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On the Stabilization of a Cable with a Tip Mass 

Omer Morgul, Bo Peng Rao, and Francis Conrad 

Abstruct- In this note, we consider a vertical cable which is pinched at 
the upper end. A mass is attached at the lower end where a control force 
is also applied. We show that this hybrid system is uniformly stabilized 
by choosing a suitable control law for the control force depending on the 
velocity and angular velocity at the free end. Moreover for specific values 
of the feedback coefficients, we obtain the rate of decay of the energy 
of the system. 

I. INTRODUCTION 

In this paper, we study the stability of a pinched cable with a tip 
mass at the free end 

l l t f  - I / , ,  = 0 0 < 5 < 1 t > 0. (1) 

n(0.  f )  = 0 t > 0, (2) 

f l z ( l .  t )  + 7 n U i i ( l ,  t )  = - f ( t )  t > 0 (3) 

where, for simplicity, the wave speed and the length of the cable are 
chosen to be unity and a subscript letter denotes a partial differential 
with respect to the corresponding variable. In the above formulation, 
(1) is the wave equation for the cable, (2) is the boundary condition at 
the clamped end, (3) is the boundary condition at the free end, m > 0 
is the tip mass, and f ( t )  is the boundary control force applied at the 
free end. Our problem is to find a feedback control law f ( t )  so that 
the energy of the resulting closed-loop system decays uniformly to 
zero, both for the cable deflection and the motion of the tip mass. 

Recall that the following linear feedback control law 

f ( f )  = (11/1(1, t )  0 > 0 (4) 

has been shown sufficient for the strong stability, but not sufficient for 
the uniform stability (see [5]). Moreover it was shown in d’Andrea 
et al. [ l ] ,  [2], that the system (1)-(3) is strongly stabilizable for the 
Neuman condition at the end T = 0 by means of a suitable nonlinear 
feedback law for f ( t ) .  and one can also prove that it is not uniformly 
stabilized by that feedback. 

The same phenomenon of lack of uniform stability occurs also in 
the case of an elastic beam with a tip mass, called SCOLE model 
(see [6]). In fact, as shown in Rao [8], we know that the classical 
feedback that one considers for the standard control problems are a 
compact perturbation of the uncontrolled system. It is well known 
that compact controls are not sufficient to provide uniform stability 
(see [12], [4], and [13]). Hence, to obtain uniform stability, one has to 
choose “stronger” feedback terms for f ( t )  such as u, t ( l ,  t )  instead 
of t i f  (1. t ) .  Consequently, one has to work in higher energy space, 
and one can establish the uniform decay of energy for any smooth 
initial data (y(O), ~ ~ ( 0 ) )  E H 2 ( 0 .  1 )  x H1(O. 1). Another way for 
obtaining uniform stability is to put a feedback control at the end 
where there is no tip mass (see [9], [lo]). 
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The goal of this paper is to investigate the uniform stability of 
the system (1)-(3) for any initial data (y(O), ~ ~ ( 0 ) )  E H1(O. I)  x 
L2(0.  1). This note is organized as follows. In Section 11, we establish 
the uniform decay of the cable deflection by means of an energy 
method. In Section 111, we carry out an analysis of the spectrum, and 
we give the decay rates for specific cases. 

11. SWBILITY RESULTS 

Throughout this paper, we propose the following linear feedback 
control law f ( t )  

where a ,  cy are positive constants. Upon substituting ( 5 )  into (3), the 
latter becomes 

Let U be a smooth solution of the system ( l ) ,  (2), and (6). We 
define the auxiliary functions 

4 T ,  t )  = Ut(S. t ) ,  q ( f )  = u u , ( l .  t )  + m u t ( 1 .  t ) .  (7) 

Hence we can write formally the system ( l ) ,  (2), and (6) into the form 

Now let us introduce the following spaces 

I T =  ( 7 L  E H1(O, I), U ( 0 )  = O}, (9) 

H = {y = ( U ,  U ,  q )  E V x Lz(O, 

For all y = ( U ,  ti, q )  E H and i j  = (6 ,  6 
the inner product 

i j) E H ,  we define 

P l  

Next, we define the unbounded operator A : D (  A )  C H + H as 

D ( A )  = { y  = ( U .  7’. 7) E ( H 2 ( 0 ,  1) n 17) x V x R; 
q = U U , ( ~ )  + m v ( 1 ) ) .  (12) 

