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can write 
n f n  \ 

where the last estimate was made by using condition ii). The third 
term is or order of 1 and regarding the fourth term, we know by 
the Law of Iterated Logarithm that S; = o(n1ogn) almost surely. 
Therefore, condition iii) implies 

In-1 \ 

Overall, we have the following: 

which together with condition i) imply (23). 0 
Let us now consider some applications of Lemma 2 which were 

1) For 7: = k-2S:, f(k) = l / k 2  and yj(n) N snm dz/x2 = l /n .  Clearly, all the three conditions of Lemma 
2 are satisfied. Hence, by (23), 

used in this paper: 

2) For C;=l(logk + l)-’F;, f(k) = l/(k2(logk + 1)) and 
yf(n) N snm ds/(z210gz) - l /(nlogn).  Again, the three 
conditions can easily be verified. Thus 

“ 1  dx 
k ( l o g k  + 11-% - gZCm u y  * 
k = l  k=Z 

= 0’ log log n as.  (24b) 

3) For C;=l(logk + 1)-”’7:, f(k) = l / (k ’dm) ,  
~ f ( n )  N Jnm dt/(~’- N l / ( n m  and 
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On Stability of Interval Matrices 

M. E. Sezer and D. D. siljak 

Abstmef-New suf€icient, and sometimes necessary and sut&ient condi- 
tions, are obtained for Schur- and Hurwitz-stability of interval matrices 
by relying on the concept of connective stability and M-matrices. The 
necessity part Is broadened to include interval matrices with mixed signs 
of the off-diagonal elements, provided the sign patterns follow that of the 
Morishima matrix. The obtained results are extended to cover convex 
combinations OF interval matrices. 

I. INTRODUCTION 
Robust stability of dynamic systems with modeling uncertainties is 

oftenformulated as stability of a polytope of matrices in the parameter 
space. In this context, stability analysis has been centered on proving 
stability of an entire family of matrices by establishing stability of 
a number of test matrices, which usually are, or generated from, the 
vertices of the polytope (see, for example, [1]-[3], and the references 
therein). The main difficulty in this approach is that (unlike polytopes 
of polynomials) vertex or even edge stability does not, in general, 
imply stability of the whole polytope [4]. The only case for which 
this is known to be true is when the vertices are simultaneously stable 
[5 ] ,  which is not an easy condition to test. The difficulty remains even 
in the special case of interval matrices. 

As pointed out in [6], a straightforward solution of the stability 
problemfor certain classes of interval matrices is available in the 
framework of connective stability via M-matrix theory [7]. It is 
well known that the connective stability approach provides a simple 
sufficient condition for stability of an interval matrix in terms of 
stability of a test matrix with nonnegative off-diagonal coefficients. 
Alternatively, such a test matrix can be used to generate an interval 
matrix whose stability is equivalent to the stability of the test matrix 
itself. In this note we show that any Morishima matrix 171 serves the 
same purpose, and thus we obtain a more general characterization 
of interval matrices whose stability is equivalent to stability of one 
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of its vertices. Although all known results on stability of interval 
matrices can be deduced from our characterization, it still inherits 
the conservatism (as well as generality) of the connective stability 
approach, indicating that available results on interval stability are 
still far from being complete. 
Our second objective is to make use of the proportional domination 

conditions[8] to establish stability of a collection of special matrices, 
and hence, of the polytope formed by their convex combinations. 
When applied to interval matrices, this result allows for generating 
a larger stability region in the parameter space from their hyperrect- 
angular stability regions. 

11. PRELIMINARIES 

For two n x n matrices A and B, A 2 B denotes element-by- 

( 1 )  

where A = (a,,) and 2 = (E,,) are fixed matrices. The family A 
is described geometrically as a hyperrectangle in the space Rnxn 
of the coefficients a',. We say that a family A is stable (Schur- or 
Hunvitz-stable) if every A E A is stable. 

