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Author's Reply by Man Zhihong its vertex matrices. It is easy to show that every n x n interval matrix 
can be expressed as a polytope (with at most 2n2 vertices), so that 
theoretically, the stability of an interval matrix is equivalent to the 
stability of a rank-one matrix polytope, using the termmology of [l]. 

A class of linear time-varying systems usually referred to as an 
interval system (or difference inclusion, in the Russian literature) 
can be associated to an interval matrix as follows: x(k + 1) = 
A ( k ) x ( k ) .  -4(k) E A, V k .  

A class of Lyapunov functions frequently used in this context 
is the class of weighted vector norms: given positive diagonal 
weighting matrices D and P,  D = diag(dl, . . '  , d n ) ,  d ,  > 
0,  V i ,  P = diag(p1, . . .  , p r L ) ,  p ,  > 0, V i ,  we have 11x112 := 

and 11x11f := llP1/2z112 = d m  which induce the ma- 
trix norms IlAll~ = IID-'ADII,, IlAllP = IIDAD-'II1, and 
Iliillf = llP1/2AP-(1/2)112, where P1I2 = d a g  (6, . . . , 6) 
and P'/' = (P'/ ')- ' .  The functions ]lzllE, 11z1f and ( ~ ~ z ~ / ~ ) ~  = 
xTPx are also known as the diagonal-type weighted infinity-norm, 
one-norm Lyapunov functions, and diagonal quadratic Lyapunov 
functions, respectively. For brevity, they are also collectively referred 
to as diagonal-type Lyapunov functions. Note that the Lyapunov 
equation, 4 T P A  - P = -Q (with Q positive definite), admits a 
positive diagonal solution P if and only if I IAl I f  < 1,  and in this case 
matrix A is said to be diagonally stable and it will be convenient to 
denote this as -4 E D ( P ) .  Clearly, results stated in terms of diagonal- 
type Lyapunov functions discussed in this paragraph can be restated as 
results in terms of diagonally weighted infinity-, one- or two-norms. 

The concept of stability and asymptotic stability of a compact 
set of matrices was introduced in [2]-[4], and a particular case of 
t h s  concept was later studied in [5]. Following these references, 
we say that a set A = {A ' ,  ... , A,} of real n x n matrices is 
called simultaneously asymptotically stable if there exists a compact, 
balanced neighborhood U of the origin in IR" such that for some 
a > 1 and for all i ,  aA,U C U .  It is shown in [4] that this is 
equivalent to the existence of a single Lyapunov function V( . )  that 
establishes the asymptotic stability of the matrices A I ,  . . . , A, ; in 
this case V( . )  is called a simultaneous Lyapunov function (SLF). Note 
that in the definition in [5], an SLF was restricted to be a quadratic 
Lyapunov function; following [4] this is not required below, since a 
set of matrices A may be simultaneously asymptotically stable and 
yet not admit a quadratic SLF. Also, in [3], an SLF was referred to 
as a common Lyapunov function-in this note we are merely using 
current terminology. 

[ 

IID-lxI1, := lllasL {d; l lm, l } ,  IlzIIp := llUZlll := E, dz1x21, 

I. INTRODUCTION 
I thank Dr. Park and Dr. Lee for their valuable comments in on 

our paper.' Indeed, to guarantee that the output tracking error E~ 

converges to zero on the terminal sliding mode in a finite time for all 
bounded initial values, (2.1 1) in Remark 2.1' should be modified as 

In addition, as remarked above, the controller proposed in our paper' 
cannot generate a bounded control signal at the point E~ = 0 and 
t # 0 before the error dynamics reach the terminal sliding mode. 
To deal with this problem, the controller in (3.1)' can be modified 
as follows: 

It is easy to see that using the above modified control law to replace 
the law in (3.1),' the control signal is bounded in error space. 
Especially at the point E~ = 0 and E %  # 0, with llSll # 0, the 
control U = 0 can take the error E %  away from e,  = 0, and then 
another part of the variable structure control law will drive the sliding 
variable vector S to the terminal sliding mode S = 0. The desired 
error dynamics can then be obtained on the terminal sliding mode 
according to (2.17) in our paper.' 

Comments Regarding "On Stability of Interval Matrices"' 

Amit Bhaya and Eugenius Kaszkurewicz 

Abstract-We note that several of the results on Schur-stability of 
interval matrices' can be viewed as special cases of results obtained in a 
more general framework, and some of the latter were previously reported 
in the literature. 

