
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 46, NO. 6, JUNE 1999 677

A Saturated Linear Dynamical Network
for Approximating Maximum Clique

Ferhan Pekergin,̈Omer Morg̈ul, and C̈uneyt G̈uzeliş

Abstract—We use a saturated linear gradient dynamical net-
work for finding an approximate solution to the maximum clique
problem. We show that for almost all initial conditions, any
solution of the network defined on a closed hypercube reaches
one of the vertices of the hypercube, and any such vertex corre-
sponds to a maximal clique. We examine the performance of the
method on a set of random graphs and compare the results with
those of some existing methods. The proposed model presents
a simple continuous, yet powerful, solution in approximating
maximum clique, which may outperform many relatively complex
methods, e.g., Hopfield-type neural network based methods and
conventional heuristics.

Index Terms—Combinatorial optimization, gradient systems,
max clique, neural networks.

I. INTRODUCTION

GRADIENT dynamical systems are described by a set of
differential equations in a state equation form whose vec-

tor field is produced by the gradient of a scalar function called
energy. These systems do not have complex dynamics such as
oscillation, so that any bounded solution of them converges to
one of the equilibrium points which are indeed extrema of the
associated energy function [1]. On the other hand, so called
gradient-like systems (e.g., Hopfield-type neural networks) are,
in fact, not gradient systems although they have the same kind
of dynamics. As a consequence of their dynamical properties,
gradient and gradient-like systems have been widely used as
natural models for solving unconstrained minimization prob-
lems by considering the cost function as the energy (see, e.g.,
[2]). Constrained minimization problems can also be solved
in the same way, by adding to the cost some penalty function
terms representing constraint violations, hence transforming
the problem into an unconstrained one. Many continuous
optimization methods, and almost all analog neural network
architectures designed for real-time optimization, are based on
the explained gradient systems approach. The application area
of gradient system based methods covers a very broad class
of optimization problems, including nonlinear, discrete and
combinatorial (even of NP-hard) ones, such as the traveling
salesman problem.

Manuscript received January 29, 1998; revised June 15, 1998. This paper
was recommended by Associate Editor D. Liu.

F. Pekergin is with the Laboratoire d’Informatique de Paris-Nord, Université
Paris-Nord, 93430-Villetaneuse, France.

Ö. Morgül is with the Department of Electrical Engineering, Bilkent
University, 06533-Bilkent, Ankara, Turkey.

C. Güzeliş is with the Faculty of Electrical and Electronics Engineering,
Istanbul Technical University, Maslak 80626, Istanbul, Turkey.

Publisher Item Identifier S 1057-7122(99)04746-7.

This paper employs a saturated linear (gradient) dynami-
cal network for approximating the maximum clique problem
which can be formulated as a special kind of quadratic 0–1
programming problem. The quadratic cost function, which is
indefinite, has been taken as the energy for the network. The
solutions produced by unstable linear dynamics are saturated
on the hypersurface of closed unit hypercube so that saturated
mode solutions eventually satisfy 0–1 constraints as reaching
one of the vertices of the hypercube. We show that any
such vertex is a valid solution to the problem, i.e., it defines
a clique and furthermore provides the maximality. Such a
network model was proposed previously in [3] with a different
parameter setting for the design of an associative memory
where stored patterns correspond to stable vertices. In the
models of [3] and the present paper, bipolarity (or unipolarity)
condition on the optimization variables is provided by the
saturation mechanism described above. Such a handling of
discrete variable condition is quite unusual in the literature
where basically two techniques are used. In the first approach
[4], [2], penalty terms for unipolar or
for bipolar variables) are added to the cost function and
then discrete constraints are relaxed into continuous ones as
linear inequalities defining a hypercube. As discussed in [2]
for quadratic cost functions, the resulting cost can be made
concave in this way, and its continuous local minima take
place at the hypercube vertices, but some of these continuous
minima may not correspond to discrete local minima of the
original problem. The second technique that most analog
neural network models exploit is to introduce extra continuous
variables such that original optimization variables take discrete
values as a function of these new variables. Section IV of
this paper shows how such an approach can be used for the
considered maximum clique problem.