We recall several definitions and results of [7], which we want to 
apply tointerval matrices. An n x n matrix A is said to be positive 
quasi-dominant diagonal (PQDD) if there exist numbers d, > 0 such 
that 

element inequality. A family of interval matrices is defined as 

A(A, 2) = { A  E RnXn: A 5 A 5 X} 

n 

a,z > d , l C d 3 l a t J ~ ,  i = 1 , 2 , . . . , n  . (2) 
3 f l  

If (2) holds when all  d, = 1, then A is said to be positive diagonal 
dominant (PDD). It follows that A is PQDD if and only if D-IAD 
is PDD for some diagonal matrix D > 0. If a:, 5 0, i # j, then A 
is PQDD if and only if all leading principal minors of A are positive, 
that is, A is an M-matrix. 

A matrix A is called a Morishima matrix if by symmetric row and 
columnpermutations it can be transformed into the form 

[2 t::] (3) 

where A11 2 0, A22 2 0 are square submatrices and A12 5 0, 
A21 5 0. It is easy to see that A is a Morishima matrix if and only 
if SAS = [AI for some S = diag(s1, s2,.-.,sn} with si = Itl, 
i = 1, 2 , .  , n, where IAl denotes the matrix obtained from A by 
taking the absolute values of all elements. 

Based on the above, we have the following stability results 
concerning somespecial matrices: 

If A 2 0, then A is Schur-stable if and only if I - A  is anM-matrix, 
or equivalently, PQDD. Note that this requires that a;j E [0, l), 
i = 1, 2,. . . , n. If A is a Morishima matrix, then it is Schur-stable 
if and only if IAl is, that is, I - (AI is PQDD. 

Let A = AD + A c ,  where AD = diag(al1, a~~,-..,ann}. 
IfAc 2 0, then A is Hurwitz-stable if and only if -A is PQDD. 
If A c  is a Morishima matrix, then A is Hurwitz-stable if and only 
if AD + lAcl is, that is, - A  is PQDD. 

Prooj The implications i) ($ ii) and iii) ii) arwbvious. To 
prove that ii) * iii), suppose IVI is Schur-stable, that is, I - IVI 
is PQDD. Then, 0 5 lwtzl < 1, and for any A E A(-lVl, IVl), 
la:J) 5 IvzJI, SO that 

n 

1 -a:,  2 1 - ~ V Z ~ I  > d ~ ' ~ d ~ I ~ l J 1  
J#' 

n 

2 d, 'Zd, la, , 1) i = 1, 2, * . . , n (4) 

for some d, > 0. By Gershgorin's theorem [3], the eigenvalues of 
D - ~ A D  all lie in the union of the discs D1.-Qz,(d;l Cd,la,,l), 
which, by virtue of (4), are included in  VI-^,,(^ - I U , ~ ~  - e) for 
some E > 0, where 

(5)  

Therefore, the eigenvalues A, which are the same as those of 
D-'AD, all lie in the union of DQ,,(l - luzzl - E) which are all 
contained in Do(1 - c). Thus A is Schur-stable, and the proof is 
complete. 

J#* 

Dc(r)  = {y E C: (y - cI 5 T } .  

An immediate consequence of Theorem 1 is the following. 
Corollary 1.1: Let A 2 0 (resp. X 5 0). Then, A(A, X) isschur- 

Corollary 1.1 is the main result of [9], which we obtained without 

Let us associate with a given family A(& X) a nonnegative 

stable if and only if 

resortingto interval arithmetic. 

testmatrix A = (I&), where 

(resp. AJ is Schur-stable. 

