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Thus, we conclude that the optimization problem is equivalent to

min
�2R

�

such that

hX � Y; Zri = hT11; Zri; 8r = 1; 2; � � � ; N
n

j=1

T

k=0

jF�(ii)j(xij(k) + yij(k))jV�(jj)j � � 8�;

8i = 1; 2; � � � ;m; and someT

xij � 0; yij � 0; � � 0 8i; j; k:

It is clear that the infimum values at each consecutive application
of Steps 2) and 3) will be monotonically nonincreasing and bounded
below by zero. Thus the iteration converges. Whenever a desirable
robustness level is achieved (as indicated by the value of the infimum
at that step), the iteration procedure can be terminated at Step 3).

Note that the above optimization problem is nonconvex. Thus there
is no guarantee that the iteration converges to the global minimum
or even to a local minimum as it may get stuck at a saddle point.

V. CONCLUSION

We have applied the Hadamard-weighting approach in [9] to
the `1-optimization case. The results developed in this paper allow
one to design compensators which satisfy closed-loop decoupling
specifications. Compensators which robustly decouple the system
could also be designed using the procedure developed in this paper.
These results provide new tools for control system designers to meet
decoupling requirements in the presence of uncertainties.
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Robust Adaptive Sampled-Data Control of a Class of
Systems Under Structured Nonlinear Perturbations

Ogan Ocah and M. Erol Sezer

Abstract— A robust adaptive sampled-data feedback stabilization
scheme is presented for a class of systems with nonlinear additive
perturbations. The proposed controller generates a control input by
using high-gain static or dynamic feedback from nonuniform sampled
values of the output. A simple adaptation rule adjusts the gain and the
sampling period of the controller.

Index Terms— Adaptive control, output feedback, robust control,
sampled-data system.

I. INTRODUCTION

High-gain feedback is a standard control technique for robust
stabilization of systems in the presence of modeling uncertainties
(see, for example, [1]–[7], in some of which the problem is con-
sidered in the framework of decentralized control). In the case of a
single-input/single-output (SISO) system, design of such a controller
requires that the system have stable zeros and its relative degree,
the sign of its high-frequency gain, and the bounds of the system
parameters or perturbations be known. Similar information is needed
for multi-input/multi-output (MIMO) systems. It has been shown in
[8] that for systems with relative degree one, robust stability can be
achieved without the need to know the bounds of the perturbations by
tuning the gain parameter adaptively. In [9], a similar result has been
obtained for systems with higher relative degree, where an adaptation
mechanism is employed to increment the gain parameter stepwise at
discrete instants.

In this paper we focus on the same problem for the case where
the controllers are allowed to operate on sampled values of the
output only, rather than continuous-time measurements. The main
difficulty arises from the fact that the sampling process changes the
structure of the uncertainty, that is, any uncertainty in the continuous-
time system is exponentiated in its discrete model after sampling.
This makes a simple and useful characterization of permissible
uncertainty structures very difficult. In [10], a sampled-data state-
feedback controller was proposed for robust stabilization of systems
under time-varying additive perturbations of a certain class. The
controller, which simulates high-gain continuous-time feedback in the
absence of perturbations, guarantees stability for a sufficiently small
sampling period which depends on the bounds of perturbations. In
[11], a simpler controller was proposed, together with an adaptation
rule for the sampling period, which eliminates the need fora priori
knowledge of the perturbation bounds. In this paper we extend the
result of [10] and [11] to the case where perturbations are nonlinear
and time-varying, and sampled measurements of the output rather
than state are available for feedback. The controller we propose
consists of a high-gain static or discrete dynamic feedback followed
by an arbitrary generalized hold function. We first show that the
proposed controller achieves robust stability for sufficiently small
sampling periods and then present a simple adaptation mechanism
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which decreases the sampling period slowly until it is small enough.
In this scheme, the sampling period has a double role: it also
determines the controller gain.