The problem of finding a maximum clique to which we
propose an approximate solution is an NP-hard discrete op-
timization problem [5]. It is computationally intractable even
to approximate with certain absolute performance bounds [6].
Several practical problems arising in a diverse field, e.g.,
pattern recognition, computer vision, information processing
etc., and also a number of graph theoretic problems can be
transformed into maximum clique problem. It is, therefore,
of interest to develop methods for finding exact and also
approximate solution to it. The methods available in the
literature fall into two categories: i) Global methods ensuring
a maximum clique to be found (see [7] for a review), ii)
Local methods capable of finding maximal cliques providing
approximations in some degrees. Recently, several neural
network models which are mostly of Hopfield type [2], have

1057–7122/99$10.00 1999 IEEE

678 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 46, NO. 6, JUNE 1999

been proposed (see, [8], [9], and related references therein).
All of the existing neural network based methods and the
method of this paper could be considered in the second
category. The saturated linear gradient network used here is
closely related to the continuous time Hopfield network. As
stated in [3], this model can be implemented by an analog
electronic circuit in a configuration the same with those of
RC opamps implementations of Hopfield networks but with
using ideal (lossless) integrators with saturation instead of
lossy integrators and nonlinear amplifiers. The model con-
sidered in this paper is linear on any-dimensional

faces of the hypercube This makes the
model mathematically and computationally tractable. Despite
of its simplicity, as observed from the computer experiments
it has a better approximation performance than the existing
Hopfield type neural networks and conventional heuristic
methods.

This paper is organized as follows. In Section II we present
a formulation of the maximum clique problem. In Section III
we show that almost all solutions of saturated linear dynamical
network reach some vertices of the unit hypercube and any
vertex reached corresponds to a maximal clique. In Section IV
we give Grossberg type version of the proposed model which
is described by state equations with continuous right hand side
as opposed to the original version. In Section V we present the
results of some computer simulations and give a performance
comparison with some other methods. Finally we give some
concluding remarks.

II. FORMULATION OF MAXIMUM CLIQUE PROBLEM

In the following, the definitions of maximum clique and
maximum independent set which indeed corresponds to max-
imum clique in the complement graph will be given. Due
to its simplicity in formulation, only maximum independent
set problem will be considered and maximum clique problem
will then be treated based on an optimization formulation
obtained for maximum independent set. All statements which
will be made for independent sets could be considered as
the statements for cliques in the complement graph. Although
proofs for some facts given in this section are available in
the literature (see, e.g., [10]), they are also repeated here in
order to make the paper self-contained. On the other hand,
to avoid confusion, note that throughout the paper vertex will
be used alternatingly for hypercube corners and graph nodes.
Any considered graph will be assumed to have no loop, no
more than one edge associated to a vertex pair and have at
least one edge.

Let be an undirected graph, where is the
set of vertices and is the set of edges. A subset

of vertices is called a clique if for every pair of vertices
in there is an edge in i.e., the subgraph induced by
is complete. A maximal clique is a clique whose proper
extensions are not cliques, i.e., for any if and

then is not a clique. A maximum clique of is a
clique whose cardinality is maximum. Note that, by definition
a maximum clique is also maximal, but the converse is not
necessarily true.

An equivalent characterization of maximum clique problem
can be given in terms of independent sets of vertices. Let

be an undirected graph. A subset of
vertices is called an independent set ofif its vertices are
pairwise nonadjacent, that is if vertices
then A maximal independent set of is a subset

of vertices whose proper extensions are not independent
sets, i.e., for any if and then is not
an independent set. A maximum independent set ofis an
independent set whose cardinality is maximum. Note that, by
definition a maximum independent set is also maximal, but
the converse is not necessarily true.

It is well-known that the maximum clique problem for a
graph is equivalent to the maximum independent set problem
for the complement of the graph. More precisely, let

be an undirected graph and let be its
complement, i.e., Then, it is well known that

is a maximal (maximum) clique of if and only if is a
maximal (maximum) independent set of (see, e.g., [10]).

The problems presented above are known to be NP-
complete [5], and even their absolute approximations are
NP-hard [6]. Hence, simple algorithms which yield good
suboptimal solutions in reasonable amount of time may be
quite useful for practical problems related to these problems.

Maximal independent set problem (or equivalently maximal
clique problem) can be stated as a quadratic 0-1 programming
problem in various ways, see e.g., [7], [10], [9]. Also, by using
some well known results, the problem can be transformed
into a continuous and concave minimization problem for a
quadratic cost function on the unit hypercube where

(see e.g., [4], [2]). Once the problem is formulated
as a continuous and constrained optimization problem, vari-
ous standard neural optimization schemes could be used to
approximate its solution (e.g., see [2]). Most of these schemes
utilize standard gradient descent type optimization technique.
Consequently, they might converge to a local minimum, and
this minimum may not correspond to a valid solution, i.e.,
a maximal clique or maximal independent set. Moreover, in
most of these schemes there are various parameters which must
be adjusted beforehand. In most of the cases, these parameters
affect the solution crucially, and the setting of them are often
based on a trial-and-error procedure, which is not a trivial
task.

