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IV. CONVERGENCE ANALYSIS OF THE SOLUTION OF THE 
PRDE 

In this section, we investigate the convergence of the solution 
of the PRDE with a given initial condition to a positive semidef- 
inite stabilizing or strong solution of the PRDE. This question is 
of relevant importance to the H, state estimation problem for 
periodic systems as it ensures that a finite horizon estimator gain 
will tend to a infinite horizon periodic estimator gain as the 
time-horizon tends to infinity. 

Theorem 4.1: Suppose (C(.), A( . ) )  is detectable, ( A ( . ) ,  B(.)) is 
controllable and that the PRDE (7) has a strong (or stabilizing) 
solution P,(.) 2 0. Let P ( t )  be the solution of the PRDE with 
initial condition P(0) 2 0. If P5(0) 2 P(0) then 

lim [ P , ( t )  - P ( t ) ]  = 0. 
I + ,  

Proof: Let P,( t )  denote the solution of (7) with P,(0) = 0. 
From Lemma 3.2, P , ( t )  is periodically nondecreasing and by 
Lemma 3.1 P,(t)  I P,(t> for all t 2 0. Then, P,( t )  should con- 
verge to a positive semidefinite periodic solution, PI(.), of (7) as 
t tends to infinity and PI(.> I P,(.>. Note that by Lemma 3.3, 
P,(t)  and P,( t )  are nonsingular for any t .  In addition, recalling 
that from Theorem 3.3 P,(.) is the minimal positive definite 
periodic solution of the PRDE, we conclude that F , ( . )  = P,(.). 

Now, since 0 I P(0) I P5(0), by Lemma 3.1 it results that for 
all t 2 0 

P , ( t )  I P ( t )  I P,(t>. 

Finally, since P , ( t )  converges to P,( t )  as t tends to infinity, 

Theorem 4.1 guarantees that subject to the detectability of 
(C(.), A(.))  and the controllability of (A( . ) ,  E(.)) ,  the finite 
horizon H, estimator of [11] for the system (Z) converges to the 
infinite horizon periodic filter of Theorem 3.2 (or Theorem 3.1) 
as the time-horizon tends to  infinity. 

It should be noted that the controllability requirement in 
Theorem 4.1 can be weakened to stabilizability. This is easily 
achieved by assuming, without loss of generality, that A ( . )  and 
B(.)  are in the canonical form (see [2]) 

hence P(t> will also converge to P,(t>. v v v  

where A, ( . )  is asymptotically stable and the periodic pair ( A , ( . ) ,  
B,(.)) is controllable. Hence, the result follows by decomposing 
the PRDE conformably with (29) and applying Theorem 4.1 to  
the controllable part (A , ( . ) ,  B,(.)). 

V. CONCLUSION 
This note has analyzed the H, state estimation problem for 

linear periodic systems. Necessary and sufficient conditions for 
the existence of a periodic state estimator have been derived, 
which extend existing H, estimation results to the context of 
linear periodic systems. Asymptotic properties of finite horizon 
H, estimators for linear periodic systems when the time-horizon 
tends to infinity have also been investigated. 
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Adaptive Robust Sampled-Data Control of a Class 
of Systems Under Structured Perturbations 

Runyi Yu, Ogan Ocali, and M. Erol Sezer 

Abstract-Robust adaptive sampled-data control of a class of linear 
systems under structured perturbations is considered. The controller is 
a time-varying state-feedback law having a fixed structure, containing an 
adjustable parameter, and operating on sampled values. The sampling 
period and the controller parameter are adjusted with simple adaptation 
rules. The resulting closed-loop system is shown to be stable for a class 
of unknown perturbations. The same result is also shown to be applica- 
ble to decentralized control of interconnected system. 

I. INTRODUCTION 

Robust control problem is concerned with the design of con- 
trollers which guarantee certain desired properties for all sys- 
tems belonging to a specified class. Although numerous results 
have been obtained for both continuous- and discrete-time ro- 
bust control (see, for example, [ 1]-[5] and the references therein), 
most of the research on robust control of sampled-data systems 
has been concentrated on analysis of robustness properties (e.g., 
[6], [7]). This is mainly due to the fact that the sampling process 
changes the structure of systems, which makes the problem 
difficult to deal with. For example, the sampling process may 
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give rise to unstable zeros in the resulting discrete-time system 
even when the continuous-time system is of minimal phase [8]. 