211, = {le, I, IEl, I). (6) 

From Theorem 1 ,  the following result is automatic. 
Corollary 1.2: A(A, a) is Schur-stable if A is Schur-stable. 
Corollary 1.2 provides a sufficient condition for Schur-stability of 

ageneral interval matrix having an arbitrary sign pattem ofthe interval 
bounds a,, and Et , .  The necessity is missing because A itself may 
not belong to the family d(A, 2). To recover necessity in Corollary 
1.2, we denote by Y k ,  k = 1, 2,. . . , m, those extreme vertices of A 
for which l vk l  = A. Note that, in almost all cases, there is only one 
such vertex, which is farthest from the origin of the coefficient space. 

corollary 1.3: Suppose that fVk is a Morishima matrix corre- 
sponding to an extreme vertex of d(A, 2). Then, A is Schur-stable 
if and only if A is Schur-stable. 

To illustrate the results above, consider an interval family A with 

0.4 -0.6 - 0.5 -0.4 
A =  [-0.6 0.413 A =  [-0.4 0.51. 

For this particular example, Corollary 1.1 is inapplicable, and Corol- 
lary 1.2 is inconclusive as the nonnegative test matrix 

is unstable. However, by noting that the unique extreme vertex 

0.5 -0.6 
= [-ox OS] 

(7) 

of the family A is a Morishima matrix, we can use Corollary 1.3 to 
establish instability of A. 

thestability of an uncertainty hyperrectangle symmetrically located 
about the origin. They all have a simple intemretation in the context 

Iu. SCHUR-STABILITY OF INTERVAL MATRICES 
Our fiat result characterizes a class of interval matrices whose We note that all the results above are essentially concerned 

stabilityis equivalent to stability of a single test matrix. 
7 " m  1: Let fV be a Morishima matrix. Then, the following 

are equivalent: 
i) V is Schur-stable. 
ii) !VI is Schur-stable. 
iii) d ( - l V l ,  IVl) is Schur-stable. 

- 
of connective stability of multiparameter perturbed systems: A typical 
member A of the family A can be viewed as a perturbation of a 
nominal matrix AN = 0 by additive perturbations p;jA;j ,  i, j = 
1, 2, - s ,  n, where A;j = &+;e;, with e; representing the ith 



370 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 39, NO. 2, FEBRUARY 1994 

standard basis vector in R", and p; j  E [-1, 11 are interconnection 
parameters. The usual connective stability approach of [7] via the use 
of a diagonal Liapunov function for the nominal matrix AN = 0, 
produces directly the result of Corollary 1.2. However, since the 
uncertain family 

Il 

A E Rnxn: A = AN + p, ,  E [-1, 11 
1 3 3  

(8) 
represents the smallest hyperrectangle symmetrically located around 
the origin which includes A, the result may be quite conservative. 
To reduce conservatism of this approach, it may be useful to choose 
the nominal matrix AN = (a$) at the center of the uncertainty 
hyperrectangle by defining 

(9) 
. .  (aij + a;,), ai, = ; 2, 3 = 1, 2,.  * .  , n. N 

Then, by modifying the perturbation matrices as A;j = $(& j  - 
gij )e ,e: ,  the uncertainty family A of (8) can be made to match 
A exactly. Stability of the family d can then be checked using the 
approach of [lo]. A disadvantage of this approach is that the Liapunov 
matrix for AN is no longer diagonal, and simplicity of the connective 
stability approach is lost. 

To demonstrate the application of Liapunov approach to interval 
matrices, weconsider a family A with 

The unique extreme vertex 

0.5 -0.6 
= [0.6 0.51 

of the family A corresponds to the same unstable test matrix A in (7). 
However, unlike the previous example, since f V  is not a Morishima 
matrix, Corollary 1.3 is not applicable. Nevertheless, the class A can 
be characterized as in (8) with 

and A11 = A22 = 0. The Liapunov approach of [lo] shows that 
AN + p12A12 + p ~ l A z l  is stable provided that 

Since (10) is satisfied for (p121, ( ~ 2 1 1  5 1, A is stable. 

Iv. HURWITZ-STABILITY OF INTERVAL MATRICES 
The results of the previous section can be restated for a Hurwitz- 

stability analysis of interval matrices. The following result is a 
continuous-time counterpart of Theorem 1, and can be proved in 
pretty much the same way as Theorem 1. 

