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by MF-objects. They are described by color and 2-D shape parameters 
only. Since the coding of color parameters requires at least 1.0 
b/pel, the new source model F3D is applied to the hIFRjD-objects. 
Using a gradient method, an algorithm for a joint estimation of all 
flexible shape parameters of one hfFRSD-object has been developed. 
After estimation and compensation of the flexible-shape parameters, 
hfFFzD-objects are detected. They are smaller in size than R I F R ~ D -  
objects. 

With respect to coding, for MF-objects shape and color parameters 
are coded, for MC-objects (model compliance) motion and shape 
update parameters have to be coded. When compared to R3D, F3D 
requires the additional transmission of the flexible shape parameters. 
They are linearly quantized using 16 quantization levels within an 
interval of *5 pel giving an average bit rate of 450 blframe. 

Due to the subjective criteria for detecting model failures, the 
average area of model failures for the source model R3D is below 
4000 pel for typical videophone test sequences assuming CIF with a 
reduced field frequency of 10 Hz. Applying F3D reduces the average 
area of model failure to 3000 pel, thus reducing the data rate required 
for coding color parameters. This reduction overcompensates the bit 
rate of 450 b/frame required for coding the additional flexible shape 
parameters. It is shown that with the source models R3D and F3D the 
same picture quality is obtained for typical videophone test sequences 
with the source model R3D at 64 kb/s and the source model F3D at 56 
kb/s. When compared to images coded according to H.261, there are 
no mosquito and no blocking artifacts. This is due to two reasons: 
First, the shape parameters of the moving objects avoid blocking 
artifacts at motion discontinuities. Second, the average area for which 
color parameters are transmitted is 10% of the image area for H.261 
and 3% for OBASC based on F3D. Therefore, OBASC allows the 
coding of color parameters for MF-objects with a data rate bigger 
than 1.0 b/pel. At the same time, MC-objects are displayed without 
subjectively annoying artifacts. 

In the future, the source model will be extended to incorporate 
a priori knowledge about the moving objects like face and mimic 
models for coding of head and shoulder scenes, thus adapting the 
concept of OBASC to knowledge-based coding. 
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An Improvement to MBASIC Algorithm 
for 3-D Motion and Depth Estimation 

Gozde Bozdagi, A. Murat Tekalp, and Levent Onural 

Abstract-In model-based coding of facial images, the accuracy of mo- 
tion and depth parameter estimates strongly affects the coding efficiency. 
MBASIC is a simple and effective iterative algorithm (recently proposed 
by Aizawa et al.) for 3-D motion and depth estimation when the initial 
depth estimates are relatively accurate. In this correspondence, we analyze 
its performance in the presence of errors in the initial depth estimates 
and propose a modification to MBASIC algorithm that significantly 
improves its robustness to random errors with only a small increase in 
the computational load. 

I. INTRODUCTION 
Model-based coding is a prime research topic in video compression 

for very low bit rate (8-32 kb/s) transmission [1]-[7]. Among 
the many methods in the literature, MBASIC, which was recently 
proposed by Aizawa et al. [4], is a simple and effective iterative 
algorithm for 3-D motion and depth estimation under orthographic 
projection. The MBASIC algorithm, which is reviewed in Section 
11, requires a set of initial depth estimates that are usually obtained 
from a generic wireframe model. Since the size and shape of the 
head and position of the eyes, mouth, and nose vary from person 
to person, it is necessary to adapt this generic wireframe model to 
the particular speaker in the given image sequence. Initial studies 
on model-based coding [4], [6] have fit the wireframe model to the 
speaker manually. Corresponding points on the 2-D projection of the 
wireframe model and the initial frame are interactively specified, and 
the model is scaled in the s and y directions by an affine transform, 
accordingly. Recently, Reinders et al. [7] consider automated global 
and local scaling of the 2-D projection of the wireframe model in 
the .I‘ and y directions. However, all these methods have applied an 
approximate scaling in the Z-direction (depth) since they use only 
a single frame. This results in an inevitable mismatch of the initial 
depth ( Z )  parameters of the wireframe model and the actual speaker 
in the image sequence. 