With the previous notations, we can formulate system (8) into the 
abstract form 
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Theorem 1 :  The operator .A:  D ( A )  C H + H defined by (12) 
and ( 13) generates a CO semigroup of contractions T (  t ) on the energy 

Proofi We first define the function 

I.-(t) = t E ( t )  + 2 .rutuT dx  1' 

= ;ll(?/; + I , : )  dx + 

space H .  

prove that .-I is an ni-dissipative operator (see, e.g. [7, p. 141). 

gives 

Proofi By the Lumer-Phillips Theorem, it is sufficient to 

First, any y = (U. I ) .  7 )  E D ( d ) .  a straightforward computation where the energy E ( t )  is defined by 

1 
E ( t )  = $(t)ll;I 

(26) 

Assume that yo E D ( A ) .  hence y ( t )  E 0 ( - 4 )  for t 2 0. Then, in 

1 2  (-4y. y ) H  = ( U Z I  1 + I ' U J 1  ) d.r 

1 2 ( m  + a a ) O  ' 

( c / l ! Z ( l ) +  n f ~ ( l ) ) ( I ! = ( l ) + a ~ ( l ) )  

L1 
-__  

n, +cl0 

1 
I?? + a a  ( n I c : ( l )  + aml 'L( l ) )  (15) view of (15) we have -____ - - 

which proves that d is dissipative. Et(t) = M t ) .  M t ) ) H  
1 

(au'f(1,  t )  + n n i u f ( l ,  t ) ) .  (27) -~ - Next for any given yo = ( 1 1 0 .  ( ' 0 .  1 1 0 )  E H .  we want to solve - 
the system m + c ~ a  

Next by using Cauchy-Schwartz inequality, it can be easily shown 
(16) that the following holds 

( t  - 2 ) E ( t )  5 17(t)  5 ( t  + 2 ) E ( t ) .  (28) 
which is equivalent to the equations 

(17) Now differentiating (25) and using (1) we obtain 11 - I' = U " .  

Integrating by parts we obtain 

? I + I ! , ( l ) + n I , ( l ) = 9 0 .  (19) 1 

2 1  . r ( l l s r l / z  + l l , t ~ l , ) d . r  

After obvious eliminations, we obtain the equations 

= u f ( 1 .  t )  + uf(1.  t )  - ( U :  + ~ / f ) d x .  (30) 
I /  - = I i O  + 2 0  E L2(0 .  1). (20) 1' 

On the other hand, from (7) it follows that 

(21) ? I 2  5 2 a 2 n f ( l .  t )  + 2nZ2u:(1. t ) .  (31) 
n ( 0 )  = 0. 

Using (26), (27), (30), and (31) in (29), the latter becomes 
(1 + a) lr , ( l )  + (n + m ) u ( l )  = vo + (a + m ) u 0 ( 1 ) .  (22) 

Equations (20)-(22) have a unique solution 11 E H L (  0. 1 ) n I . which 
implies that U = 71 - t i 0  E I-. Then 71 can be found from (19). 

now follows from Lumer-Phillips Theorem. 
Remark I :  Given yo E D ( A 2 ) .  we define y ( t )  = T ( t ) y o  = 

( u ( t ) .  I ( t ) .  ~ ( t ) ) .  By the Hille-Yosida Theorem we know that the 
function I /  ( t  ) has the smoothness 

L ; ( t )  5 -;ll(lL; + u f )  ds 

( a t  - n 2  - 00 - m ) u f ( l ,  t )  1 
m + aa 

1 
nz + ( ~ a  

-~ 
Obviously by construction, ( U V I ) )  E D ( A ) .  The proof of Theorem 1 

( a m t  - m2 - nz - aa)u:( l .  t ) .  (32) 

Thus there exists a constant T > 0, depending only on the constants 
a. m,  a such that the following holds 

-___ 

So for all y o  E D(AA2). we have the equivalence between the system 
( I ) ,  ( 2 ) ,  and (6) and system (14). But for general initial data yo E H 
or even for yo E D(=I) .  system (14) is only a weak form of the 

strong solution of (14). 