II. SYSTEM AND CONTROLLER STRUCTURE

We consider a SISO systemS described as

S: _xp(t) =Apxp(t) + bpu(t) + ep[t; xp(t)]

y(t) = c
T

p xp(t) (1)

wherexp(t) 2 R
n is the state,u(t); y(t) 2 R are the input and

output ofS, respectively, andAp, bp, andcp are constant matrices
of appropriate dimensions.ep[t; xp(t)] in (1) stands for additive
nonlinear perturbations to a linear, nominal system represented by
the triple (Ap; bp; c

T

p ).
We would like to stabilizeS using a discrete-time feedback

controller operating on the sampled output valuesfy(tk)g, wheretk
are the sampling instants. For this we make the following assumptions
concerning the nominal system and the perturbations.

1) (Ap; bp; c
T

p ) is controllable and observable.
2) (Ap; bp; c

T

p ) has stable zeros, that is, withh(s) = cTp (sI �

Ap)
�1bp = p0p(s)=q(s), the set of zeros of the numerator

polynomialp(s) = sn + p1s
n �1 + � � �+ pn is included in

the open left-half complex plane.
3) The high-frequency gainp0 and the relative degreen1 = n�n0

of h(s) above are known.
4) The perturbations are of the form

ep(t; x) = bpg(t; x) + h(t; y)

whereg andh satisfy for all t; y 2 R; x 2 R
n

kg(t; x)k ��gkxk

kh(t; y)k ��hjyj (2)

for some (unknown) constants�g; �h > 0.

Our choice of a stabilizing sampled-data controller is based on a
special internal structure of the systemS described by the following
result of [12].

Lemma 1: Under Assumptions 1)–3), there exists a nonsingular
matrix M such that

M
�1
ApM =

A0 d01c
T

1

b1d
T

10 A1 + b1d
T

11

M
�1
bp = p0

0

b1

c
T

pM = [0 cT1 ] (3)

whereA0 2 R
n �n is a stable matrix whose eigenvalues are the

zeros of p(s) defined in Assumption 2) above;A1 2 R
n �n ,

b1 2 R
n ; and c1 2 R

n have the structures

A1 =

0 1 � � � 0
...

...
.. .

...
0 0 � � � 1

0 0 � � � 0

b1 =

0
...
0

1

c
T

1 = [1 0 � � � 0 ] (4)

andd01, d10, andd11 are constant vectors of appropriate dimensions.
We note that without any restrictions on�g and �h in (2),

Assumption 2) is necessary in order to guarantee stabilizability of

S. This follows from the fact that a choice of the perturbations as
g(t; x) = 0; h(t; y) = �p�10 Amp bpy results in a system having
uncontrollable modes at the zeros ofp(s) as can easily be shown by
using Lemma 1.

We now let

x(t) =M
�1
xp(t)

= [x
T

0 (t) x
T

1 (t)]
T

whereM is as in Lemma 1, andx0 2 R
n andx1 2 R

n correspond
to A0 andA1 in (3). Define the sampling periods asTk = tk+1� tk,
and consider a further transformation of the state as

xk(s) =D
�1

k
x(tk + sTk)

=
x0k(s)

x1k(s)

=
x0(tk + sTk)

D�1
1k
x1(tk + sTk)

(5)

for 0 � s < 1, where

Dk = diagfIn ; D1kg;

D1k = diagfTn �1

k
; � � � ; Tk; 1g:

On noting from (4) that

D
�1

1k A1D1k =T
�1

k
A1

c
T

1D1k =T
n �1

k
c
T

1

D
�1

1k b1 = b1

the dynamic behavior ofS over thekth sampling period[tk; tk+1)
can be described by

S: _x0k(s) =TkA0x0k(s) + Tke0k[s; xk(s)]

_x1k(s) =A1x1k(s) + Tke1k[s; xk(s)] + p0Tkb1uk(s)

yk(s) =T
n �1

k
c
T

1 x1k(s) (6)

whereuk(s) = u(tk + sTk), yk(s) = y(tk + sTk), and

e0k(s; xk) =T
n �1

k
d01c

T

1 x1k

+ h0(tk + sTk; T
n �1

k
c
T

1 x1k)

e1k(s; xk) = p0b1[d
T

10x0k + d
T

11D1kx1k

+ g(t+ sTk; MDkxk)]