Here, we first provide an analysis of the effect of these initial 
depth errors on the performance of MBASIC and then present an 
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improved estimation algorithm. It is well known that in the case of 
orthographic projection, we can estimate the depth values up to an 
additive constant ZO, that is, we can expect to estimate Z, ,  where 
the true depth values are Z, = 20 + 2, , i = 1, . . . . lAT. However, as 
pointed out by Huang and Lee [8], it turns out that we can estimate 
2, only up to a scale factor 7 .  This is because scaling 2, by -, and 
w ,  and wy by $ results in the same orthographic projection as can 
be seen from (4). In practice, we can model the initial depth estimates 
obtained from a scaled wireframe model as 

Znr, = ?Z,  + 1 1 8  ( 1 )  

where -, indicates a systematic error corresponding to a global 
underscaling or overscaling of the wireframe model, and I I  represents 
the random scaling errors due to a mismatch of the local details of 
the face of the speaker and the wireframe model. We assume that 71, 

can be modeled as a zero mean white Gaussian noise. 
It can be easily seen that it is not possible to estimate the scaling 

factor y from two views unless the correct depth value of at least 
one of the N points is known. In addition, as demonstrated with our 
results, the MBASIC algorithm is also sensitive to the presence of 
random errors. Although the performance of MBASIC is very good 
when the initial depth parameters contain about 10% random error or 
less, it degrades with the increasing amount of random error in the 
initial depth estimates. However, in practical applications, the initial 
depth estimates may contain 30% or more random error, depending on 
the particular speaker. Thus, in Section 111, we propose a modification 
to the MBASIC algorithm that makes it more robust to random errors 
in the initial depth estimates with a small increase in its computational 
load, thus making it possible to estimate the depth values up to 
an additive constant and a scaling factor in practical applications. 
Simulation results presented in Section IV assume -, = 1 and 
compare the performance of the MBASIC algorithm and the improved 
algorithm in the presence of various degrees of random error in the 
initial depth estimates. These results also show that the improved 
algorithm converges to the true motion and depth parameters, even 
in the presence of 50% random error in the initial depth estimates. 

11. MBASIC ALGORITHM 

Each iteration of the algorithm is composed of two steps: 1) 
determination of motion parameters given the depth estimates from 
the previous iteration and 2) update of depth estimates using the new 
motion parameters. 

Let a point ( X * ,  Y,, 2,) at time t n  move to ( X : ,  k:’, Z:) at a 
time t k + l .  It is well known that ( X t ,  Y, ,  Z,) and ( X : ,  Y,’. Z:) can 
be related, under rigid motion assumption, by 

E] = R E ]  + T  (2) 

R = [ i z  -Jz 1 ;.] (3) 

where T = [Tz, T,, T,IT is the translation vector, and R is the 
rotation matrix. With small angle assumption. R can be represented 
as 

*I: -*Iy 

where w I ,  dy, and J, are the rotational angles around the s. y, and 
Z axes, respectively. 

If we take the orthographic projection of (2), we get 

where (a.,. y, ) and ( . T i .  y:) denote the orthographic projections of 
(S,. 1;. Z, ) and 

In (4), there are five unknown global motion parameters 
u t z .  w Y .  7 c z  T,, and Ty and an unknown depth parameter 2, per 
given point correspondence ( x ,  , yz ) and (E:, y:). The equation has 
a bilinear nature since 2, multiplies the motion parameters. It is thus 
proposed to solve for the unknowns in two steps: 

1) Given at least three corresponding coordinate pairs (I%, y z )  and 
(1.:. y: ) and their depth parameters Z,. i = 1, . . . , X, X 2 3, 
we can rearrange (4) to lead to 2n7 equations in five unknowns: 

y‘. Z i )  to the image plane, respectively. 

rJr 1 
..: - .Ti 0 -2, y< 1 0 wy 

[y: -..I = [z, 0 - X 1  0 1 1  1;: 1 (5 )  

Hence, the motion parameters can be solved from (5) using the 
least squares method. The initial depth estimates are obtained 
from the scaled wireframe model. 

2) Once the motion parameters are found, we can estimate the 
new Z, values using 

which is again obtained from (4). Here, we have one equation 
pair per given point correspondence, which can be solved for 
Z, in the least square sense. 

The procedure consists of repeating steps 1 and 2 until the 
estimates no longer change from iteration to iteration. However, 
it has been observed that unless we have reasonably good initial 
estimates for Z,, i = 1, . . . , X, the two-step iteration may converge 
to an erroneous solution. In the next section, we propose a solution 
to this problem in case the deviation of the initial estimates for 
2,. i = 1, . . . , iV has a zero mean distribution. 