We formulate the problem as a quadratic 0-1 optimization
problem as follows. Let be an undirected graph.
Let be the number of vertices, and let

denote the vertices. Let
be the adjacency matrix of i.e., for

if and only if Note that is
a symmetric matrix, and for

We first state the following simple fact:
Fact 1: is an indefinite matrix.

Proof: Since all eigenvalues of are real
numbers, where the superscript denotes the transpose.
Moreover, hence so is the sum of eigenvalues
of Since the associated graph has at least one edge, then
has rank not less than 1. This implies thatnecessarily has
both negative and positive eigenvalues, hence is indefinite.

PEKERGIN et al.: SATURATED LINEAR DYNAMICAL NETWORK 679

Fact 2 shows that the adjacency matrixis closely related
to the characterization of independent sets. Let be a
subset of vertices and let be its characteristic
vector, i.e., if and only if and if and
only if for

Fact 2: is an independent set if and only if its character-
istic vector satisfies the quadratic equation

Proof: First note that for any
Let be an independent set and let be its
characteristic vector. If and for any

such that then which easily follows
from the definitions of independent set and adjacency matrix.
Then, necessarily we have for an so that
for otherwise there must be at least one such
that and which is a contradiction. It then
follows Conversely, let for
some and let be the subset of vertices
whose characteristic vector is given by Let us have
and If for some then necessarily we
have which means that and
Hence, is an independent set.

We note that Fact 2 does not characterize maximal inde-
pendent sets. A standard characterization of maximum inde-
pendent set problem for a as a quadratic 0-1
optimization problem is given as follows:

(1)

where, is the adjacency matrix and

Fact 3: Any is a (discrete) global minimum
of given by (1) if and only if the set such that
is a maximum independent set for

Proof: If is a global minimum, then
necessarily we have

Otherwise, we can find another vector yielding a
smaller cost. Hence corresponds to a maximum independent
set by Fact 2 and the assumptions. This proves the necessity.
The sufficiency follows from Fact 2.

The correspondence described by Fact 3 is true also in
local sense. A point is called a (discrete) local
minimum of if for any
adjacent to i.e.,

Fact 4: A point is a discrete local minimum
of if and only if defines a maximal independent
set for

Proof: Suppose that is a discrete minimum
but does not define a maximal independent set. It is clear
from the proof of Fact 3 that when the independency or the
maximality is violated by a characteristic vector the point

cannot be a minimum. This proves the necessity, the
sufficiency is clear by the definitions.

III. SATURATED LINEAR DYNAMICAL NETWORK

Starting from (1), let us define the following energy func-
tion:

(2)

and based on (2), let us define the following gradient descent
dynamics:

(3)

Assume that and let us take the derivative of (2)
with respect to time along the solutions of (3). Then we obtain:

(4)

hence the energy is a nonincreasing function of time along the
solutions of (3). Moreover, by Fact 1, is an indefinite matrix.
Hence, even if (3) has an equilibrium point, it is necessarily of
saddle type. Therefore, (3) represents an unstable dynamics,
and unless (3) has an equilibrium point and belongs to
the stable manifold of that equilibrium point, the solutions of
(3) are unbounded. Since has both positive and negative
eigenvalues, the union of such stable manifolds always has
measure zero. It follows that for almost all initial conditions

the solutions of (3) are unstable and hence escape
from any bounded region in in finite time. This does
not contradict (4), which states that the quadratic form (2)
decreases along the solutions of (3), but (2) itself is an
indefinite quadratic form hence is not bounded from below.

The unstable dynamics given by (3) is not useful if not
restricted to the unit hypercube. To force the solutions to stay
inside the unit hypercube, including the boundaries, we modify
(3) as follows:

if except for the
following cases

if and
if and

(5)

Note that although the right hand side of the differential
equation given by (5) is discontinuous, for any initial condition

there exists a unique solution to (5). Moreover,
this solution is continuous with respect to time, but not
differentiable.

The rationale behind using the discontinuous dynamics
given by (5) is to restrict the dynamics given by (3) to the
unit hypercube. We will show below that the quadratic form
given by (2) continuously decreases along the solutions of (5),
and due to the unstable behavior of (5) it eventually reaches
to a vertex of the hypercube in finite time and stays there. We
will also show that the converged vertex always corresponds
to a maximal independent set.

Theorem 1: For all initial conditions the
quadratic form given by (2) is a nonincreasing function of
time along the solutions of (5).