I. PRELIMINARIES 

This section introduces some definitions that are not used in the 
above-mentioned paper' which we follow for notation. 

Given a set A of k real 7~ x n matrices {A;} f=, ,  their convex 
hull, P, is the set defined in the standard way as the set of all 
convex combinations of the matrices Ai. The set P, also denoted 
Conv (A), is called a matrix polytope, and the matrices A; are called 
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11. COMMENTS 

The comments below are organized by reference to the respective 
sections of the above-mentioned paper.' 

A. On Section III' 
Theorem 1' and Corollary 1.3' are generalized below and given 

a simple proof via a quadratic diagonal SLF. It is also pointed out 
that ii) iii) of Theorem 1' as well as its Corollaries l.ll and 1.2,' 
were published earlier in the literature in a more general form. 

We first restate Theorem 1 of Section 111' below. 
Theorem 1: Let *V be a Morishima matrix defined below. Then 

the following are equivalent: 
i) V is Schur-stable. 
ii) /VI is Schur-stable. 
iii) A(-IVl, IVl) is Schur-stable. 
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The equivalence of ii) and iii) holds for any matrix V and not 
just for the class of Morishima matrices, and this result, as well as 
Corollaries 1.1' and 1.2,' were obtained earlier in [ l l ,  Theorem 1, 
Corollaries 1 and 21, where, in fact, both bounded-input bounded- 
output (BIBO) and asymptotic stability were proven for the linear 
time-varying case. Note that the proof of ii)' implies iii)' and relies 
on localization of eigenvalues using Gerschgorin's theorem so that it 
may appear it is only valid for the time-invariant case. Indeed, for the 
case of asymptotic stability, Corollary 1.2l had been obtained even 
earlier in [12, Theorem 31. 

Thus the new result in Section 111' is Corollary 1.3l which uses 
the fact that a Morishima matrix A is similar to the matrix J A J ;  so 
A is stable if and only if I - (A( is an M-matrix. Therefore, this 
corollary gives a previously unknown result, vi+-vis the results in 
[11] and [12], in the case when the test matrix A is unstable. In this 
case, once the Morishima sign pattern of the interval matrix being 
checked is identified, instability can be ensured, and this is explained 
by Lemma 2.3 below. Thus, if it is known that_the interval matrix 
to be tested is Morishima,then the test matrix A is the correct test 
matrix to use rather than A as shown by Lemma 2.3 below. 

In Section 111' the idea of choosing the nominal matrix at the center 
of the uncertainty hyperrectangle is used to reduce conservatism of the 
results presented. In fact, this idea was used earlier in [12, Theorem 
1, Corollaries 1-31; in particular, [12, Corollary 2 of Theorem 11 can 
be used to prove the stability of the interval matrix given at the end of 
Section 1II.l Finally, it should be pointed out that a survey of many 
of these ideas can be found in [13]. 

To generalize Corollary 1.3' and Theorem 1,' we first make some 
preliminary observations. 

The class of Morishima matrices is a subclass of the class of 
checkerboard matrices, introduced in [6], and the latter class is defined 
as follows: given a real matrix A, if there exist two diagonal matrices, 
IC1 and Iiz whose diagonal elements are all f l  (also called signature 
matrices) such that IClAICz = IAl, then A is said to be checkerboard 
(if IC1 = Jiz, A is called Morishima). A is said to be a stable 
checkerboard matrix if IAl is stable. It was shown in [7] (later 
published as [SI) that a stable checkerboard matrix admits a diagonal 
solution to its Lyapunov equation. Therefore we have the following 
facts. 

Fact 2.1: A Schur-stable Morishima matrix is diagonally stable.0 
Fact 2.2: The positive diagonal matrix P which is a solution for 

the Lyapunov equation for A (Morishima) is also a solution for 
this equation for IAJ, i.e., A Morishima and A E D ( P )  implies 

Proof: Since A is a Schur-stable Morishima matrix, there exists 
IAI E D ( P ) .  

P > 0, diagonal, such that 

/ 
A ~ P A  - P < o 

and consequently, for the nonsingular signature matrix S that trans- 
forms A to IAl, we have 

o > S - ~ A ~ S P S A S - ~  - s-~Ps-' 
= J A J ~ P J A I  - P. 

Considering the above, we can state the following generalization 
that includes Theorem 1' and Corollary 1.3l. 