From (28) and (33) it that 

system (l), (2), and (6). For yo E D(A4). however, T ( t ) y o  is a E ( t )  5 ~ E ( o )  t > max(2, T I .  (34) 

Now we prove that T ( t )  decays exponentially uniformly to zero. 
Theorem 2: Let T ( t )  be the CO semigroup of contractions gener- 

We deduce that there exist constants to > 0, 0 < 7 < 1 such that 

ated by the operator il on the space H .  Then there exist constants I l ~ ( t 0 ) Y O l l H  I r l l Y o l l H  (35) 
Jf > 0, 6 > 0 such that 

for all yo E D ( A ) .  By the density of D ( A )  in H it follows that (35) 
I I T ( t ) l l H  I M P  t 2 0. (24) holds for all yo E H .  
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Remark 2: Estimate (24) means that the cable deflection decays 
exponentially uniformly to zero, but this is not necessarily the case 
for the motion of the tip mass. In fact we know only the exponential 
decay of the linear combination: rl(t) = n I i z ( 1 .  t )  + mut(1.  t )  of 
the cable tension 1 1 ~  (1. t )  and the tip mass velocity u t ( l .  t ) .  

If we assume that yo E D(-4). then we have also for the graph 
norm 

A. Case N # ( m / a )  
If (1 + a )  + ( U  + m ) X ,  = 0, then by (48), we have also 

(1 - a )  + ( U  - m ) ~ ,  = O. which implies that a = ( m / ( l ) .  a 
contradiction, H~~~~ we see that (48) is equivalent to 

(49) 
(1 - a )  + ( a  - m)X, e2&l - - - 
(1 + a )  + ( 0  + m)Xrl 

= - P ( X , ) .  

(36) Taking the logarithms of both sides of (49), we get l l ~ ( t ) v o l l u (  4 )  I - U P  I l V O l l U (  4 ) .  

On the other hand, by Sobolev embedding, we deduce that 

Thus we obtain the exponential uniform decay of the motion of the 
tip mass for all smooth initial data yo E D ( d ) .  

111. ANALYSIS OF THE SPECTRUM AND RATE OF DECAY 
In this section we calculate the spectrum of the operator d 

for special cases, and we prove that the spectrum determines the 
exponential decay rate given in formula (24) for the cases considered. 
Here we have to work in the complex Hilbert space of L2 (0. 1 ), T ~ 

and H .  For convenience, we do not change the notations for these 
spaces. 

Let X E C be an eigenvalue, and let z = ( . , x ,q)  E D ( d )  be an 
associated eigenvector of A. Hence we have 

(38) ( X I  - A ) -  = 0. 

1 i 
A,, = Zln(p(X,)( + ? ( 7 i  + argp(X,)) (modx).  (50) 

Assume first that m # U .  Then we have 

In other words, the spectrum has, in that case, a vertical asymptote in 
the left-half plane. It should be interesting to locate the eigenvalues 
in the left or the right part of the asymptote. Numerical computations 
show that there are indeed eigenvalues in the right part of the 
asymptote. 

In the case m = U and a # 1, (49) reduces to 

(1 + a +  %d,) = 0 - 1. (52) p2xn 

For cy > 1. (52) has a real negative root whereas limn-= Re( A,, ) = 
-cc. So in these cases, it seems not easy to get the rate of decay of 
the energy in a simple way from formula (51). This negative result 
is also conjectured for N < 1. 

This is equivalent to the following set of equations On the other hand, we shall now prove that when (I = (m/ci) ,  we 
get indeed the rate of decay of energy. A,. - I., = 0. (39) 

X r ,  - 9.. = 0. (40) B. Case (I = ( m / a ) ,  Q # 1 
In that case, the eigenvalue equation (47) becomes 

Xg + q z ( l )  + O L ' ( 1 )  = 0. 

XLlp - pz. = 0 

(41) 
(nX+l ) ( coshX+ns inhX)  = O .  (53) By using (39) in (40) we obtain 

For the root A, = - ( l / a ) ,  the corresponding (not normalized) (42) 
eigenvector F, is taken as 

whose solutions satisfying q ( O )  = 0 are proportional to 

(54) 1. sinh A, s 
p(.r) = sinh X.r. (43) F,= ( sinh X,s 

Upon substituting (43) in (39) we obtain a(coshX, + asinhX,) 

L > ( Z )  = X sinh X.r. (44) The remaining eigenvalues are given by the equation 

The last component 11 can be found either by using (41) or by using 
(12), both yielding the same result. Using the latter we obtain 

coshX+as inhX=O 

or else 

(55)  

C - Z X ( 1 -  a )  + 1 + a  = 0 (56) 
q = X(ncoshX + m sinhX). (45) 