+D
�1

1k h1(tk + sTk; T
n �1

k
c
T

1 x1k) (7)

with M�1h(t; y) = [hT0 (t; y) hT1 (t; y)]
T . From (7) it follows that

for 0 < Tk � 1

ke0k(s; xk)k ��01kx1kk

ke1k(s; xk)k ��10kx0kk+ �11kx1kk (8)

for some constants�01; �10; �11 > 0, which depend on the system
parametersAp; bp; cp and the perturbation bounds�g; �h in (2).

Note that the transformation leading to (6) is the same as the lifting
operation considered in [13], except that nonuniform sampling is used
in (5).

We generate the control input toS by a discrete-time dynamic
feedback controller followed by a generalized hold function as

C: xc(tk+1) =Acxc(tk) + T
1�n

k
bcy(tk)

w(tk) = c
T

c xc(tk) + T
1�n

k
y(tk)

uk(s) = p
�1

0 T
�1

k
 (s)w(tk); 0 � s < 1 (9)

wherexc 2 R
n is the state andw 2 R is the output ofC, and

 : [0; 1) ! R is a bounded hold function. In the case of static
output feedback, the controller in (9) reduces to

uk(s) = p
�1

0 T
�n

k
 (s)y(tk); 0 � s < 1: (10)
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The systemS in (6) and the controllerC in (9) form a closed-loop
hybrid systemŜ = (S; C). The open-loop solutions of̂S are given
for 0 � s < 1 as

x0k(s) = e
T A s

x0k(0) + �0k[s; x0k(0); x1k(0); w(tk)]

x1k(s) = e
A s

x1k(0) + �1k[s; x0k(0); x1k(0); w(tk)]

+ �1( )w(tk) (11)

where

�0k[s; x0k(0); x1k(0); w(tk)]

= Tk

s

0

e
T A (s��)

e0k[�; x1k(�)] d�

�1k[s; x0k(0); x1k(0); w(tk)]

= Tk

s

0

e
A (s��)

e1k[�; x0k(�); x1k(�)] d� (12)

and

�1( ) =
1

0

e
A (1��)

b1 (�)d�: (13)

Defining the discrete-time signals

x̂0(k) =x0k(0)

x̂1(k) = [x
T

1k(0) x
T

c
(tk)]

T

and using (9) and (11), the dynamic behavior ofŜ at the sampling
instants is described by a discrete-time system

D: x̂0(k + 1) = �̂0(k)x̂0(k) + �̂0[k; x̂0(k); x̂1(k)]

x̂1(k + 1) = �̂1x̂1(k) + �̂1[k; x̂0(k); x̂1(k)] (14)

where

�̂0(k) = e
T A

�̂1 =
�1 + �1( )c

T

1 �1( )c
T

c

bcc
T

1 Ac

(15)

with �1 = eA . In the case of static output feedback as in (10),�̂1

in (15) reduces to

�̂1 = �1 + �1( )c
T

1 : (16)

The terms�̂ in (14) are due to the perturbations�0k and �1k in
(11). The following lemma gives bounds on̂�, which will be the key
to stabilization of the discrete modelD.

Lemma 2: Suppose that the sampling periods satisfy

Tk+1 �Tk � 1

Tk

Tk+1

n �1

� 1 + Tk: (17)

Then the perturbation termŝ� in (14) are bounded as

k�̂0(k; x̂0; x̂1)k �T
2
k
�̂00kx̂0k+ Tk�̂01kx̂1k

k�̂1(k; x̂0; x̂1)k �Tk�̂10kx̂0k+ Tk�̂11kx̂1k (18)

for some constantŝ�’s which depend on the nominal system param-
eters and the perturbation bounds.