Lemma 2.3: Assume that for all k ,  A ( k )  belongs to a class of 
Morishima matrices having the same sign pattern with S denoting 
the signature matrix that transforms any matrix B in this class to 
the nonnegative matrix IBI. Also asmme that A 5 A ( k )  5 x. The 
following matrices and classes of systems are then associated to the 

Morishima interval matrix, denoted A(A, A): 

The following statements are equivalent: 
a) Â  is Schur-stable. 
b) IAl is Schur-stable for all A,€ d(A, A). 
c )  Â  is diagonally stable, i.e., A E D ( P ) .  
d) The class of systems (1) possesses a globally exponentially 

stable zero solution, and V(z)  = JzlTPJzJ is a quadratic 
diagonal SLF that establishes this fact. 

e) A is Schur-stable. 
f) A is Schur-stable for all A €-A@, x). 
g) 2 is diagonally stable, i.e., A E D ( P ) .  
h) The class of systems ( 2 )  possesses a globally exponentially 

stable zero solution, and V(z) = IzJTPIz1 is a quadratic 
diagonal SLF that establishes this fact. 

Proof: Consider the quadratic diagonal SLF V(z)  = lzlTPlzl 
for the interval system (2). Note the following equality: 

V(z) = IzlTP1zJ 

= IzlTSPS(zl 

Thus 

and since E D ( P ) ,  it follows that AV[z(k)] is negative definite. 
This proves g) + h) + f). The implication f) * e) is trivial. 
The implication e) + g) follows from Fact 2.1. 

A similar development is used to show c) + d) + b) + 
a) + c) (see [lo]). The equivalence g) U c) is consequence of 

Fact 2.2. 
From the above lemma, we see that whenever A ( k )  is a Morishima 

matrix belonging to an interval of Morishima matrices A(A, Z), for 
all k ,  then IA(k)I = SA(k)S-l is the corresponding nonnegative 
matrix (S being the associated diagonal signature similaritr transfor- 
mation). Notice that for the nonnegative matrii IA(k)I, A is a test 
matrix. Correspondingly, the matrix A = S-'AS is a test matrix for 
the Morishima sign-pattern interval matrix A(A, A). 

Remark: One of the reviewers called our attention to a connective 
stability result [9, Theorem 21. The equivalence c) U h) of our 
Lemma 2.3 corresponds to a discrete-time version of [9, Theorem 
21 which, however, was not stated in the context of interval systems 
or SLF's. In view of our results above, it may be said that the 
connective stability of a system with scalar subsystems is equivalent 
to the stability of a special interval system that is constructed from 
the nominal matrix. 
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B. On Section V1 
This subsection has the following objectives: i) to put the results 

of Section V1 on Schur stability of convex combinations of matrices 
in the more general context of simultaneous stability of polytopes of 
matrices; ii) to show that the concepts of proportional dominance, 
positive quasidiagonal dominance (PQDD), and connective stability’ 
are all subsumed by the concepts of SLF’s and simultaneous stability; 
and iii) to give a new result on the relationship between the existence 
of different types of SLF’s for polytopes of nonnegative matrices that 
clarifies several points about the examples in the above-mentioned 
paper.’ 

The Brayton and Tong result 141 (see also [14] and the special cases 
in (1 51 and [16]) can be stated in the present context as follows: given 
a polytope of matrices A, the class ‘of time-varying interval systems 
z ( k  + 1) = A(k ) z (k ) ,  A (k )  E A, V k is asymptotically stable iff 
there exists a single norm in which all vertex matrices have norm 
strictly bounded below unity. This norm is an SLF for all matrices in 
A. Note that in this case, clearly every matrix in the convex hull of 
the vertex matrices is asymptotically stable. In fact, it can be shown 
that all finite products (of a certain length or greater) of matrices 
in the convex hull have norm less than unity in any induced matrix 
norm [ 171, [ 181. This result and applications to nonlinear time-varying 
systems were discussed in [7] and [18]. 