111. IMPROVED ALGORITHM 
In the MBASIC algorithm, there is a strong correlation between the 

error in the motion parameters and the error in the depth parameters. 
This can be seen from (5) and (6) as the errors in the depth parameters 
are fed back on the motion parameters and vice versa, repeatedly. To 
circumvent this problem, we define an error criterion (see (7)) and 
update 2, in the direction of the gradient of the error with a proper 
step size (instead of computing them from (6)) at each iteration. To 
facilitate convergence of the estimates to their correct values, we 
also perturb the depth estimates in some random fashion after each 
update. The motion parameters are still computed from (5) after each 
update/perturbation of the depth estimates. The principle used here to 
update the depth parameters is similar to stochastic relaxation, where 
each iteration consists of perturbing the state of the system in some 
random fashion before computing the next state, with the ultimate 
goal of convergence to the global optimum [9]. The update in the 
gradient direction increases the rate of convergence as compared with 
totally random perturbations of 2,. 

In our experiments, the random perturbations are generated as 
samples of uniform or Gaussian distributed numbers. In the case 
of Gaussian perturbations, the variance of the distribution is adjusted 
according to an error measure. In the case of uniformly distributed 
perturbations, we employ range constraints on the depth estimates. 
Further, the magnitude of perturbations decreases with the number of 
iterations so that convergence should result. The proposed algorithm 
with improved convergence characteristics is as follows: 

1) Initialize the depth values Z, for i = 1. . . . , iV using the scaled 
wireframe model. Set the iteration counter k = 0. 
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TZ 
T" 

Fig. 1. Typical wireframe model made up of 100 triangles. 

I 

0.02 I 0.019933 0.020067 0.019939 
0.05 I 0.05004 0.049967 0.050031 

2) Determine the motion parameters from (5) using the given 
depth values. 

3) Compute ( X I ' ) ,  y!')), which are the coordinates of the match- 
ing points that are predicted by the present estimates of 
the motion and depth parameters (4). Compute the model 
prediction error 

(7) 
1 .v 

En- = n; 
,=O 

wx 
wy 
WZ 

where 

True motion MBASIC Uniform Gaussian 
0.01 0.07856 0.010241 0.010779 
0.02 0.0 157 12 0.020504 0.02 1464 
-0.01 -0.009994 -0.009996 -0.009984 

et  = (si - x i k ) ) '  + (y: - y!'))2. (8) 

Here ( x : ,  y i )  are the actual coordinates of the matching points, 
which are given. 

Else, set k = k + 1, and perturb the depth parameters as 
4) If El, < E, stop the iteration, 

2:') +- pl) - ,?g(Z,) + a'& (9) 

where g ( Z )  is the gradient of e, with respect to 2, (which can 
be analytically computed from (4)) and cv and ,? are constants. 
For Gaussian distributed perturbations, At = N z ( O ,  a : ( k ) ) ,  i.e., 
zero mean Gaussian with variance OB' , where c$') = e, .  
For uniformly distributed perturbations, At = UZ(Z!'-') f 
0.5), i.e., uniformly distributed in an interval of length 1 
about @-'), where U, denotes uniformly distributed random 
numbers. Since the range of the depth parameters are scaled 
to the interval (0, I), we truncate the value of the perturbed 
estimate to within this interval if the perturbation extends 
beyond the interval. 

k )  

5) Go to step (2). 
The difference in computational complexity between the two al- 

gorithms originates from the estimation of the depth (2)  parameters. 
The MBASIC algorithm treats this as another least squares estimation 
problem which requires seven multiplies and eight adds per point 
pair per iteration. Our method is based on perturbation of the depth 
parameters and requires 16 multiplies and 12 adds per point pair 
per iteration. Experimental results presented in the next section show 
that the MBASIC algorithm usually converges to a result in about 

Tz 
Tu 

TABLE I 
TRUE AND ESTIMATED MOTION PARAMETERS FOR 1o-POlNT CORRESPONDENCES 
WITH (a) lo%, (b) 30%, AND (c) 50% INVIAL ERROR IN THE D E ~ H  ESTIMATES 

I 0.02 11 0.018079 0.019966 I 0.021038 
I 0.05 11 0.050961 0.050018 I 0.049481 

11 True motion I] MBASIC 1 Uniform I Gaussian 
w, II 0.01 11 0.009951 I 0.010181 I 0.010141 
w, I[ 0.02 11 0.0199901 I 0.020351 I 0.020255 
w. II -0.01 11 -0.009994 1-0.009998 1-0.009995 

Ty 11 0.05 11 0.052281 I 0.049818 I 0.050018 
(4 

5-1 0 iterations. Our algorithm generally provides superior results 
after about 15-20 iterations (see Figs. 2 4 ) .  Considering that we work 
with 5-10 point pairs, the computational complexity of the improved 
algorithm is just slightly higher. 