Proof: See the Appendix.
In the next section, we investigate stabilizability ofD by a suitable

choice of the discrete controller parameters(Ac; bc; cc) and the
generalized hold function in (9) and the sampling periodsTk.

III. STABILIZATION OF THE DISCRETE MODEL

We first note that due to the special structures ofA1, b1, andc1,
the pair(�1; c

T

1 ) is observable, and the pairs(A1; b1) and(�1; �1)

are controllable, where�1 = �1(1).
First, consider the case where static output feedback is used so that

�̂1 is as given in (16). Observability of the pair(�1; c
T

1 ) implies that
there exists	1 2 R

m such that�1 +	1c
T

1 has a desired spectrum.
On the other hand, controllability of the pair(A1; b1) implies that
for any 	1,  (s) in (9) can be chosen to satisfy�1( ) = 	1.
As a result, (s) can be chosen to assign any stable spectrum to
�̂1 = �1 + �1( )c

T

1 = �1 +	1c
T

1 . Next, consider the case where
 (s) =  c (a constant, corresponding to a zero-order hold). Then
from (13) we have�1( ) = �1 c, and from (15)

�̂1 =
�1 + �1 cc

T

1 �1 cc
T

c

bcc
T

1 Ac

:

Note that �̂1 represents the system matrix of a hypothetical sys-
tem consisting of a discrete plant(�1; �1; c

T

1 ) and a discrete
dynamic output feedback compensator(Ac; bc;  cc

T

c
;  c). Since the

plant (�1; �1; c
T

1 ) is controllable and observable, the compensator
(Ac; bc;  cc

T

c
;  c) with nc � n1 � 1 can be chosen to result in

a �̂1 with a desired spectrum [14]. A wide choice of (s) and the
controller exists between the two extreme cases.

Suppose that the generalized hold function (s) and the discrete
feedback controllerC are designed to have a Schur-stable�̂1. Since
A0 is Hurwitz-stable by assumption, there exist positive definite
matricesP0 and P1 satisfying

A
T

0 P0 + P0A0 = � I

�̂
T

1 P1�̂1 � P1 = � I:

Let

v(x̂0; x̂1) = x̂
T

0 P0x̂0 + x̂
T

1 P1x̂1 (19)

be a candidate for a Lyapunov function for the systemD in (14).
Noting that

�̂
T

0 (k)P0�̂0(k)� P0 =
T

0

d

dt
(e
A t

P0e
A t

) dt

= �
T

0

e
A t

e
A t

dt

so thatk�̂T

0 (k)P0�̂0(k)�P0k � �
0Tk for some
0 > 0, and using
(18), the difference ofv along the solutions ofD can be computed
and bounded forTk satisfying (17) as

�v(k) � � 
0Tkkx̂0k
2
� kx̂1k

2
+ 2�̂

T

0 P0�̂0x̂0

+ 2�̂
T

1 P1�̂1x̂1 + �̂
T

0 P0�̂0 + �̂
T

1 P1�̂1

� � Tk�
T

(k)W (Tk)�(k)

where�(k) = [kx̂0(k)k kx̂1(k)k]
T

W (Tk) =

0 � Tkq00(Tk) �q01(Tk)

�q01(Tk) T�1
k

� q11(Tk)

andq’s are polynomials inTk of degree at most 2 with nonnegative
coefficients independent ofTk. Thus, there exists a sufficiently small
T � � 1 such that providedTk � T � in addition to (17), we have

�v(k) � ��Tkv(k) (20)

for some� > 0. This shows thatD in (14) can be made exponentially
stable.

From the proof of Lemma 2 in the Appendix, it follows that the
open-loop solutionsxk(s) in (11) of S are bounded for a bounded
input sequencefw(tk)g. Hence, if the discrete-time systemD in (14)



556 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 42, NO. 4, APRIL 1997

is asymptotically stable, and ifTk are also bounded from below so
thattk = t0+

k

j=1 Tj!1 ask!1, then the closed-loop sampled-

data system̂S is also asymptotically stable (in the continuous sense).
We summarize the above results as a theorem.