By substituting (45) in (41) we obtain the following equation 
which gives 

1 1 - a  2 n + 1  
X [ ( d +  l ) coshX+ (n?X+o)s inhX]  = O .  (46) 

Note that X = 0 cannot be an eigenvalue. For otherwise (43), (44), 
and (45) imply r l ( s )  = ~ ( x )  = 0 and 71 = 0. Hence, all the 
eigenvalues of the operator -4 can be found from the equation 

(47) 

An = -In ~ + ~ x ,  7L E z 0 < a < 1, (57) 

" - 2  - ~ l n l ~ l + n m  l + a  n Ez n >  1. ( 5 8 )  

In both cases, the corresponding (not normalized) eigenvectors F, 

2 l l + J  

( u X  + 1) cosh X + (ni X + 0 ) sinh X = 0 

or equivalently by 

( ( l - a ) + ( n - n ~ ) X ) ~ ~ 2 x + ( l + a ) + ( ~ + m ) X = 0 .  (48) are taken as 
1 sinh A,, x 

F,, = ('ginh;,.r ) .  (59) 
If a # 1 or 7n # a .  using the Hadamard factorization theorem (see 
e.g., [3, p. 154]), we can prove that the (48) has an infinite number 
of roots labeled by A, for 77 E Z,  which appear in conjugate pairs 
and (A,( goes to infinity as In( goes to infinity. All the eigenvalues 
A, have geometric multiplicity equal to one. 

Now we discuss different situations, including the case a = 1 and 
711 = (1. has to be studied separately. 

Notice that all the roots of (53) have order of multiplicity one, 
except when cosh A, + cy sinh A, = 0. Then A, is a zero of order 
of two of (53), the other zeros being again of order one. This case 
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I )  Case o = ( n / / a ) .  n # 1. cosh A, + a sinh X, # 0: It is easy 
to show that the equation ( X I  - A)G = F. with (A. F )  = ( A n ,  F,) 
or (A,. F, ) has no solution. This means that all the eigenvalues of 
.-I have algebraic multiplicity one. 

n sinhX, # 0. Then 

and M is a constant depending only on n ,  0. On the other 
hand, we set N = -2 \i(GzGz + X,Gil) ds .  so that for any 
U > 0, we have 

Theorem 3: 

i) the system {F*,  F,,, n E Z j  is a Riesz basis of H .  

Assume that n = ( n i / n ) .  a # 1 and coshA, + IYJ 5 1(JG,/2 +Xf)G)2)d.r. (65) 

Using (64) into (65), we get 

(66) 
ii) the uniform decay (24) is valid with the decay rate h given by 

(60) Injecting (66) into (63), we deduce that 5 = mi.{ t. -qln/-l} 1 1 - a  
I S 0  ‘ 

Proof: 1 1 = 1 1 2  5 (1+o)ll(:)l!2 c X L 2  + (*If+ U 2ni 
i) Let 2 = ( U  7’ 0 )  E H .  We set 

c+ = n(coshA, + I I  as inhX,) ’  (61) 
IlzI12 2 (1 - r ) l i ( : )  11’ + (A! - - J!! + - ) T I ’ .  1 (68) 

U 2rn 1 X L 2  
Then 

Next we choose o > 0 so that 

1 + 27n A! 
2771 

2 = (I:) +c,F, < o < l  

which implies that where 
sinh A, s M 1 

1 - U > 0. M - - + - > 0. 
U 2171 < = U +  0. (cosh A, + a sinh X, ) 

sinh A, .r 

cosh A, + n sinh X, = 1 ’ +  A*11. 

From [ 11, Theorem 2.3.11, it follows that 

p,, = ( j s i n h X , . r )  
sinhA,s n t Z  

Since c* is proportional to q by (61), combining (67), (68), 
with (62), we deduce that there exist constants CI > 0. C2 > 0 
such that 

in a Riesz basis of 1- x L’(0. 1). Thus we can write 
which implies that the system { F,. F,. n E Z j  is a Riesz 
basis in H .  

ii) This is an immediate and standard consequence of the fact that 
the system { F,, F,, n E Z} is a Riesz basis in H .  Moreover 
we have 

(:) = c c n F ,  
n E Z  

where cn E 12(Z) .  and there exist positive constants CI.  CZ 
such that 

6 = -max{Re(X,,), Re(A,), n E Z )  

where we set n 

Now we define 

G(s )  = sinhA*s 
cosh A, + a sinh A, ‘. 