From the point of view of this result, the concept of row (re- 
spectively, column) proportional dominance’ can be interpreted as 
a sufficient condition for the existence of a diagonal type weighted 
infinity-norm (respectively, one-norm) SLF for polytopes of nonneg- 
ative matrices. Indeed, from this perspective, Theorem 3’ is a direct 
consequence of convexity as follows: 

b) There exists a positive diagonal matrix P such that 

D llAZlloo < 1, for all i = 0, 1, .. . , N 
implies that 

N 

< a, = 1. 
z 

In this context, consider the following example. 
Example 2.4: 

0.1 0.6 
A. = [OJ 0.91 

0.2 0.1 
A1 = [0.3 0.31 

is a pair of matrices such that consideridg the matrices I - A0 and 
I -  AI ,  neither one proportionally dominates the other, either rowwise 
or columnwise. However, V ( z )  = max(1.421, 2 2 )  is a diagonal- 
type weighted infinity-norm SLF for the pair that establishes the 
(simultaneous) asymptotic stability of convex combinations of A0 
and A‘. This example thus shows that proportional dominance is 
only a sufficient and not a necessary condition for the existence of a 
diagonal type infinity- or one-norm SLF. 

The result below establishes the relationship between the existence 
of one-, two-, and co-norm SLF’s for a polytope of nonnegative 
matrices using a result of Araki [23, Theorem 21 on M-matrices. 

Proposition 2.5: Given a polytope of nonnegative matrices, A = 
Conv {A, ,  . . . , A n } ,  a) implies b), where statements a) and b) are 
as follows: 

a) There exist positive diagonal matrices D,  and D ,  such that 

l/DF’AzDr/loo < I, 
I I D ; ’ A Z ~ D , I I ,  = l p c ~ t ~ ; l l l l  < 1, i = 1 > . . . 3 n. (4) 

i = 1 , . . . , n  (3)  

Furthermore, P = D,D;’. 
Remark: It will be shown by example 2.7 below that statement b) 

does not imply statement a). 
Proofi Note that if (3) and (4) hold, this is equivalent to 

asserting that the vectors d, and d,, which are the diagonals of the 
matrices D,  and D,, respectively, are such that 

uZ = ( I  - A,)&- > 0,  

v, = ( I  - 

i = 1, . . . , n  
> 0, i = 1, . . . > n. 

Let P = D,D;’ as claimed. Then 

( P  - ATPA,)d, = Pd, - ATPA,d, 

= d ,  - ATP(& - u t )  

= (d, - AT&) + ATPu, 
T = v 2 + A ,  Pu,, i =  1 , ... > 12. 

But U ,  > 0, and since AT 2 0, P > 0 ,  ATPu, 2. 0. Thus 
( P  - ATP4,)d, > 0, i.e., P - ATPA, is an M-matrix for all i .  
Since it is symmetric, it must be positive definite for all i .  

In words, this proposition says that for polytopes of nonnegative 
matrices, the existence of both weighted infinity- and one-norm 
diagonal type SLF’s implies the existence of a quadratic diagonal 
SLF. 

Proposition 2.5 assures us that the only possibility that is ruled out 
is the existence of scalings D ,  and D ,  together with the inexistence 
of a scaling P. Alternatively, if P satisfying (5)  does not exist, we 
may affirm that at most one of D ,  and D ,  exists. 

In view of this proposition, we now examine two examples. 
Exumple 2.6: Consider the following positive matrices’ : 

0.4 0.4 
-*O = [ l . O  0.21 

0.4 0.4 
= [o.l 0.91 

used to illustrate that 

“although I - -40 and I - A1 are simultaneously PQDD there 
exist no diagonal-type Lyapunov function that would prove 
simultaneous stability of A0 and Al.”’ The authors go on to 
say that “this fact points out the significance of connective 
stability which is diagonal-type simultaneous stability that can 
be established via simultaneous PQDD conditions.”’ 

As noted above, the simultaneous PQDD condition (=I - A1 
proportionally dominating I - Ao) implies that there exists a positive 
diagonal weighting matrix D ,  that defines a weighted infinity-norm 
SLF such that ~ ~ D ~ i A ~ D ~ ] ~ ~  < 1, i = 0, 1. It is easy to show that 
there does not exist a positive diagonal matrix D ,  satisfying (4), and 
that there also does not exist a positive diagonal P satisfying (5). It 
is therefore correct to say that there exists no quadratic diagonal SLF 
for AO and AI,  although there does exist a infinity-norm diagonal- 
type SLF for this pair. Reemphasizing what was said earlier in [7] 
and 1191, both weighted two-norms and weighted infinity-norms are 
diagonal-type SLF‘s, and this is intimately related to many pleasant 
features enjoyed by these functions in the context of robust stability. 