IV. RESULTS 

In this section, we compare the performance of the proposed im- 
proved algorithm with that of the MBASIC algorithm in the presence 
of various degrees of inaccuracy in the initial depth estimates as well 
as for different numbers of point correspondences. The comparative 
analysis has been performed by means of a number of numerical 
simulations as well as an experiment with a typical videophone scene 
known as Claire. The wireframe model (CANDIDE) [ I ]  consisting 
of 100 triangles as shown in Fig. 1 was used in the experiment with 
the Claire sequence. 

The simulations were carried out by using five, seven, and 10 
point correspondences, respectively, with 10, 30, and 50% error in 
the initial depth estimates in each case. The data for the simulations 
were generated as follows: A set of 5 to 10 points (zt, yz) with the 
respective depth parameters 2, in the range 0 and 1 were arbitrarily 
chosen. The coordinates (z:, yi)  of the matching points in the next 
frame were generated from ( x ~ ,  yt ) using the transformation (3) with 
the "true" 3-D motion parameters listed in Table I. Then, f10 ,  f30, 
or f50% error is added to each depth parameter 2, for the respective 
simulations. The signs of the error (+ or -) were chosen randomly. 
At each iteration of the algorithm, first the motion parameters are 
estimated as the least squares solution (5) using the present depth 
parameters. (This step is the same as in the MBASIC algorithm.) 
Then, the depth parameters are updated as given by (9). We set 
cv = 0.95 and ,!3 = 0.3 to obtain the reported results. We iterate 
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Fig. 2. Average estimation error in the depth parameters with 10% error 
in the initial depth estimates for (a) five-, (b) seven-, and (c) 10-point 
correspondences. 

between (5) and (9) until E, given by (7) is less than an acceptable 
level. In order to minimize the effect of random choices in the 
evaluation of the results, the results are repeated three times using 

o 4a 

0 0 0  1 1 
a a  20 a 40.0 60.0 8a a 1ao.a 

Iteration number 

0.40 I 

a 0 0 1  I 
a a  20 0 40 a 60 0 80 0 iaa o 

Iteration number 

(C) 

Fig. 3. Average estimation error in the depth parameters with 30% error 
in the initial depth estimates for (a) five-, (b) seven-, and (c) IO-point 
correspondences. 

three different seed values for the random number generator. The 
results shown in Table I and Figs. 2 4  are the average of these three 
sets. 
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Fig. 4. Average estimation error in the depth parameters with SO% err01 
in the initial depth estimates for (a) five-, (b) seven-, and (c) IO-point 
correspondences. 

Table I provides a comparison of the motion parameter estimates 
obtained by the MBASIC algorithm and the proposed method using 
uniform and Gaussian distributed random perturbations at the conclu- 
sion of the iterations (in this case after 100 iterations). Table I shows 

(b) 

Fig. 5.  Wire-frame model fitting for a typical video-phone sequence Claire: 
(a) Wire-frame model fitted to the first frame; (b) modified wire-frame model 
for the seventh frame using the depth and motion parameters estimated by 
Aizawa's algorithm. 

(C) 

Fig. S. Wire-frame model fitting for a typical video-phone sequence Claire: 
( c )  modified wire-frame model for the seventh frame using the proposed 
algorithm with uniform perturbations. 

the results only for the 10-point correspondence case. The five- and 
seven-point results are similar. The comparison of the results of the 
depth parameter estimation is shown in Figs. 2 4 .  In these figures, 
the average estimation error in the depth parameters versus iteration 
number is plotted, where the average error is defined as 

where AV is the number of point correspondences and Z, and 2, 

T 
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are the “true” and estimated depth parameters, respectively. Note 
that the scale of the vertical axis is not the same in each case. Fig. 
2(a)-(c) shows the estimation error when 10% error is present in the 
initial depth estimates for five, seven, and 10-point correspondences, 
respectively. Figs. 3(a)-(c) and 4(a)-(c) are for 30 and 50% error, 
respectively. In all these graphs, the solid line corresponds to the 
MBASIC algorithm and the dotted and the dashed lines correspond 
to the proposed algorithm with uniform and Gaussian perturbations, 
respectively. 