Proof: Let us consider three cases: when the trajectories
of (5) are inside the unit hypercube, when the trajectories are
on a hypersurface or

Case 1: When the dynamics is given by (3);
and (4) shows that decreases along the solutions. There may
be an equilibrium point of (3) in and may be on

680 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 46, NO. 6, JUNE 1999

the stable manifold of this equilibrium point. In such cases, the
solutions converge to this equilibrium point. However, union
of such stable manifolds has measure zero, and for almost all
initial conditions the solutions of (3) grow and
eventually hit the boundary of unit hypercube in finite time.

Case 2: Assume that for some time
Let denote the matrix obtained by deleting
the th row and th column of where Let

where and let
Then, (5) reduces to

(6)

(7)

For this case, the quadratic form (2) becomes:

(8)

Note that for By differentiating (8) along
(6), we get

(9)

which shows that quadratic form (2) continue to decrease
on the hypersurface Note that is the adjacency
matrix of the subgraph obtained by eliminatingth vertex
of graph If the resulting subgraph has no edge, then
becomes a zero matrix. In this case, the reduced system (6)
cannot have an equilibrium point, so the solutions cannot stay
inside the hypersurface. When the subgraph has at least one
edge, becomes indefinite, thus representing an unstable
dynamic. Now, there may be an equilibrium point of (6) on
the hypersurface and may be on the stable
manifold of such an equilibrium point. In such cases, the
solution converges to this equilibrium point. However, the
union of such stable manifolds has measure zero in and
for almost all the solutions of (6) grow and eventually
hit the boundaries of the hypersurface defined by or
escape from this hypersurface, i.e., for some
(which means we fall into the first case).

Case 3: Assume that for some time Let
and be as defined in Case 2. Let us

define as follows:

(10)

(11)

Then (5) reduces to

(12)

(13)

For the quadratic form (2) becomes

(14)

Note that for . By differentiating (14) along
the solutions of (12) we obtain

(15)

By using the same argument given in Case 2 just after (9), it
follows that the quadratic form (2) continually decreases on

the hypersurface , and for almost all ,
the trajectories eventually hit the boundary of the hypersurface

As opposed to Case 2, in this case the trajectory cannot
leave the hypersurface (see Remark 1 below).

For any , as the corresponding trajectory
evolves in time it will hit the boundary of unit hypercube and
at least one of the Cases 2 and 3 will be valid. By consecutive
application of these cases, we conclude that the quadratic form
continually decreases along the solutions of (5).

Remark 1: Consider the case and
for some . Since , then for all
such that Therefore, as time evolves, any with

cannot increase, hence,
remains nonnegative. This means that any trajectory that hits
the hypersurface cannot leave it.

By using Theorem 1 we can prove the following conver-
gence result.

Corollary 1: For almost all in finite time,
the trajectories of (5) reach one of the vertices of the unit
hypercube and stay there thereafter.

Proof: By Theorem 1, the quadratic functiondecreases
along the trajectories of (5). Since the solutions of (5) are
bounded and, since is bounded below on the unit hypercube,
it follows that as a function of time, converges to a constant

. Let denote the level
set of . Then, by continuity of with respect to time
and with respect to , it follows that converges to

as evolves. Since (3) inside the hypercube and (6) and
(12) on the hypersurfaces represent unstable dynamics, the
trajectories escape from the equilibrium point for almost all
initial conditions. Hence, without loss of generality we may
assume that does not contain an equilibrium point of (3),
(6), or (12). Note that since the unit hypercube is a compact
set, it follows that is not empty. Let such that

Note that if the right-hand side of (5) were a
Lipschitz function of , then a trajectory which converges to an
equilibrium point would not reach it in a finite time. However,
since in our case the right-hand side of (5) is discontinuous,
this conclusion does not hold in general and, as argued in
Corollary 1, any trajectory reaches to a vertex in finite time.
If for some then by Theorem
1 energy continues to decrease. Hence, we have

which is a contradiction. Hence, necessarilyis a
vertex and

Next, we will show that the vertex to which (5)
converges actually corresponds to a maximal independent set.

Theorem 2: Let be a point to which (5)
converges for some initial conditions Let
be the set of vertices of the graph such that

Then, is a maximal independent set.
Proof: First, we will show that is an independent set.

Let . Then, from (5) it follows that
However, since , is necessarily a

nonnegative integer. Hence, we have . Therefore,
we have . By Fact 2, is an
independent set.

PEKERGIN et al.: SATURATED LINEAR DYNAMICAL NETWORK 681

Now, let be another set of vertices such that
and . Then, we have a vertex such that

but Hence, by (5) we must have
and . Let be the characteristic
vector of , i.e., if and only if for

Then, and since , we must
have . Since we have , this implies
that , hence, . By Fact 2, cannot
be an independent set.