Theorem 1: Suppose the controller parameters(Ac; bc; cc) and
the generalized hold function in (9) are chosen to havê�1 in (9)
exponentially stable and that the sampling periodsTk satisfy (17) and
(20). Then the closed-loop discrete systemD in (14) is exponentially
stable. If, in addition,Tk � T�; k = 0; 1; � � � for someT� > 0, then
the closed-loop sampled-data system̂S is exponentially stable.

From the development leading to Theorem 1, we observe that the
choice ofC is independent of the system parameters and perturbation
bounds exceptn1 andp0. However, the sampling intervalsTk should
be smaller than a critical valueT �, which depends on the nominal
system parameters and the perturbation bounds. To eliminate the need
to know these bounds, we propose in the next section an adaptation
mechanism which decreases the values ofTk slowly until it is small
enough to stabilize the system.

IV. A DAPTATION OF THE SAMPLING INTERVALS

We employ a simple adaptation rule for the sampling intervals

T
�1
k+1 = T

�1
k + TkSk (21)

whereT0 � 1 is arbitrary, and

Sk = min fc0; �yjy(tk)j
2
+ �ckxc(tk)k

2
g

with c0 = 21=(n �1)
� 1, and�y; �c > 0 being arbitrary numbers.

This choice guarantees thatfTkg satisfies the inequalities in (17).
Two cases are possible.
Case I: Tk � T � for somek� � 0. ThenD is exponentially

stable. Also, noting thatSk � �v(k) for some � > 0 where
v is the Lyapunov function in (19), from (20) and (21) we have
T�1k+1 � T�1k � (�=�)�v(k) for k � k� so that

T
�1
k � T

�1
k +

�

�
v(k

�

):

Thus limk!1 T�1k = T�1
�

exists, and Theorem 1 guarantees
stability of the closed-loop sampled-data systemŜ.

Case II: Tk > T � for all k � 0. In this case, sincefTkg is
nonincreasing,limk!1 Tk = T1 < 1 exists. Then from (21) we
have

T
�

1

k=0

Sk <

1

k=0

TkSk

=T
�1
1

� T
�1
0

<1 (22)

which implies that the setK = fkjSk = c0g = fkj�yjy(tk)j
2 +

�ckxc(tk)k
2
� c0g is finite. Since solutions ofD cannot escape

infinity in finite steps,y(tk) andxc(tk) are bounded onK. Then, (22)
further implies that 1

k=0(�yjy(tk)j
2 + �ckxc(tk)k

2) < 1. Thus
limk!1 y(tk) = 0 and limk!1 z(tk) = 0, which shows thatD is
stable. However, internal stability of the adaptive closed-loop system
Ŝ cannot be guaranteed due to a possibility of the existence of hidden
oscillations. To avoid the difficulty, we introduce a small randomness
in Tk and assume thatlimt!1 y(t) = 0. Then,limk!1 w(tk) = 0,
and the fact thatTk > T � for all k � 0, together with boundedness
of  , imply that limt!1 u(t) = 0. We then complete our analysis
with the following result of [15].

Lemma 3: Under Assumptions 1)–4), iflimt!1 u(t) = limt!1

y(t) = 0 for the systemS in (1), thenlimt!1 x(t) = 0.
In conclusion, if the closed-loop adaptive sampled-data systems has

no hidden oscillations in the output, then it is stable in the continuous
sense for the caseTk > T � too.

V. EXAMPLE

To illustrate our results we consider the equation of a damped
inverted pendulum

�� = u� c1 sin � + c2 _�

where� is the clockwise angular displacement from the vertical,u

is the normalized control torque, and the parametersc1; c2 � 0 are
determined by the damping coefficient, mass, and the length of the
pendulum. Withx1 = �, x2 = _�, we get the state equations

S:
_x1
_x2

=
0 1

0 0

x1
x2

+
0

1
u

+
0

c1 sin x1 � c2x2
y =x1

where the terms containingc1 andc2 are treated as perturbations. The
nominal system withh(s) = 1=s2 has high-frequency gainp0 = 1

and relative degreen1 = 2. Assumptions 1)–4) are satisfied, and the
nominal system matrices are already in the form in Lemma 1, with
A0 nonexisting.