Theorem 2: Let V = VD + Vc,  where VD = 
diag{vl,w2,-..,vn} with zl, < 0 and 4zVc is a Morishima 
matrix. Then, the following are equivalent. 

i) V is Hurwitz-stable, 
ii) Vo + (Vel is Hunvitz-stable, 
iii) d(AD-(VcI,  VD+IVC() isHurwitz-stablefor all AD 5 VD. 
Theorem 2 characterizes the largest family of matrices [i.e. 

d(AD - IVcl, VD + IVcI)] whose stability can be inferred from 
stability of a single matrix with nonnegative off-diagonal elements 
(i.e., VD + (Vc I). Like the class of Schur-stable matrices characterized 
by Theorem 1, the class of Hurwitz-stable matrices characterized 
by Theorem 2 corresponds to a symmetric hyperrectangle in the 
parameter space of A c ,  but it is open toward -m in the parameter 

space of AD. For this reason, in the following, we characterize A 
by the bounds of A c  only;-that is, we set dD = AD = AD,  and 
let A = AD +&, x = AD +&. 

The following continuous-time counterpart of Corollary 1.1 pro- 
vides anecessary and sufficient condition for Hurwitz-stability of 
interval matrices with nonnegative (resp. nonpositive) off-diagonals. 

corollary 2.1: Let & 2 o (resp. XC 5 0). Then A@, X) 
isHurwitz-stable if and only if 

To obtain a continuous-time counterpart of Corollary 1.2, we define 
a testm?trix A = AD + AC associated with the family A@, X), 
where AC = (Liz) with 

- 

(resp. AJ is Hurwitz-stable. 

Corollary 2.2: d(A, x) is Hurwitz-stable if A is Hurwitz-stable. 
As in the previous section, to mover necessity in Corollary 2.2, we 

need torestrict the signs of the off diagopal elements of the test matrix. 
Forthis purpose, we denote by VI, = AD-~V: ,  k = 1, 2 , . . . ,  those 
vertices of A(A, x) for which (VFI = A c ,  and state the following. 

Corollary 2.3: Suppose that kV," is a Morishima matrix cor- 
responding to anextreme vertex of A(A, X). Then A(4 ,  x) is 
Hurwitz-stable if and only if A is Hurwitz-stable. 

Finally, we note that when Corollary 2.3 is inapplicable to a given 
familyA(A, A) because none of the vertices V: is a Morishima 
matrix, one can still try the Liapunov approach mentioned in the 
previous section by characterizing A as in (8). 

v. CONVEX COMBINATIONS OF STABLE MATRICES 
Finally, we would like to discuss a related problem, namely, 

stability ofconvex combinations of stable matrices. The motivation 
for this study is to derive conditions which allow for generating from 
stable interval matrices other stable ones. 

It is well known that convex combination of two stable matrices 
A andB is not necessarily stable, even when stability is established 
by M-matrix conditions. The concept of proportional domination [ 8 ]  
provides stronger conditions needed. 

Let A and B be two n x n matrices with positive diagonals 
andnonpositive off-diagonal elements. If 

then A is said to proportionally dominate B rowwise. Columnwise 
proportional domination is defined similarly. It was shown in [8] that 
if A and B are both M-matrices with one proportionally dominating 
the other, then a A  + PB is also an M-matrix for all cy, /3 > 0. 
Based on this we state the following: 

Theorem 3: Let A0 2 0 be an n x n Schur-stable matrix, and let 
Ak 2 O b e  n x n matrices such that I - AI, proportionally dominates 
I - Ao, k = 1, 2, . . . , N, either all rowwise or all columnwise. Then 
a convex combination ( Y ~ A I ,  with OI, 2 0, IC = 0, 1,. . . , N ,  

Prooj Assume, without loss of generality, that I - AI, all 
f fk = 1, is also Schur-stable. 

