! Ur'oiﬁri%eﬁ*ns'cfol'fé"vigs:ﬁ; o hg‘f‘czé S Iesgr’?#r%r::d - (?ZAengr‘fd%’* g
with the operation number performed in each iteration step. As Eound, Co?npu?er Scienc&an Juan. p?,eno’ Rico, 1991, pp. '2_1yz_ b
it can be seen from Table VI, the iteration number appears tG1 P. Pardalos and J. Xue, “The maximum clique probleth,"Global
be proportional to the vertex set size. The mentioned ratigy E_pS'géth&gg'rbii*mpaﬁinzor%];iizrﬁh#ggl‘i‘due with a Hopfield network.”
increases as the density decreases, due to the independentiEEE Trans. Neural Networks/ol. 6, pp. 724-735, May 1995.
set formulation of the maximum clique problem. Finally, weld M. Pelillg, “Relaxation labeling networks for the maximum clique
remark that the normalized variance of the iteration number, %%kg.em’ 3. Artificial Neural Networksvol. 2, no. 4, pp. 313-328,
i.e., the variance of iteration number over squared mean f@p] P. M. Pardalos and G. P. Rodgers, “A branch and bound algorithm for
the random graph sets is found between 0.044 and 0.065 in ghee3T3a7X5'migngg“que problemComputers Ops. Rescol. 19, no. 5, pp.
our experiments. This normalized variance, indeed, gives an ' '
upper bound on the probability, as the iteration number for a
run is no less than the double of average iteration number.

From the above discussions, it is clear that SLDN not only
offers a good approximation to the maximum clique problem,

but also has nice computational properties.
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