Then we have 

U 

2) Case a = ( m / n ) ,  a # 1. cosh A, + a sinh A, = 0: It is easy 
to show that if cosh A, + o sinh A, = 0. then a > 1. Using the 
same argument in the beginning of the Case l), one can prove that 
all the eigenvalues, except A, = Ao. have algebraic multiplicity one. 
Whereas the eigenspace relative to A, has dimension one, however, 
the algebraic multiplicity of A, is exactly two, which is also the order 
of A, as a zero of (53). Thus the operator A has a “Jordan form.” Now 

1 n - 1  
+ n T i / .  n E z. 1 

A, = A0 = --. A - -1n- 
a l L - 2  n + 1  0 

llzll; = / ‘ ( G :  + 6’ - 2G,C, - 2A,G6 + G: + A:GZ) dlr 

1 

+L$ = 1 1  ( E )  11’ 2 m  \ XL2 2111 

+ -71’ + M q 2  + N (63) sinh A, s x, sinh A,, .r 
F, = FO = ( sinh:*s ), F, = ( :inh:,L.t ) .  n E Z.  

Clearly, we do not have a basis in H .  According to the previous 
remark, we have to add one “generalized eigenvector” of .-I. Recall 

where 

Mv2 = l l ( G Z  + ArG2)d . r  (64) 
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that if B = .-I - A*I.  then see the equation at the bottom of the 
previous page and 

( U ,  21, v )  E W B 2 ) .  
U,, - 2A,t' + A Z U  

B 2 ( i )  = ( l ',z - 2A*u,, + A l l 1  

0 

Thus the equation 

B $ )  = o ,  (s) E D ( B 2 )  

reduces to 

o,, - 2A*$ + AZO = 0, 

$,, - 2A*o,, + A l p  = 0, 

q = a0,(1) + mp(1). 

An elementary, but lengthy, computation shows that all the solu- 
tions o are given by 

o ( x )  = c1 sinhA,x + czzcoshA*x 

where c1, cz are arbitrary constants. Therefore, the kemel of B2 is 
of dimension 2, with generators 

1 .r cosh A, x 

F,, = KsinhA,x + xcoshA,x . 

We observe that the last component of F,, is strictly positive, since 
a > 1. 

Theorem4: Assume that a = ( m / a ) .  a # 1, coshA, + 
a sinh A, = 0. Then: 

i) the system {I?,,, F n ,  n E Z} is a Riesz basis of H ,  
ii) the uniform decay (24) is valid with any 

i1 a(  sinh A, + a cosh A,) 

1 a - 1  
a N + 1  

6 < - = -In-. 

Pro08 
1) Let = ( U  21 q )  E H .  We set 

II 
a(sinh A, + 0 cosh A * ) .  

C** = 

Then we have 

where 
x cosh X,x 

sinh A, + N cosh X, 
i i = u + ,  q = u + G i  

sinhA*x + A,xcoshA,x 
sinh A, + cy cosh A, 

i . = 2 ' +  I) = U +  H I .  

Then essentially the same proof as for part i) of Theorem 3 

ii) A straightforward computation shows that the solution of (14) 
with initial condition F,, is 

T(t)F,, = eA*'(F,, + tFo) .  

Due to the presence of the term t eA*tFo,  this proves that 
estimate (24) does not hold for 6 2 ( l /a) .  

Now let z E H be an initial condition. Then 

z = C c n F , ,  + c,,F** 
n € Z  

so that 

2 ( t ) = ~ ( t  z = c, e A n F, + C* * * ( F, * + t F~ ) 
nEZ 

= e,  e'"' F, + (CO + c** t ) e  A * FO + c** ex  * F, * . (70) 
n E Z  

For any 5 < ( l / a )  = Re(A,), one has 

p d  = e-( t /a)  5 ? - - 6 t ,  (71) 

Injecting (71) and (72), into (70) and using the property of 
Riesz basis, we get 

which yields the desired result. U 

C. Case N = ( m / a )  = 1 

In that case, A, = -( l /a)  is the only eigenvalue of the operator 
A and the Riesz basis disappears. We expect that the decay rate is 
exactly ( l / u ) .  More specifically, we have the following result. 