In the MBASIC algorithm, the errors in the depth estimation 
directly affect the accuracy of the motion estimation and vice versa 
since the algorithm iterates between (5) and (6). This can be seen 
from Table I, where the error in the initial depth estimates mainly 
affects the accuracy of d J  and dg, which are directly multiplied by 
2 in both equations. Thus, in the MBASIC algorithm, the error in 
d2 and dv estimates increases as we increase the error in the initial 
depth estimates (see Table I). Further, in the MBASIC algorithm, the 
error in the depth estimates (at convergence) increases with increasing 
error in the initial depth parameters (see, e.g., Figs. 2(c), 3(c), and 
4(c)). In the proposed algorithm, however, because it uses (for depth 
estimation) an update scheme given by (9), which is indirectly tied 
to the current estimates of the motion parameter estimates, a smaller 
average error is obtained for depth parameter estimation (compared 
with the MBASIC algorithm) in all cases. As can be seen from Figs. 
2 4 ,  the depth estimates, using the proposed method, converge closer 
to the correct parameters even in the case of 50% error in the initial 
depth estimates. For example, in the case of estimation using 10- 
point correspondences with 50% error in the initial depth estimates, 
the proposed method results in about 50% error after 100 iterations, 
whereas the MBASIC algorithm results in 35% error. In the 10% 
initial error case, the error at the end of the iterations is 5.5% in 
MBASIC algorithm and 2% in our algorithm. This improvement in 
the depth estimation of course results in better motion parameter 
estimation with the proposed method (see Table I). 

The proposed method with uniform perturbations has also been 
applied to a typical videophone scene known as Claire.  Here, seven- 
point pairs that are interactively specified are used. The coordinates 
of the corresponding points are determined using the block matching 
technique, where the block size is S x S and the search window is 
10 x 10. Fig. 5(a) depicts the original wireframe model manually fitted 
to the first frame of the Claire sequence as in Aizawa et al .  Fig. 5(b) 
and (c) shows the projection of the modified wireframe model onto 

the image plane for the seventh frame using the estimated depth and 
motion parameters with the MBASIC and the proposed algorithms, 
respectively. Inspection of the results indicates a much better fit in 
the case of the proposed algorithm. 

V. CONCLUSION 
In this paper, we propose an improved algorithm for motion and 

structure estimation that uses point correspondences under ortho- 
graphic projection. The improvement is achieved by avoiding feeding 
the errors in the depth estimates back onto motion estimates. It is 
concluded that the proposed algorithm provides better results when 
the initial depth estimates contain significant random errors (which 
is the case in practice). A reasonably good performance has been 
demonstrated even in the presence of 50% error in the initial depth 
estimates. Computational complexity of the improved algorithm is 
just slightly higher. 

REFERENCES 

[ I ]  R. Forchheimer and T. Kronander, “Image coding-from waveforms to 
animation,” IEEE Trans. Acoust. Speech Signal Processing, vol. 31, no. 
12, pp. 2008-2023, Dec. 1989. 

[2] W. J. Welsh, “Model-based coding of videophone images,” Electron. 
Commun. Eng. J., pp. 29-36, Feb. 1991. 

[3] K. Aizawa, C. S. Choi, H. Harashima, and T. S. Huang, “Human facial 
motion analysis and synthesis with application to model-based coding,” 
in Morion Analysis and Image Sequence Processing, (M. 1. Sezan and 
R. L. Lagendijk, Eds.). 

[4] K. Aizawa, H. Harashima, and T. Saito, “Model-based analysis-synthesis 
image coding (MBASIC) system for a person’s face,” Signal Processing: 
Image Commun., no. I ,  pp. 139-152, 1989. 

[5] Y. Nakaya, Y. C. Chuah, and H. Harashima, “Model-basedlwaveform 
hybrid coding for videophone images,” in Proc. Int. Conf ASSP’91, pp. 
214 1-2144. 

[6] M. Kaneko, A. Koike, and Y. Hatori, “Coding of facial image sequence 
based on a 3D model of the head and motion detection,” J. Visual 
Comm. Image Rep., vol. 2, no. 1, pp. 39-54, Mar. 1991. 

[7] M. J. T. Reinders, B. Sankur, and J. C. A. van der Lubbe, “Transfor- 
mation of a general 3D facial model to an actual scene face,” in Proc. 
11th Int. Con5 Part. Recog., 

[8] T. S. Huang and C. H. Lee, “Motion and structure from orthographic 
projections,” IEEE Trans. Pattern Anal. Machine Intell., vol. 11, no. 5, 
pp. 536540, May 1989. 

[9] K. Zeger and A. Gersho, “Stochastic relaxation algorithm for improved 
vector quantizer design,” Electron. Left., vol. 25, no. 14, pp. 9 6 9 8 ,  
July 1989. 

Boston: Kluwer, 1993. 

1992, pp. 15-19. 