Recently, Ocali, and Sezer [9] considered the robust sampled- 
data control problem for a class of systems under structured 
perturbations. Under the assumptions that the perturbations are 
bounded and the bounds are known, they presented a control 
scheme which included the determination of the sampling period 
and the controller parameters in terms of the bounds of the 
perturbations. One of the objectives of our paper is to propose a 
mechanism to adjust these parameters adaptively, eliminating a 
need for a priori information on the perturbation bounds. A 
second objective is to simplify the control structure. Although 
theoretically, the feedback law presented in [9] can also be used 
in adaptive control, it is difficult to implement this control in 
practice, since it involves the computation of an exponential 
function of a matrix at every sampling period. To avoid this 
difficulty, we provide an alternative structure for the feedback 
law with adjustable parameters including the sampling period. 
We show that under certain assumptions concerning the struc- 
ture of perturbations, the resulting closed-loop adaptive sam- 
pled-data control system is stable in the sense that the state of 
the system goes to zero exponentially and the adaptation param- 
eters consisting of sampling periods and feedback gains converge 
to constant numbers which depend on the initial conditions of 
the system. We also consider the same problem for intercon- 
nected systems in the framework of decentralized control and 
central adaptation. 

11. PROBLEM STATEMENT AND PRELIMINARIES 

We consider a single-input system Y described as 

9: x ( t )  = [ A  + H ( t ) ] x ( t )  + bu(t)  (2.1) 

where x ( t >  ~ 9 2 ~  is the state and ~ ( t )  is the input of 9; A and 
b are constant matrices of appropriate dimensions; and H ( t )  
represents additive perturbations. 

We assume that the pair ( A ,  b )  is controllable, and is in the 
canonical form 

where a,, 1 = 1,2;.., n, are constant but unknown parameters. 

of the form 
To the system 9, we apply a sampled-data feedback control 

~ ( t )  = k r ( t  - t,, y,)x(t,), t ,  5 t < t,+ 1 (2.3) 

where t ,  denote the sampling instants, y, is a parameter which 
is constant over each sampling interval [t,, t,+ ,), but may 
change from one interval to another, and k ( t ,  y )  is a time-vary- 
ing feedback gain vector, which is a bounded function of f for 
every fixed y .  

We further assume that H ( t )  has a lower-triangular structure 

I :  : I  

where h,,, p ,  q = 1,2;.., n, are unknown bounded functions 
with bounded derivatives of all orders up to  n - 1. There are 
two reasons for restricting H ( t )  to have this structure. The first 

is that no controller could provide robust stability for all pertur- 
bations of a more general structure. A simple example is a 
constant H which nullifies the 1's in A of (2.2). The second 
reason is that Y is known [lo] to be stabilizable by a high-gain 
continuous-time state feedback control against all bounded per- 
turbations of the form (2.41, provided their bounds are known a 
priori. In fact, our first objective is to reproduce the same result 
with the sampled-data controller in (2.3), and the second objec- 
tive is to eliminate the need for the information about the 
bounds of the perturbations. 

With the control in (2.3) applied to 9', the resulting closed-loop 
system becomes 

9: X ( f )  = [ A  + H ( t ) l x ( t )  

+ bk'(t - t,, y,)x(t,), t ,  5 t < t,+, (2.5) 

the solution of which is given by [ 111 

x ( t )  = 6(t, t , ,  y,>x(t,>, t ,  5 t < t,,, I (2.6) 

where 

6 ( ( ,  f,, y,,,) = W t ,  t m )  + 1' W t ,  r)bkT(7 - t,, y,) d~ (2.7) 

with @(t ,  t,) being the state transition matrix of 9'. Evaluating 
(2.6) at t = t,+ ,, we obtain 

&: x(t,,,) = 6( tmT, , t , . ym)x( t , )  (2.8) 

'"7 

which defines a discrete-time system. 
Suppose that the sampling periods, defined as 