On the other hand, now we consider the following example. 
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Example 2.7: 

0.6 0.1 
Ao = [0.7 0.51 

0.6 0.4 
= [0.4 0.31 

is a pair of matrices such that, considering I - A0 and I - AI,  neither 
one proportionally dominates the other, either rowwise or column- 
wise. In fact, there do not exist diagonal Falings satisfying either (3) 
or (4). Note also that the majorant matrix A is unstable so that proving 
stability of the convex combination by “embedding” in (overbounding 
by) an interval matrix also does not work for this example. However, 
P = diag (0.9, 0.7) satisfies (5), so there exists a diagonal quadratic 
SLF that proves stability of convex combinations of A0 and AI ,  i.e., 
the global exponential stability of the zero solution of the difference 
inclusion z ( k  + 1) = A(k)x(k), A(k) E Conv{Ao, AI}, V k .  In 
other words, for this example of a robust stability problem, the general 
concept of simultaneous stability holds, even though connective 
stability cannot be established via simultaneous PQDD conditions. 

Finally, note that stability of polytopes of matrices can be tested 
by checking that in any fixed matrix norm, all finite products of 
vertex matrices of a fixed length have norm strictly less than one 
(for a precise statement, see [18]). If this result is applied to the 
above example and the infinity norm is used, it turns out that all 
eight products of length three of the vertex matrices have infinity 
norm less than unity, proving stability of the difference inclusion 
z ( k  + 1) = A(L)z(k), A(k) E Conv {Ao, AI}, V k .  

In the context of time-varying uncertainties in hyperrectangles, it 
has been noted in [20, p. 6801 that connective stability is a type 
of simultaneous stability in which stability of a single member of a 
class implies the stability of the whole class. Thus one may regard 
results on simultaneous stability of general matrix polytopes (see, for 
example, [4], [5], and [18], etc.) as generalizations of the concept of 
connective stability to polytopes. In the general case, however, it is 
no longer enough to check stability of one vertex and simultaneous 
stability of all vertices is required to ensure asymptotic stability (in 
the time-varying case). In conclusion, it may be said that the concept 
of simultaneous stability contains that of connective stability in the 
context of interval matrices. 

For further discussion on the unifying role of simultaneous and 
diagonal stability in large scale system analysis and the relations 
between connective stability and diagonal stability, the reader is 
referred to [7] ,  [21], and [22]. 

As a final comment, note that the computation of the infinity- 
norm SLF’s in Proposition 2.5 is equivalent to finding a feasible 
point for each of two systems of linear inequalities derived from the 
rows and columns of the vertex matrices. This is interesting since 
the excellent monograph of Boyd and coworkers [24] shows that 
the problem of finding a quadratic SLF for a general polytope of 
matrices is a linear matrix inequality (LMI) problem that: a) does 
not, in general, admit an analytic solution; b) may, however, be 
seen to be a convex program and hence efficiently solvable. For the 
special case of nonnegative matrices, Proposition 2.5 shows that a 
simplification to the search for a feasible solution to a linear program 
may be possible. It should also be noted that several results have 
been obtained recently on the computational complexity of interval 
matrix stability and nonsingularity problems [l], [18], and [25], and, 
roughly speaking, it may be asserted that in general these problems 
are all hard in a technical sense. 

111. CONCLUDING REMARKS 
In the interim between the submission of the above-mentioned 

paper’ and its publication, some closely related results have appeared 

which we take the opportunity to mention. In [lo], there is a deriva- 
tion of Corollary 1.2l using a diagonal quadratic SLF, a discussion 
of application to the case of nonlinear time-varying systems (this is 
mentioned as a topic of future research in the conclusions’) as well 
as an identification of other classes (not mentioned in the paper’) 
for which necessary and sufficient conditions for interval matrix 
stability are obtained. Finally, [ 181 contains additional material on 
simultaneous stability of polytopes of matrices and related concepts. 

Authors’ Reply by M. E. Sezer and D. D. Siljak 

We are grateful to the authors of the Comments for pointing out the 
fact that two of our corollaries were published in a conference paper 
that we did not acknowledge due to our oversight. Our response to 
other issues of the comments is as follows: 

I)  It is true that equivalence of ( i i )  and ( i i i )  of our Theorem 1 
holds for any matrix and not just for the class of Morishima 
matrices. Indeed, V being a Morishima matrix, is needed only 
in the proof of ( i )  + ( i i ) .  We preferred to state in the same 
theorem ( i i )  U (iii) for general V, and ( i )  U (zi) for V 
Morishima, as our main purpose was to prove ( i )  U (iii). 