We first consider a dynamic controller followed by a zero-order
hold. After few trials, we choose the controller parameters asac =

�0:15; bc = �0:75; cc = 1;  (s) =  c = �0:5, which results in
a nominal discrete model having the poles atz1; 2 = 0:8� j0:4 and
z3 = 0. We choose the adaptation rule for the sampling periods as
T�1k+1 = T�1k +min f1; 5[y2(tk) + x2c(k)]g. The simulation results
corresponding to arbitrarily selected system parametersc1 = c2 = 1

and the initial conditionsx1(0) = x2(0) = T0 = 0:5 are shown in
Fig. 1, which are obtained by Runge–Kutta method with a step size of
0:01Tk for thekth sampling period. It is observed that the controller
stabilizes the system with a reasonable control input and with the
sampling period converging to a not too small steady-state value.

Next, we consider a static controller as in (10). A choice of
 (s) = �19:2s + 55:2s2 � 36s3 results in a�̂1 having the same
nonzero eigenvalues aŝ�1 above does. Since (0) =  (1) = 0,
this choice of also guarantees a continuous inputu(t) independent
of y(tk). The simulation results for the same system parameters and
initial conditions as before and with the adaptation ruleT�1k+1 =

T�1k + min f1; 5y2(tk)g indicate that stability is achieved without
the sampling periods getting too small; however, the input is highly
oscillatory. This is a further verification of the observation in [16],
where it was argued that generalized hold functions result in poor
intersample behavior.

We note that in both of the above simulations, adaptation of the
sampling period was necessary. In both cases, a fixed sampling period
at Tk = T0 = 0:5 resulted in an unstable closed-loop system. By
trial, the critical value of a fixed sampling period that resulted in a
stable system was found to be aboutTk � 0:4 (for the chosen initial
conditions). However, in both cases, the adaptation rule decreased
Tk to a steady-state value about half of this critical value. This
observation suggests that the adaptation rule can be modified to allow
for an increase in the sampling period after the system is taken under
control. With this in mind, we changed the adaptation rule to increase
Tk slightly whenever the decrease in the previous step is smaller
than a certain percent. Fig. 2 shows the variation ofTk with the
same dynamic discrete controller considered above and the modified
adaptation rule for two different initial values. In both cases the
system was stable with responses almost identical to those in Fig. 1.

VI. CONCLUDING REMARKS

We would like to discuss few points about our results.
As explained in Section III, the design of the controller parameters

(Ac; bc; c
T
c ); and  in (9) is independent of the choice of the
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Fig. 1. States and input of the inverted pendulum with dynamic compensator and zero-order hold (x1: dashed,x2: dotted,u=2: solid).

Fig. 2. Sampling period with standard (solid) and modified (dashed and dotted) adaptations.

sampling periodTk. In the case of dynamic controller with zero-
order hold, the discrete model of the nominal system is treated
(after inclusion of thed01; d10; andd11 terms in the corresponding
perturbation terms) as having the pulse transfer functionH(z) =

[d0(z)=d0(z)]H1(z), whered0(z) = det (zI � eA ) corresponds to
the uncontrollable and unobservable part of the system represented
by A0, andH1(z) = cT1 (zI � �1)

�1�1 = (1� z�1)Zf1=sn +1g,
where theZ-transform is taken with unity sampling period, de-
scribes the high-frequency behavior. The design of the controller
parameters then reduces to findingHc(z) =  c[1 + cTc (zI �
Ac)

�1bc] such that the closed-loop pulse transfer functionĤ(z) =

[1 � H1(z)Hc(z)]
�1H1(z) has desired (stable) poles. The actual

controller of (9) is obtained by a simple scaling withTk.
A closer look at the development leading to Theorem 1 reveals

that for Case I considered in Section IV

v(k +K) � v(k)

K�1

l=0

(1� �Tk+l)

for any k � k�; K > 0, where� is as in (20). This shows that the
sampled-data closed-loop system has an equivalent continuous-time



558 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 42, NO. 4, APRIL 1997

degree of stability

�k = lim
K!1

�

K�1

l=0

ln (1� �Tk+l)

2

K�1

l=0

Tk+l

:

In particular, in steady-state whenTk � T1, �1 � ��=2, consistent
with the expected behavior of the closed-loop system.