Tm = t m + l  - t m  (2.9) 

are bounded from above, and that Iim,,+=t,,, = E. Then, for any 
t > t,,, there exists an m such that t,,, I t I tm+,.  Since @(t, 7 )  

and k ( t ,  y,) are bounded fpr all t and T with t ,  I T I t I t,, ,, 
it follows from (2.6) that 9 in (2.5) is stable in continuous sense 
if and only if 9 in (2.8) is stable in discrete sense. Our 
immediate purpose is to choose a suitable structyre for the gain 
k T ( t ,  y )  in (2.3) which guarantees stability of 9 under certain 
conditions on y, and T,. For this purpose, we refer to 191, who 
used a time-varying feedback gain of the form 

k T ( t ,  y )  = kT(y)exp{[A,)  + bkT(y)lt} (2.10) 

where A ,  has the same structure as A in (2.2) with the last row 
elements replaced by zeros, and kr (  y)  is a constant gain which 
places the eigenvalues of A ,  + bk'(y) at - p l y  with p l  > 0, 
1 = 1,2,... . n, being arbitrary distinct numbers. It has been shown 
in [9] that with the sampling periods T, and the parameters y,,, 
kept constant as T, = T and 7, = y ,  there exist T'" > 0 and 
y* > 0, which depend on the bounds on the perturbations, such 
that the sampled-daia control in (2.3) with the gain as in (2.10) 
results in a stable 9 for all T < T*  and y > y* .  (Note that a 
simple discretization of a high-gain continuous-time controller 
would require smaller T for larger y .  Thus, the result of 191 is 
not a straightforward translation of an analog controller to 
digital domain.) The motivation behind the present work is to 
relax the requirement that these bounds be known by adjusting 
the sampling period T, and the parameter 7, adaptively. 

A closer examination of the gain in (2.10) reveals that its 
components behave like lst, 2nd, etc., order impulses. Motivated 
by this observation, we choose the structure of the gain vector 
k T ( t .  y)  in (2.3) as 

k T ( t ,  y )  = [ k , , ( t ,  y )  ." k ? ( t ,  y )  k , ( t ,  y) l  (2.11) 
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with components 

(2.12) 

where p,[ > 0 are arbitrary distinct numbers, and the coefficients 
air are obtained by solving the equations 

(2.13) 

It is easy to check that k, ( t ,  y )  behaves like an I-th order 
impulse for large y .  That is, limy /? f(t)k,(t, 7) dt = 

( -  l)'f('- l )  (0) for any function f which is infinitely differen- 
tiable at t = 0. 

We next ipvestigate the behavior of the discrete state transi- 
tion matrix @ ( t m + l ,  t,, y,) in (2.8) for fixed T, and y,. For this 
purpose, we define as in [9] the vectors 

z , ( t )  = b ,  

z I +  , ( t )  = [ A  + H ( t ) ] z , ( t )  - , i / ( t ) ,  I = 1,2;.., n ,  (2.14) 

and form the matrix 

Z ( t )  = [ z , ( t )  z ,  - 1  ( t ) . . .  z , ( t ) l .  (2.15) 

From (2.71, we write 

& t ,  t , ,  y,) = @ ( t ,  t,)W(t,> + * ( t ,  t,,, 7,) (2.16) 

where 

and 
W ( t )  = I - Z ( t )  (2.17) 

~ t , t , ,  y )  = ~ ( t ,  t,)z(t,) + / I  ~ ( t ,  T ) b k T ( T  - t,, y )  d7 
f m  

(2.18) 

and state the following. 

bounded, then 
Lemma 2.1: If H ( t )  and its derivatives up to order n - 1 are 

lim ?(t,t, ,  y )  = 0 (2.19) 
Y+% 

for all t > t,. 
Pro06 Let 

Vr( t , t , , y )  = [4Jn( t , t , ,Y) ' . .  4J l ( t , t ,>Y) I .  (2.20) 

We claim that 

4,(t, t,, y )  = 

/ I  
( -  l ) S y ' - ~ r - ~ I C y l , e - " ' r Y ( ' - ' n l ) z S ( t )  

~ = l  r = l  

I 
+(- 1)' C Y l . 4 '  ~ ( ~ , T ) ~ ~ + l ( T ) ~ ~ ~ r Y ( T ~ ' ' r " d ~ .  (2.21) 

r =  1 

The claim can easily be proved by showing using (2.12)-(2.14) 
and (2.18) that both sides of (2.21) satisfy the same differential 
equation 

[ ( t )  [ A  + H ( t ) ] [ ( t >  + b k / ( t  - t,, 7) 

[( t , )  = z,(t,). (2.22) 

~ 

1709 

The proof then follows from the boundedness of z,(t), 1 = 

1,2;.., n + 1, which is implied by the boundedness of H ( t )  and 
its derivatives. 