proportionallydominate I - A0 rowwise, so that 1 - a:; > 0, and 

Since AO is Schur-stable, I - A0 is QPDD so that 

n 

l -u ; ,  > d ; ' z d , a ; , ,  i = l , 2 , - . . , n  (14) 
Jf' 
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Fig. 1. Convex combination of stable interval matrices. 

for some d, > 0. By multiplying both sides of (13) by (1 - a t ) ( l -  
a:t)d3, summing for j # i, and using (14), we get 

n 

1-a!, >d,’Ed,al“,, i = 1 , 2 , . . - , n ;  k = O , l , . . . , N  . 
3 f r  

which implies that 
(15) 

( k l l  ~ 3 %  ( k 1 1  (16) 
n u s ,  I - E:=’=, akAk is PQDD, and the proof is complete. 

Note that under the conditions of Theorem 3, the 
matricesA0, AI,  - , AN are simultaneously PQDD, as established 
by (15). and so are their convex combinations. 

The following continuous-time version of Theorem 3 can be proved 
similarly. 

Theorem4: Let A0 = A: + A:, with A: 2 0, be an n x 
nHurwitz-stable matrix, and Ak = A? + A:, with A: 2 0, 
be n x n matrices such that -Ak proportionally dominates -Ao, 
k = 1, 2, .  e . ,  N, either all rowwise or all columnwise. Then, a 
convex combination E:=o akAk, with a k  2 0, k = 0, l , . . . ,  N ,  
E:=o O k  = 1, is also Hurwitz-stable. 
To illustrate the result of Theorem 3, we consider two positive 

matrices 

1- E a k a l r  > d,’Xd, Eakat ,  , i = 1, 2 , . + . , n .  

0 4  0 4  0.4 0.4 
A0 = [I* 0:2]9 A1 = [o.i 0.91 

both of which can easily be shown to be Schur-stable. Scaling the 
rows of I - A0 and I - A1 by the reciprocals of their diagonal 
elements we observe that I - A1 proportionally dominates I - Ao. 
Then Theorem 3 implies that any convex combination 

0.4 ~ A o  + (1 - a)A1 = 

is also stable. The significance of this result can ‘be seen by consid- 
ering the stability regions in the (a21, azz) plane: While Theorem 
1 produces two thin rectangular regions associated with A0 and AI, 
Theorem 3 combines these into a much larger one as shown in Fig. 1. 

Notice that in this example, although I - A0 and I - A1 aresimul- 
taneously PQDD, there exist no diagonal-type Liapunov function that 
would prove simultaneous stability [5] of A0 and AI; this function 
being a natural one in the context of M-matrices. This fact points 
out the significance of connective stability, which is diagonal-type 
simultaneous stability that can be established via simultaneous FQDD 
conditions [7]. 

VI. CONCLUSIONS 
We have obtained necessary and sufficient conditions for stability 

omorishima-type interval matrices using the results available in the 
context of connective stability. The conditions have been further 
broadened to include convex combination of interval matrices. In 
future research, attempts shall be made to apply the results to establish 
connective stability of convex polytopes of nonlinear time varying 
matrix systems. 
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Unified Formulation of Variable Structure 
Control Schemes for Robot Manipulators 

Bin Yao, S. P. Chan, and Danwei Wang 

Absbwt-A general target model is proposed in the task space to 
represent motion trajectory, interaction force trajectory, and second- 
order f’undon relating tbe motion e r ”  and the interaction force e r ”  
Using variable structure model reaching control (VSMRC) strategy, the 
model is achieved in the slldlng mode with robust performonce. Reaching 
transient CM be ellmlnnted or -teed wlth prescribed q d t y .  By 
chooslng a dtable model for the appllcstion, robust motion control, 
impedance control, hybrid pOatio~~Yorce control, or C O M ~ ~ I I H J  motion 
control are achieved, mpectively. 
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