2) It is also true that Corollaries 1.1 and 1.2 of our paper were 
obtained earlier. We have no claim that these results are new; 
in fact, we acknowledge that Corollary 1.1 is the main result of 
[9] of our paper. Corollary 1.2, on the other hand, was stated 
only to pave the way to Corollary 1.3 which can be regarded 
as the main result of our paper. 

3) The idea of choosing the nominal matrix at the center of the 
uncertainty hyperrectangle is nothing but a form of connective 
stability. Then, first, it is not fair to say that this idea was 
used previously by someone else. Second, any method based 
on connective stability can be used to prove stability of the 
interval matrix given at the end of Section I11 of our paper,’ [12, 
Corollary 21 being one such method. However, more important 
than these facts is to realize that the problem considered in our 
paper is not just to find necessary and/or sufficient conditions 
for interval stability, but to do this in the spirit of connective 
stability by testing only one matrix (an extreme vertex) if 
possible. If such a test matrix is not available, then one can 
always try other ways to prove or disprove interval stability. 
Clearly, unavailability of such a convenience does not mean 
conservatism. 

4) We disagree with the authors on their Lemma 2.3 being a 
generalization of our Theorem 1. Assuming that A(k) belongs 
to a class of Morishima matrices, having the same sign pattern 
is the same thing as assuming A and A are Morishima matrices 
having the same sign pattern. This assumption makes the 
insertion of time in our result just as trivial as it would be 
in the case A > 0 or < 0. It is then no surprise that one 
can find a quadratic SLF. 

5) The authors of the comments criticize our discussion of simul- 
taneous stability for being restricted to quadratic diagonal type 
and then state Proposition 2.5 to provide sufficient conditions 
for existence of a quadratic diagonal Lyapunov function. Now, 
if we are to remain within the framework of quadratic diagonal 
simultaneous stability, one can argue that their Proposition 
2.5 does not solve the simultaneous stability problem but 
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transforms it to another problem of finding suitable D ,  and 
De which is no easier than the original problem itself. On the 
other hand, proportional dominance, which they criticize for 
being a special case, i s  a direct test. By including our Example 
2.6 in their comments, they strengthen our point! Furthermore, 
if we are to allow other types of diagonal Lyapunov functions 
as in their Example 2.7, then we can as well be more general 
and treat the problem in the context of connective stability. The 
reader and the authors of the Comments can easily verify that 
P in authors’ Example 2.7 guarantees connective stability of 
AN & eA,, where AN = (1/2)(Ao +Ai) ,  A, = (1/2)(Ao - 
AI) and e E [0, 11. 

6) For the record, the connective stability was introduced at the 
Ninth Allerton Conference on Circuit and System Theory in 
1971 with the following properties: i) It is interval stabil- 
ity because the coefficients of system matrix are allowed to 
vary independently within the hyperrectangle in the coefficient 
space; ii) It is simultaneous stability, because a single Lyapunov 
function (not necessarily quadratic), which is constructed for 
a system at an extreme vertex of the rectangle, establishes 
stability for the family of systems defined by the rectangle, and 
iii) It applies to nonlinear time-varying systems with stochastic, 
time delay, and singular perturbations. 
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Comments on “Perturbation Bounds for Root-Clustering 
of Linear Systems in a Specified Second Order Subregion”’ 

Sheng-Guo Wang 

Abstract-This paper comments on the results of a recent paper.’ We 
note that Theorems 3.1 and 4.1 are incorrectly stated, Le., they are not 
valid for the non-%transformable regions. The results’ cannot cover the 
ride quality region listed in Table l1 since it is a non-R-transformable 
region. 

I. INTRODUCTION 
In a recent paper,’ the authors provide sufficient bounds for root- 

clustering in a specified second-order subregion of the complex plane 
for uncertain matrices with structured or unstructured uncertainties. 
Their results are less conservative for an R-transformable region’. 

In this paper, we note that there are some minor erroneous 
statements in the paper’ and these are as follows. In Theorems 3.1 and 
4.1 the authors claim that the perturbed system matrix A + E has all 
the eigenvalues located in the subregion Rz described by (2.3),’ i.e., 

where T ~ ,  is a real coefficient However, there is one restriction on 
these main results of the paper’ since the subregion 0 2  described by 
(2.3)’, i.e., (l), includes 0-transformable and non-0-transformable 
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