From (2.16) and Lemma 2.1 we observe that withAk(t, y )  
chosen as in (2.11)-(2.13), and y, sufficiently large, @(t,+l, 
t , ,  Y,~) in (2.8) behaves essentially like @(t,,+ I, t,)W(t,), which 
is independent of y,. This observation, together with the struc- 
ture of W(tn,) implied by the structure of q(t), allows us to 
reach the following result on the stability of 9. 

Theorem 2.1: Let kT( t ,  y )  be chosenAas in (2.11)-(2.13). Then 
there exist T *  > 0, y*  > 0 such that 9 in (2.8) is exponentially 
stable provided that y, I y * ,  0 < T,,, I T * ,  m E Z+. 

Proof: We first observe that boundedness of H ( t )  and its 
derivatives, (2.14), (2.17), (2.18) and Lemma 2.1 imply that 

M ,  = sup IlW(t)Il 
1E.W 

€(I-) = sup sup l1@(tm+1,tm) -111 
0 < T,,, s T t,,, €9 

6 ( T ,  y )  = sup sup sup l l ~ ( f m + l , f , , y , ) ~ ~  (2.23) 
y"! 2 y 0 T", c T I", €9 

all exist, and that 

lim E ( T )  = 0 
T+ 0 

lim 6 ( T ,  y )  = 0, for all T > 0 
Y+= 

From (2.8) we have 

Taking the norm of both sides of (2.251, expanding the product 
using (2.16), and using (2.23) and (2.241, we obtain 

( n - 1  

provided T,, I T and y, 2 y ,  m EX+, where we use the nota- 
tion W,+/ = W(t,+/), @,+/ = @(t ,+/+l ,  l,+/), for conve- 
nience. Now using the identity 

(2.27) 

and (2.23), the product term in (2.26) can further be bounded as 

@rn+/Wl+/  = W,i/ + [@,+/ - IIW,+/ 

provided T, I T.  

lower triangular matrix with zero diagonal elements, so that 
As can easily be seen from (2.4), (2.14), and (2.171, W(t)  is a 

n- 1 

I =  0 
n WWl+/ = 0 (2.29) 

(2.24), (2.28), and (2.29) imply that for any p 1  > 0, there exists a 
T* > 0 such that 

11-  1 n Il@"+/Wm+/ll 5 PI (2.30) 
/ = o  
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provided T, I T* ,  m E%+. With T* futed to satisfy (2.30), 
(2.24), and (2.26) imply that for any p 2  > 0, there exists a y *  > 0 
such that 

provided T, I T* ,  y, 2 y * ,  m E X + .  
Let p = pi + p 2  < 1. With 

r r -  1 1 

we have from (2.31) 

Ilx(t,>ll I M (  p"">mllx(to)ll (2.33) 

and the proof follows. 
We observe from the proof of Theorem 2.1 that for given p1 

and p , ,  T* and y* depend on the bounds of H ( t )  and its 
derivatives, which are unknown. This necessitates the use of an 
adaptation mechanism to adjust T, and y, based on measure- 
ments of x(t,). In the next section, we investigate this problem. 

111. ADAPTIVE SAMPLED-DATA CONTROL 

We choose the adaptation rules for the sampling period 
T, = t m + l  - t , ,  and the parameter y, in k ( t  - t,, y,) of (2.3) 
as 

T i l i  = T;l + (T711x(tm)ll 

ym+l = y, + qllx(t,)ll (3.1) 

where a,, q, To, yo  > 0 a r e  arbitrary. Thus, the closed-loop 
adaptive control system .Y in (2.5) has the configuration shown 
in Fig. 1. 

The system 4 in (2.8) associated with 9, and the adaptatipn 
rules in (3.1) define a discrete-time adaptive control system gA, 
whose solutions starting from the initial condition x A ( t o )  = 

(xo, To, yo), we denote by xA( tm;  xo,  7-0, y o )  = [x(t,), T,, Y,,,]. 
The following theorem states our main result. 
Theorem 3.1: Under the feedback control in (2.3) with k ( t ,  y )  

chosen as in (2.11)-(2.13), and T, and y, adjusted according to 
(3.11, we have 

lim T,,, = T, > 0, (3.2) 
nl + 5 

lim y, = y .  > 0. (3.3) 
ni --t = 

lim x(t,) = 0 
m 4 = 

(3.4) 

so that x,(t,; xo,  To, yo) is bounded for all To > 0, yo  > 0 and 

P Y O O ~  Let T* and y*  be as in the statement of Theorem 
x(t,) = xg. 