The next corollary follows from Theorem 2 and Fact 4.
Corollary 2: Let be a point where (5) con-

verges for some initial conditions Then, is a
discrete local minimum of (1).

Remark 2: According to Theorem 1, for all initial condi-
tions the quadratic form given by (2) is a
nonincreasing function of time along the solutions of (5). In
fact, it decreases monotonically except when or
for some , corresponding to the instance when the
trajectory hits a hypersurface, is an equilibrium point of the
associated dynamics. However, such equilibrium points are
necessarily of the saddle type and, consequently, the union
of their stable manifolds is not dense in Therefore,
for almost all initial conditions the quadratic
form given by (2) continually decreases along the solutions
of (5) and reaches a vertex in finite time. This point was also
confirmed in our simulations, in which we choose the initial
conditions randomly and, in each case, the corresponding
trajectory reached a vertex. If a trajectory does not reach a
vertex, which is a highly unlikely event, then we can make
an arbitrary small change on and the new trajectory will
almost always converge to a vertex.

IV. RELATION WITH A GROSSBERGNEURAL NETWORK

The dynamical system (5) for maximum independent set
problem is related to a Grossberg-type neural network [2] as
follows. Let the function and
be defined as

if
if
if

(16)

(17)

Consider the following dynamical system:

(18)

Clearly, (18) can be considered as a Grossberg-type neural
network. To understand the behavior of (18) let us assume
that Then, and the dynamics (18)
becomes equivalent to (3). Therefore, the solutions of (18)
increase and eventually hit the boundary of unit hypercube.
If , then and the dynamics associated
with the rest of the variables reduces to (6). Also, if ,
then and the dynamics associated with the rest
of the variables reduce to (12). The difference between the
behavior of (18) and (5) is the following. In (5) the solutions
are restricted to the unit hypercube. However, in (18) the
solution continues to grow even if it reaches the boundary
of the hypercube, but eventually becomes bounded as

converging to a vertex. This property could be summarized
as follows.

Fact 5: For almost all the solutions
of (18) diverge to infinity. Moreover, there exists a
such that and for all

. Let and let denote the set of vertices
corresponding to . Then is a maximal independent set of
the graph

Proof: These results can be proven by using the ideas
given in Theorem 1, Corollary 1 and Theorem 2, and thus are
omitted here.

Remark 3: Note that in (18), remains unbounded and
converges to a vertex, which corresponds to a maximal

independent set. Since (18) is unstable, reaches a
vertex in a finite time. Since increases proportional to

asymptotically, at time when and
the solution will not be too

large at the time . The dynamical system (18) should be reset
afterwards to avoid further increase. Since the solutions of
(18) continue to increase (in norm) and the solutions of (5) are
restricted to unit hypercube in (5) then, in general, the vertices
to which these two models converge might be different.

Also note that (18) could be implemented as an analog elec-
tronic circuit. However, as stated above, due to the unstable
behavior of this circuit should be turned off when a vertex
is reached.

V. NUMERICAL RESULTS

In this section, we illustrate the performance of the sat-
urated linear dynamical network (SLDN) on random graphs
of various vertex sizes and densities. As a primary perfor-
mance measure, we consider average maximal clique sizes
found by our method in several experiments. Herein, the
average is taken over the test graphs generated with the
same characteristics, i.e., the vertex sizes and densities. We
consider also averages computed for the same test sets but
taking into account only the best results obtained by five (and
also ten) independent runs of our algorithm on each graph
with randomly chosen initial conditions. The first performance
measure provides an indirect comparison of our results with
those reported in the literature for some methods which have
been applied to random graphs with the same characteristics.
The second measure is related to the ability of the method to
find different search directions when it is started by different
initial points. Considering the best solution among many
ones is a natural performance improvement technique, used
frequently for such local search methods. However, not every
local method has this kind of improvement possibility.

We performed a set of direct comparisons between our
model and a continuous Hopfield network proposed by Jagota
in [8]. The reason for this comparison is the following: our
model and the one proposed in [8] are both continuous and
gradient-like systems. They are very similar also in some other
respects. On the other hand, this continuous Hopfield network
is compared in [8] with several other algorithms applied to
the maximum clique problem. The information given in [8]
about the performance of the methods available in the literature

682 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 46, NO. 6, JUNE 1999

TABLE I
AVERAGE CLIQUES SIZES FOUND FOR 100-, 400-,AND 1000-VERTEX GRAPHS WITH DENSITIES OF 0.25, 0.50,AND 0.75

TABLE II
PERCENTAGE OF THEBETTER (B), EQUAL (E) AND WORSE (W) QUALITY

SOLUTIONS OF THE SLDN WITH RESPECT TOTHOSE OFCHD FOR 100-, 400-,
AND 1000-VERTEX GRAPHS WITH DENSITIES OF0.25, 0.50,AND 0.75

provides us with an evaluation of the performance quality and
efficiency of our simple method in comparison with relatively
more complex ones.