Theorem 5: Assume that N = ( m / a )  = 1. Then for all yo E H ,  
we have 

T ( t ) y o  = T(2)yoe-(1/")('-2). Vt 2 2. (73) 

ProoJ? We start with yo E D ( A 3 ) .  In that case, we know that 
y ( t )  = T ( t ) y o  = ( u ( f ) ,  ~ ( t ) ,  q ( t ) )  is a smooth solution of the 
system (l) ,  (2), and (6). In particular, we have 

u ( t )  E C4-'(R+; H'(0 ,  l)), 0 5 j 5 4. (74) 

Let U J ( T ,  t )  = U(I, t )  + au'(z .  t ) .  Then by means of the 
smoothness property (74), we see that w is a smooth solution of 
the wave equation 

W ' t t  - W Z T  = 0, 0 < I < 1, 

w ( 0 ,  t )  = 0, w z ( l ,  f )  + w(1, t )  = 0. 

We deduce from [ l l ,  Theorem 2.3.4.11 that 

W ( T ,  t )  = U ( T ,  t )  + a u t ( x ,  t )  0, Vt 2 2. 

It follows that 

works, just replacing G by GI and A,G by H I .  u ( z .  t )  = u(x ,  ~t 2 2. 
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Consequently, we find that 

We have proved Theorem 5 for all smooth initial condition yo E 
0 ( A 3 ) .  Now let Y O  E H .  Then by the denseness of D ( A 3 )  in H .  
we can find a sequence yo” E D ( A 3 )  such that yo” -+ yo in H .  We 
have thus 

Passing to the limit in (76), we establish (73) for all initial condition 

Finally, if the initial condition yo is taken as an eigenvector 
YO E H .  

corresponding to the only eigenvalue A, = - ( l / a ) ,  we obtain 

This means that in (24) the rate 6 = ( l / n )  is indeed the decay rate. 
Moreover we have M = 1, because of the contraction property of 
the semigroup T ( t ) .  The proof is now complete. 

IV. CONCLUSION 
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A Remark on Chaotic Behavior 
in Adaptive Control Systems 

boundary control force is applied at the free end. It is well known that 
standard velocity feedback for the control force [see (4)], which is 
widely used in boundary control systems, yields only strong, but not 
exponential stability (see e.g., [ 5 ] ) .  In this paper we proposed a new 
control law [see (5 ) ]  which contains stronger feedback terms other 
than the standard velocity feedback term. Such terms are necessary to 
obtain exponential stability in the closed-loop system, for otherwise 
the feedback terms may be considered as a compact perturbation of 
the uncontrolled system which is known to yield only strong, but 
not exponential stability (see e.g. [ l ] ,  [2]). We then proved that the 
system is well posed (Theorem 1) and that the energy associated with 
the system decays exponentially (Theorem 2). It then follows that if 
the initial data are sufficiently smooth, then both cable deflections and 
the velocity of the tip mass decay exponentially to zero (Remark 2). 
We then studied the spectrum of the system for various values of the 
control parameters and proved that in certain cases the decay rate is 
related to the spectrum and is determined by the control parameters 
(Theorems 3, 4, 5 ) .  

Part of the results presented in this paper may be extended to the 
SCOLE system, which consists of a flexible beam with a tip mass 
(see [6]). This will be the subject of a forthcoming paper. 
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Abstract-This note deals with the control of a linear discrete-time 
system designed on the assumptions that we do not have explicit knowl- 
edge of the order of the plant. The objective is to cause the output to 
track a given constant reference y* , when the initial conditions are in a 
neighborhood of y*.  

In previous papers the presence of chaos was conjectured for an 
adaptive scheme where the plant to be controlled was a second-order one 
undermodeled by a first-order one. 

We show that with an adequate choice of the parameter estimator 
local regulation with exponential convergence of both the output and 
the parameter is obtained. 

I. INTRODUCTION 

Processes controlled by self-adapting schemes are known to display 
a rich variety of dynamical features, from global asymptotic stability 
to chaotic behavior, as reported by Rubio et al. [ 1 I]  and Salam and 
Bai [12]. 

While global convergence of some classes of model reference 
adaptive control has been established [5] this condition hinges on the 
knowledge of the order of the system to be controlled. Recently there 
has been a considerable effort devoted to the analysis of cases where 
there is a mismatch between the model and the plant, for example 
unmeasured disturbances as in [2], underestimate of the plant order, 
or unmodeled nonlinear components as in [17], or poor estimates 
of the parameters values in the model. Under some circumstances 
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