2.1. Three cases are possible. 
Case I) T, > T* for all m E Z+. 
In this case, since {T,) is nonincreasing, T, 2 T* exists, prov- 

ing (3.2). Then, (3.4) follows directly from (3.1). (3.1) also implies 
that 

m -  1 

T i l  = T;i + (T7 IlX(t/)lI (3 .5)  
1 = 0  

so that 

y, = yo + ((Ti//cTT)(T;l - T i i )  (3.6) 

and (3.3) follows by taking the limit. 
Case II) y, < y*  for all m EX+. 
In this case, the proof follows exactly the same lines as the 

proof of Case I) with the roles of y, and T; interchanged. 

Fig. 1. Structure of the adaptive sampled-data control system. 

Case I I I )  T, I T* for some m T  E Z+, and y, 2 y*  for some 
my E X + .  

Let m* = max{m7, my). Then, since {T,) is nonincreasing, 
and {y,} is nondecreasing, we have T, I T* and y, 2 y*  for all 
m 2 m*. Theorem 2.1 implies that 

ilx(t,)ll I ~p ," -~* l lx ( t , * ) l l ,  m 2 m* (3.7) 

where p o  = pi"', and p < 1 is as in the proof of Theorem 2.1 
(3.7) directly implies (3.4). Also, 

m -  1 

/ = m *  

and similarly 

(3.8) 

(3.9) 

so that both T, > 0 and yr > 0 exist. This completes the proof. 
Example 3.1: T o  illustrate the result of Theorem 3.1 we con- 

sider a second order system with 

A = [ : :  :I 
to which we apply a sampled-data control of the form in (2.3). 
Choosing pi = 1, p, = 2 arbitrarily, and solving (2.13) for qr, 
we construct 

k T ( t ,  y )  = [ - y e - " '  2y'e-Y' - 4y2e-2''']. (3.10) 

The solution of the resulting closed-loop system is obtained by 
numerical integration using Euler method [12] with a time-step 
of h = 0.01. The elements of the perturbation matrix are gener- 
ated randomly once every ten integration steps as 

h,, = O.OS[rand (1) - 0.71 

h,, = 0.40[rand(l) - 0.51 

h,, = -0.30[rand(1) - 0.31 

where rand( 1) produces a random number uniformly distributed 
over [o, 11. 

The parameters T, and y,,, are updated using (3.1) with 
uT = uy, = 1. The simulation results corresponding to arbitrarily 
chosen initial conditions xo = [OS4 - 0.2OlT, To = 0.3 and yo = 

2.3, are shown in Fig. 2, from which the impulsive behavior of 
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the input at the sampling instants can be clearly seen. It is also 
observed that the feedback gain converged to an almost periodic 
steady-state corresponding to T, = 0.15 and y% = 6 in about 20 
iterations. Finally, it should be noted that although the bounds 
of the perturbations are known in this particular example, this 
information is not used in the design of the control law. 

IV. DECENTRALIZED ADAPTIVE SAMPLED-DATA CONTROL 

The result of the previous section finds a natural application 
in decentralized control of interconnected systems, where the 
interconnections among the subsystems are treated as perturba- 
tions on locally controlled decoupled subsystems. 

Consider such an interconnected system consisting of N sin- 

-44: i , ( t )  = A , x , ( t )  + b,u,(t)  + 1 4  H,,(t)x,(t) ,  i E N  (4.1) 

where N =  {1,2;.., N};  x , ( t )  ~ 5 % ’ ~ ‘  and u,( t )  ~ 5 % ’  are the state 
and the input of z; A ,  and b, are constant matrices having the 
structure in (2.2); and H,,(t) represent interconnections among 
the subsystems. 

Imitating the controller structure in the previous section, we 
apply to 

gle-input subsystems described as 

decentralized sampled-data feedback of the form 

u , ( t )  = kT( t  - t,, y,)~,(t,),t, I t < t m + l , i  (4.2) 
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where each gain vector k , ( t ,  y )  has the structure in (2.11)-(2.13), 
except that another index i is appended to k,(t,  y),  air, ,ur and 
n. 