Our SLDN, defined by the differential equations in (5), was
implemented by using the Forward–Euler algorithm. The step
size was set to the minimum of maximum degree
The initial state was chosen as a random vector with arbitrary
direction in the vicinity of the origin for
all

Continuous Hopfield dynamics (CHD) was implemented
exactly as described in [8]. Jagota suggests to bound the iter-
ation number with the cardinality of vertex set. We observed
from the experiments that the given discretization scheme
for CHD may not yield convergence after iterations
to a hypercube vertex. Thirteen such cases, which yield to
nonmaximal cliques, were observed over 600 runs on large
graphs with high densities (i.e., and density of
0.75). To obtain a complete comparison on the whole set we
allowed the CHD algorithm to continue the iterations until
convergence, and we used the cardinality of the maximal
clique so found.

In the simulations, we generated random graphs of 100, 400,
and 1000 vertices with 0.25, 0.50, and 0.75 densities. The test
sets of 100- and 400-vertex graphs include 50 instances, while
the 1000-vertex graph sets have ten instances for each density.
As the SLDN and CHD algorithms are run ten times on each
instance, our comparisons report on a total of 3300 solutions
for each method. The scheme used to generate random graphs
may be summarized as follows. Initially take as empty set.
Then, for all with include an edge to with
a probability equal to the density.

Table I summarizes the simulation results as giving the
average clique sizes found by SLDN and CHD. For every size

TABLE III
DISTRIBUTION OF SOLUTIONS FOUND BY SLDN

AND CHD FOR 0.25 DENSITY RANDOM GRAPHS

TABLE IV
DISTRIBUTION OF SOLUTIONS FOUND BY SLDN

AND CHD FOR 0.50 DENSITY RANDOM GRAPHS

and density, SLDN finds larger maximal cliques on average
than CHD. When we consider overall results, SLDN cliques
are generally 6–8.5% larger. SLDN performances are fairly
good on low-density graphs with 2.98 and 2.26% larger cliques
than those of CHD for 400- and 1000-vertex graphs of 0.25
density. However, the cliques found are at least 7% larger in
the case of 0.75 density graphs. When we consider the best
results among five or ten runs for each instance, we observe
that SLDN yields 6–12% larger cliques in all cases. Another

PEKERGIN et al.: SATURATED LINEAR DYNAMICAL NETWORK 683

TABLE V
DISTRIBUTION OF SOLUTIONS FOUND BY SLDN AND CHD FOR 0.75 DENSITY RANDOM GRAPHS

interesting remark is on the improvement of the solution
quality with multiple running of the algorithms. For up to ten
trials, the improvement rate of the SLDN is higher than that
of the CHD. This shows the ability of the SLDN to capture
new directions without losing the quality of the solutions.

Table II compares SLDN with CHD from another point of
view. That is the probability to find a solution of better, equal,
or worse quality obtained by SLDN with respect to CHD.
When the algorithms are run only once, in the less favorable
case SLDN finds a better result for 35.4% of the runs and a
worse result in 23.2%. In the interesting case of 1000-vertex
high-density graphs, the percentage of the better and worse
results are, respectively, 78% and 8%. When the trials are
repeated, the results become more favorable to SLDN with, at
most, 10% worse and 50–80% better quality solutions. That
confirms our previous remark about the diversity of the good
search directions captured by the SLDN.

Average and relative performances are frequently used as
comparison tools, but the distribution of the solution quality
provides more detailed statistical data about the behaviors of
the methods. Tables III–V give the percentages of clique sizes
found by SLDN and CHD. Distributions given in these tables
present a low dispersion for the SLDN results and a good
improvement rate for repeated trials.