APPENDIX

PROOF OF LEMMA 2

We first find suitable bounds for the� terms in (12). For this
purpose, we define

Ek(s; xk) =
TkA0x0k + Tke0k(s; x1k)

A1x1k + Tke1k(s; x0k; x1k)

F (s) =
0

b1 (s)
:

Then, withu(s) as in (9), (6) can be written in a compact form as

_xk(s) = Ek(s; xk) + F (s)w(tk); 0 � s < 1: (23)

The solution of (23) is given by

xk(s) = xk(0) +
s

0

fEk[�; xk(�)] + F (�)w(tk)g d�: (24)

Using the bounds in (8) and boundedness of (s), we obtain from
(24)

kxk(s)k � kxk(0)k+
s

0

[�Ekxk(�)k+ �F jw(tk)j]d� (25)

for some constants�E ; �F > 0. Using a variation of the Bell-
man–Gronwall lemma [17], (25) implies that

kxk(s)k � e
� s

kxk(0)k+
s

0

�F e
� (s��)

jw(tk)jd�

��x[kx0k(0)k+ kx1k(0)k] + �wjw(tk)j (26)

for 0 � s < 1, where�x; �w > 0 are constants. Taking the norm of
�1k in (12), and using (8) and (26),�1k is easily bounded as

k�1k(s; x0; x1; w)k �Tk�10kx0k+ Tk�11kx1k

+ Tk�12jwj: (27)

Now, using (27), we can boundx1k in (11) as

kx1k(s)k � Tk
10kx0k(0)k+ 
11kx1k(0)k+ 
12jw(tk)j: (28)

Finally, taking norm of�0k in (12), and using (8) and (28), we get

k�0k(s; x0; x1; w)k �T
2
k�00kx0k+ Tk�01kx1k

+ Tk�02jwj: (29)

Having obtained bounds for�0k and �1k, we now note that by
continuity of solutions ofS and (5) we have

x0; k+1(0) =x0(tk+1)

=x0(tk + Tk)

=x0k(1)

x1; k+1(0) =D
�1
1; k+1x1(tk+1)

=D
�1
1; k+1x1(tk + Tk)

=D
�1
1; k+1D1kx1k(1): (30)

Also, from (11) we have

x0k(1) = e
T A

x0k(0) + �0k[1; x0k(0); x1k(0); w(tk)]

x1k(1) =�1x1k(0) + �1k[1; x0k(0); x1k(0); w(tk)]

+ �1( )w(tk): (31)

Then (14) follows from (7), (9), (30), and (31) with

�̂0[k; x̂0(k); x̂1(k)] = �0k[1; x0k(0); x1k(0); c
T
1 x1k(0)

+ c
T
c xc(tk)]

�̂1[k; x̂0(k); x̂1(k)] = f�T1 [k; x̂0(k); x̂1(k)] 0T g
T (32)

where

�1[k; x̂0(k); x̂1(k)]

= (D
�1
1; k+1D1k � I)

� [(�1 + �1c
T
1 )x1k(0) + �1c

T
c xc(tk)]

+D
�1
1; k+1D1k

� �1k[1; x0k(0); x1k(0); c
T
1 x1k(0) + c

T
c xc(tk)]: (33)

Since kD�11; k+1D1k � Ik = (Tk=Tk+1)
n �1 � 1 � Tk, for Tk

satisfying (17); (27), (29), (32), and (33) yield the bounds in (18),
completing the proof.
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