Defining x‘ = [xFxF ... xi]’, A’ = d’  IagIA,, A2;.., A,,,}, B‘ 
and K’(t, y )  similarly, and H’(t) = [ Hf,(t)lN, ,,, the resulting 
closed-loop sampled-data system can be described compactly as 

4’: x’(t)  = [A’ + H’(t)]x’(t) 

+ B’K’(t - t,, y,)x’(t,), t ,  I t < t,+ 1. (4.3) 

As in the previous section, we associate with 3’ a discrete-time 
system 

& I :  xJ( t ,+, )  = W t m + , , t m ,  y,)xI ( t , )  (4.4) 

whose stability is equivalent to that of 4’, where 

&<t,  t,, ym) = @ I ( t ,  t,) 

+ [‘ @.‘(t, T)BIK’(T - t,, y,) d7 (4.5) 

with @‘(t, t,) being the state transition matrix associated with 
A’ + H I ( [ ) .  

We next establish a counterpart of Lemma 2.1. For this 
purpose, we define the vectors 

z { ( t )  = b,’ 

z/ , , ( t)  = [A’  + H’(t)]z/(t) - i ; ( t ) ,  I = 1,2;.. ,n,,  j s.4’ 

(4.6) 

where 6f = [0 ... 6: ... 01’ is the j-th column of B‘, and con- 
struct the matrices 

j E.N (4.7) z;(t) = [ z ~ , ( t >  zi,- , ( t> ... z i ( t ) ] ,  

and 

Z‘(t) = [Z1(t)  ZJ t )  ... Z,(t)I. (4.8) 

(4.9) 

(4.10) 

Then, with 

we have 
W‘(t) = I - Z’(t)  

6‘(t, t,, y )  = @ I ( [ ,  t,>W’(t,> + “’(t, t,, y )  

where 

“’(t, t,, y )  = @ I ( [ ,  t,)Z’(t,) 

+ [‘ @‘(t, T)BIK’(T - t,, y )  d 7 .  (4.11) 

With these definitions, the proof of the following counterpart of 
Lemma 2.1 is automatic. 

Lemma 4.1: The result of Lemma 2.1 remains valid if H ( t )  
and “ ( t ,  t,, y )  are replaced with H I ( [ )  and * ’ ( tLtm, y) .  

To reproduce the result of Theorem 2.1 for 9‘ of (4.4) we 
need to restrict the structure of the interconnection matrix. For 
this, we define the structure index of a matrix D = (d,,) as 

m 

where m, is a sufficiently large integer. Thus, m(D) indicates 
the position of a diagonal line parallel to the main diagonal, 
which borders all nonzero elements of D. We assume that for 
any index set Z C M ,  the structure indices of H,,(t) satisfy 

. [m(H, , )  - 11 < 0. (4.13) 
[ , I t 9  

The reason for assuming this structure for H,,(t) is that they 
characterize a relatively large class of interconnections which 
allow for stabilization with continuous-time decentralized state 
feedback [lo]. Note that for Y= {i}, (4.13) requires that m(H,,) 
< 1, that is, H,,( t )  have the structure in (2.4). 

We state the following. 
Lemma 4.2: Let kT(t ,  y ) ,  i EM, be chosen as in $2.11)-(2.13). 

Then there exist T* > 0 and y*  > 0 such that 8‘ in (4.4) is 
exponentially stable provided that y, 2 y*  and 0 < T, I T* 
for all m E Z + .  

Pro05 The proof follows exactly the same lines as the proof 
of Theorem 2.1 with n replaced by n ,  + n2 + ... n N .  The criti- 
cal step is to show that (2.29) holds for W,‘ = W’(t,>. The proof 
of this fact, which has been presented in [9], is technically quite 
detailed, and therefore, will not be repeated here. To  give an 
idea about the proof, we only mention that the structural condi- 
tion in (4.13) implies 

(4.14) 

for any index set Y c M ,  where W,’ = (W/!l,),,N. It is then quite 
straightforward to show using (4.14) that 

(4.15) 

from which the proof follows. 

for T, and ynl 
We finally employ the following centralized adaptation rules 

T i : ,  = T i ’  + a , T l l x l ~ t m ~ m , ~ l l  
1 4  

’ y ~ n + I  = ym + C ~ z y ~ ~ x i ( t m - m I ) ~ ~  (4.16) 
I EM 

where To, yo, a,‘, a , Y  > 0, i E.N; are arbitrary, and the terms 
corresponding to m - m, < 0 are absent in the summations in 
(4.16). We note that the delays m, > 0 are introduced in order 
to provide sufficient time for the centralized adaptation mecha- 
nism to gather and process information about the subsystem 
states. Denoting the solutions of the adaptive control system 
consisting of (4.4) and (4.16) starting from the initial condition 
(x& To, yo)  by xi(t,; x i ,  To, y o )  = [x’(t,), T,, y,]‘, we state the 
following theorem, whose proof follows exactly the same lines as 
the proof of Theorem 3.1. 