The performance of the CHD algorithm reported here and
in [8] is very similar for the graphs characterized with the
same characteristics. In the two cases common to both ex-
periments, the average clique sizes found by the CHD in
[8] are, respectively, 7.44 and 9.16 for 100- and 400-vertex
graphs of 0.5 density, versus 7.38 and 9.24 in our experiments.
Therefore, we consider the test sets used in [8] and in our
study to bestatistically equivalent. Thus, we can compare
the performance of the SLDN to those of the other methods
considered in [8]. In our comparisons, we choose only the best
four algorithms among nine ones (derived from five different
methods) presented in [8]. Two of them,annealing and mean
field annealing (MFA), use an annealing scheme while the
others, which are different versions of the stochastic steepest
descent (SSD) algorithm, perform a randomized search. The
first version of SSD starts with an empty solution set and
progressively includes vertices, while the second one starts

TABLE VI
INDIRECT COMPARISONS AMONG SLDN AND DIFFERENT METHODS

(a)

(b)

with as a solution and acts in the opposite sense. The
performances of these algorithms, denoted as
and , are calculated by taking the best solution
obtained in runs on each instance.

In Table VI(a), we show the average clique sizes found by
the methods studied in [8] and by the SLDN executed one, five,
and ten times for 0.5 density random graphs. After only five
trials the SLDN provides cliques as large as the MFA algorithm
of [8] does. When we consider the best results found within
ten trials of SLDN, only the accomplishes better
than our approach for 400-vertex graphs, but this is the best
solution found by 400 runs of the SSD algorithm. In the case
of 100-vertex graphs, SLDN attains, within ten trials, the same
quality as the results provided by 100 runs of .

The last algorithm that we compare with SLDN is the relax-
ation labeling network (RLN) of Pelillo [9]. This algorithm,
which is based on a different formulation of the maximum
clique problem, yields generally very good results so we
include it in our comparison. However, the RLN may converge
to infeasible solutions. It lacks a direct comparison because
an accurate comparison on the same test set may require
many more computational efforts. Therefore, we summarize
by Table VI(b) the RLN’s performance reported in [9], as
compared to that of the SLDN for parameter sets common
to both methods. Since the RLN starts always with the same
initial state, it does not have the possibility of improving the
solution quality by repeating trials with different initial states.
Table VI(b) shows that when RLN converges to a feasible
solution, it provides larger maximal cliques as compared to

684 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 46, NO. 6, JUNE 1999

TABLE VII
RATIO OF THE AVERAGE ITERATION NUMBER TO jV j FOR

SLDN ALGORITHM EXECUTED ON RANDOM GRAPHS

the SLDN, which is run only once. However, the best results
found by SLDN in five trials are as good as those of RLN,
except for the 0.75 density case, where RLN is clearly better.
With the knowledge of that, the RLN’s results are close to
optimal and the results of the SLDN obtained by ten trials can
be considered as very good approximations. It should be noted
that SLDN has very good relative performance (with five and
ten trials) for the case of 1000-vertex graphs with 0.5 density.
Finally, we recall that RLN may converge to an infeasible
solution which is not a clique, whereas SLDN always provides
a maximal clique. This fact constitutes a significant advantage
of the SLDN over the RLN algorithm.

Above we presented an evaluation in order to show the
solution quality of SLDN. In the sequel, we will discuss some
computational features of the digital computer implementation
of SLDN. In fact, the results given on the iteration number are
meaningful also in the case of a possible hardware implemen-
tation of SLDN as an analog electronic circuit. In order to
give a rough estimation on the execution time, Table VII is
formed to give the ratio of the average iteration number to the
vertex set cardinality The average amount of computation
required by SLDN implemented on a digital computer can be
simply obtained from the iteration number by multiplying it
with the operation number performed in each iteration step. As
it can be seen from Table VII, the iteration number appears to
be proportional to the vertex set size. The mentioned ratio
increases as the density decreases, due to the independent
set formulation of the maximum clique problem. Finally, we
remark that the normalized variance of the iteration number,
i.e., the variance of iteration number over squared mean for
the random graph sets is found between 0.044 and 0.065 in
our experiments. This normalized variance, indeed, gives an
upper bound on the probability, as the iteration number for a
run is no less than the double of average iteration number.

From the above discussions, it is clear that SLDN not only
offers a good approximation to the maximum clique problem,
but also has nice computational properties.

VI. CONCLUSION

In this paper we proposed a continuous-time dynamical
system to approximate the maximum clique for undirected
graphs. The maximum clique problem is related to some real
life problems and is known to be NP complete. Hence, simple
algorithms which yield acceptable solutions sufficiently fast
are quite important for such related practical problems. The
dynamical system proposed here is a gradient-based system
and is constrained to the unit hypercube. We proved that
for almost all initial conditions in the unit hypercube, the
trajectories will converge to a vertex of the hypercube in finite

time and remain there for , and any such vertex
corresponds to a maximal (but not necessarily a maximum)
clique. We also presented some simulation results for random
graphs and compared our results with some existing methods.
We note that in most of the cases, maximal clique obtained by
our method may be considered as a reasonable approximation
of maximum clique and is obtained in a reasonable amount
of time.

The proposed method can directly be extended to weighted
maximum clique and to weighted forms of other equivalent
problems. Since the model used has binary connection weights
and requires only simple saturation nonlinearity, it is more
suitable for VLSI implementation than some other networks
applied to the same problem. The linearity of the model on
all linear subregions, namely faces of the unit hypercube,
gives the possibility of resorting linear analysis techniques,
which might lead further improvements on the approximation
to maximum clique and also might provide a useful framework
in seeking solutions for some related theoretical problems.

REFERENCES

[1] M. W. Hirsch and S. Smale,Differential Equations, Dynamical Systems,
and Linear Algebra. San Diego, CA: Academic, 1974.

[2] A. Cichocki and R. Unbehauben,Neural Networks for Optimization and
Signal Processing. New York: Wiley, 1993.

[3] J.-H. Li, A. N. Michel, and W. Porod, “Analysis and synthesis of a class
of neural networks: Linear systems operating on a closed hypercube,”
IEEE Trans. Circuits Syst., vol. 36, pp. 1405–1422, Nov. 1989.

[4] P. M. Pardalos and F. B. Rosen, “Constrained global optimization:
Algorithms and applications,” inLecture Notes in Computer Science.
Berlin: Springer-Verlag 1987.

[5] M. R. Garey and S. J. Johnson,Computers and Intractability: A Guide
to the Theory of NP-Completeness. San Francisco, CA: Freeman 1993.

[6] U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy, “Ap-
proximating clique is almost NP-complete,” inProc. 32nd Ann. Symp.
Found. Computer Science, San Juan, Puerto Rico, 1991, pp. 2–12.

[7] P. Pardalos and J. Xue, “The maximum clique problem,”J. Global
Optimization, vol. 4, pp. 301–328, 1994.

[8] A. Jagota, “Approximating maximum clique with a Hopfield network,”
IEEE Trans. Neural Networks, vol. 6, pp. 724–735, May 1995.

[9] M. Pelillo, “Relaxation labeling networks for the maximum clique
problem,” J. Artificial Neural Networks, vol. 2, no. 4, pp. 313–328,
1995.

[10] P. M. Pardalos and G. P. Rodgers, “A branch and bound algorithm for
the maximum clique problem,”Computers Ops. Res., vol. 19, no. 5, pp.
363–375, 1992.

Ferhan Pekergin received the B.Sc. and M.Sc.
degrees in electrical engineering from the Technical
University ofİstanbul,̇Istanbul, Turkey, in 1980 and
1982, respectively, and the Ph.D. degree in com-
puter science from the Université Reńe Descartes
(Paris V), Paris, France, in 1992.

He was with the Technical University ofİstanbul
and the Universit´e Paris-Sud, Paris, France, as a
Teaching and Research Assistant. In 1992 he joined
the Institut Universitaire de Technologie de Vil-
letaneuse, the Université Paris-Nord, Paris, France,

where he is currently Maı̂tre de Conf́erences. His research interest are in the
areas of modeling and performance evaluation of communication networks,
approximation techniques, neural networks, and combinatorial optimizations.

PEKERGIN et al.: SATURATED LINEAR DYNAMICAL NETWORK 685

Ömer Morgül was born in İstanbul, Turkey, in
1959. He received the B.Sc. and the M.Sc. de-
grees in electrical engineering from the Technical
University of Istanbul, Turkey, in 1980 and 1982,
respectively, and the Ph.D. degree in electrical engi-
neering from the University of California, Berkeley,
in 1989.

Since September 1989, he has been with the De-
partment of Electrical and Electronics Engineering,
Bilkent University, Ankara, Turkey, where he is
now an Associate Professor. His research interests

are in the area of systems and control theory, including the boundary control
of flexible systems, nonlinear systems, chaotic electronic circuits, and neural
networks.

Cüneyt Güzeliş received the B.Sc., M.Sc., and
Ph.D. degrees froṁIstanbul Technical University,
Istanbul, Turkey, in 1981, 1984, and 1989, respec-
tively.

In 1982 he joineḋIstanbul Technical University
as an assistant and is now a Professor. He was a
Visiting Researcher and Lecturer in the Department
of Electrical Engineering and Computer Sciences,
University of California at Berkeley from April
1989 to April 1991, and was a Visiting Professor
in the Information Laboratory, University of Paris-

Nord in September 1996 and June 1997. His research interests include
nonlinear circuits and systems and neural networks and their signal processing
applications.