Theorem 4.1: The result of Theorem 3.1 remains valid if 
k ( t ,  y )  and xA(tm; x”, To, yo)  are replaced by K‘(t, r) and 
x i ( t , ;  x i ,  To, Yo).  
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Low-Order Stabilizing Controllers 

D.-W. Gu, B. W. Choi, and 1. Postlethwaite 

Abstract-A method for designing low-order stabilizing controllers is 
described. It is shown that for some plants the order of stabilizing 
controllers may be less than or equal to I(respectively m),  where 
/(respectively m )  is the number of plant outputs(respectively inputs). An 
explicit characterization of a set of low-order stabilizing controllers is 
given and numerical examples are provided to illustrate the results of 
the note. 

I .  INTRODUCTION 

As the complexity of controllers increases, to meet higher 
performance specifications using modern methods of design, the 
order, i.e., the McMillan degree of a controller, becomes a 
research topic of great practical significance. 

For ease of implementation, certification, commissioning, and 
maintenance, low-order controllers are normally preferred to 
high-order ones, provided there is no serious deterioration 
in performance. Various model-reduction methods have been 
introduced [3], [IO] to reduce the order of a designed controller, 
but after reduction it is necessary to reanalyze the design to 
check that any degradation in performance is not too significant. 
An alternative approach would be to design a lower order 
controller directly to meet the design objectives. 

In this note, we focus on the problem of how to characterize a 
set of low-order stabilizing controllers. 

The problem has already received much attention [l], [6]-[8]. 
For example, in [l], [7] a lower bound on the order of a 
(dynamic) stabilizing controller is derived for arbitrary pole 
placement. Despite such attention, the low-order stabilization 
problem is largely an open problem and all the existing results 
provide only suficient conditions for the existence of stabilizing 
controllers of a certain order. We present in this note a suffi- 
cient and constructive approach to this open problem. Specifi- 
cally, we use the celebrated “Youla parameterization” of all 
stabilizing feedback controllers for a given plant, to present an 
algorithm in the state-space domain for characterizing the set of 
(internally) stabilizing controllers of “lowest” possible order; 
here lowest is with respect to the algorithm used. We also show 
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how to construct a set of stabilizing controllers of given fixed 
order if a certain condition holds. 

The note is structured as follows. In Section 11, the problem of 
designing low-order stabilizing controllers is reduced to the 
problem of solving two simultaneous equations, which consist of 
a Sylvester equation and a linear matrix equation. In Section 111 
the special case of stabilizing controllers of order (n - l )  is 
considered, and in Section IV the set of stabilizing controllers of 
smallest possible order using the particular approach of the note 
is considered. An explicit characterization for the set of low-order 
stabilizing controllers is derived in Section V. Some numerical 
examples are provided to illustrate the results of this note in 
Section VI and conclusions are given in Section VII. 

11. STABILIZING CONTROLLERS 

Consider the feedback configuration of Fig. 1, where G(s> is a 
given plant, and K ( s )  is a controller to be designed for internal 
stabilization. 

Without loss of generality, we assume G(s) is minimal and 
strictly proper and let G(s) have the state-space realization 

where the dimensions of the matrices ( A ,  B , C )  are n X n, 
n X m, and I X n ,  respectively. And C is assumed to be of full 
column rank. 

Also let G(s) have a doubly coprime factorization 

G(s) = NM-1 = G-lI? (2) 
and let X, Y ,  k, and satisfy the Bezout identity, i.e., 

(3)  

where the matrices ( N ,  M, I?, M, X, Y,  k, 9 )  all belong to 
(the set of all real rational matrices whose elements are stable 
and proper). The matrices ( N ,  M ,  X, Y )  can each be expressed 
in state-space form as follows, by choosing real matrices F and 
H such that A + BF and A + HC are stable [ll]: 

Y ( s )  := [qq-+. 

(4) 

(5) 

(6) 

( 7 )  

Then it is well known [2], [14] that the set of all stabilizing 

K ( s )  = - ( Y  - M Q ) ( X  - N e ) - ’ ,  

Suppose that Q(s) has the state-space realization 

controllers for the given plant G(s) can be parameterized by 

for Q ( s )  EH. (8) 

I (9) 
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