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Thus, we conclude that the optimization problem is equivalent to Robust Adaptive Sampled-Data Control of a Class of
Systems Under Structured Nonlinear Perturbations

min g

pner+ Ogan Ocah and M. Erol Sezer
such that Abstract— A robust adaptive sampled-data feedback stabilization
scheme is presented for a class of systems with nonlinear additive

~ - perturbations. The proposed controller generates a control input by
(X-Y.Z)=(Tn.Z), ¥Yr=12,--, N using high-gain static or dynamic feedback from nonuniform sampled
n T values of the output. A simple adaptation rule adjusts the gain and the

Z Z | Foaiony | (zij (k) + yi; (B)|Vai ] < 1 Ve, sampling period of the controller.
I=1 k=0 Index Terms— Adaptive control, output feedback, robust control,

Vi=1,2,---,m,and somel’ sampled-data system.
@i 2 0,yi; 20,0 >0 Vi, j k. O
|. INTRODUCTION

It is clear that the infimum values at each consecutive applicationHigh-gain feedback is a standard control technique for robust
of Steps 2) and 3) will be monotonically nonincreasing and boundethbilization of systems in the presence of modeling uncertainties
below by zero. Thus the iteration converges. Whenever a desiratdee, for example, [1]-[7], in some of which the problem is con-
robustness level is achieved (as indicated by the value of the infimgidered in the framework of decentralized control). In the case of a
at that step), the iteration procedure can be terminated at Step 3)single-input/single-output (SISO) system, design of such a controller

Note that the above optimization problem is nonconvex. Thus thekequires that the system have stable zeros and its relative degree,
is no guarantee that the iteration converges to the global minimuhe sign of its high-frequency gain, and the bounds of the system
or even to a local minimum as it may get stuck at a saddle point.parameters or perturbations be known. Similar information is needed

for multi-input/multi-output (MIMO) systems. It has been shown in
[8] that for systems with relative degree one, robust stability can be
V. CONCLUSION achieved without the need to know the bounds of the perturbations by

We have applied the Hadamard-weighting approach in [9] f&ning the gain parameter adaptively. In [9], a similar result has been
the ¢'-optimization case. The results developed in this paper allo@ptained for systems with higher relative degree, where an adaptation
one to design compensators which satisfy closed-loop decouplifigchanism is employed to increment the gain parameter stepwise at
specifications. Compensators which robustly decouple the systéigcrete instants.
could also be designed using the procedure developed in this papeln this paper we focus on the same problem for the case where
These results provide new tools for control system designers to mé@& controllers are allowed to operate on sampled values of the

decoupling requirements in the presence of uncertainties. output only, rather than continuous-time measurements. The main

difficulty arises from the fact that the sampling process changes the

structure of the uncertainty, that is, any uncertainty in the continuous-
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which decreases the sampling period slowly until it is small enoug8. This follows from the fact that a choice of the perturbations as

In this scheme, the sampling period has a double role: it algét, z) = 0, h(t, y) = —pO“A;”bpy results in a system having
determines the controller gain. uncontrollable modes at the zerosydk) as can easily be shown by
using Lemma 1.
Il. SysSTEM AND CONTROLLER STRUCTURE We now let
We consider a SISO systeh described as a(t) =M ap(t)
— pl'(ﬂ ,,1’“) r
S: iy (t) = Apap (1) + bpu(t) + eplt, 2,(t)] =[wo ay (1))
y(t) = c[T,.rp(t) (1) whereM isasinlLemmal, and, € R"° andx; € R™* correspond

to Ap and A, in (3). Define the sampling periods &% = #44+1 — ts,

wherez,(#) € R" is the stateu(?), y(f) € R are the input and 54 consider a further transformation of the state as

output of S, respectively, and4,, b,, andc, are constant matrices

of appropriate dimensions:,[t, x,(¢)] in (1) stands for additive wi(s) = Dy a(ty + sTh)
nonlinear perturbations to a linear, nominal system represented by _Jxor(s)
the triple (4,, by, ). T rik(s)
We would like to stabilizeS using a discrete-time feedback " T
. _ €xo (tk + s A) 5
controller operating on the sampled output valde& )}, wheret, =D (t + 5Ty ®)
are the sampling instants. For this we make the following assumptions
concerning the nominal system and the perturbations. for 0 < s < 1, where
1) (Ap, by, L) is controllable and observable. Dy =diag{I.,, D1k}
2) (A, by, ¢)) has stable zeros, that is, with(s) = ¢, (sI — Dy =diag{T"* ", .-+, Ty, 1}.
A,)"'b, = pop(s)/q(s), the set of zeros of the numerator . ' i
polynomialp(s) = 5™ + p1s™ ! 4 -+ + p,, is included in On noting from (4) that
the open left-half complex plane. Dl_,fALDu-, sz_lAl
3) The high-frequency gaim and the relative degree = n—ny Dy =TT
of h(s) above are known. t koo
4) The perturbations are of the form Dy by =
ep(t, x) = bpg(t, x) + ht, y) the dynamic behavior of over thekth sampling periodtz, tx+1)
can be described by
whereg andh satisfy for allt, y € R, 2 € R" .
fy ; v v S: @or(s) =Tk Aczor(s) + Treorls, xi(s)]
llg(t, )| < avgll]l Tix(s) = Arzix(s) + Trerrls, 2u(s)] + poTrbiui(s)
1R(t, »)I| < anly| (2 ye(s) =T el i (s) (6)
for some (unknown) constants,, ax > 0. whereuy,(s) = u(te + sTh), yr(s) = y(t, + sTk), and
Our choice of a stabilizing sampled-data controller is based on a ) =T g
special internal structure of the systefrdescribed by the following cor(s, xi) =T 01T 1k -
result of [12]. + ho(tk + sTr, T "1 21k)
Lemma 1: Under Assumptions 1)-3), there exists a nonsingular e1e(s, 21) =pobi [leDka + lelle.rm
matrix M such that + g(t + 5T, MDgxy)|
_ A doret N ' ni—1 T
M™"A,M = {hdolro A —T—lbjdﬂ} + Dt ha (e + Tk, TP et w1s) (7)
. 0 with M R(t, y) = [RE (£, y) AT (t, v)]T. From (7) it follows that
M bp:po{bl} for0 < T, <1
M =[0 '] 3) lleor (s, z)[| < avor ||
llewk (s, i)l < arollzoell + ari [l ®)

where 4, € R™"°*"¢ is a stable matrix whose eigenvalues are the
zeros of p(s) defined in Assumption 2) aboved; € R"1*"1,  for some constantso:, a0, a1 > 0, which depend on the system

by € R"t, andci € R™! have the structures parametersi,, b,, ¢, and the perturbation bounds,, a in (2).
0 1 --- 0 Note that the transformation leading to (6) is the same as the lifting
T operation considered in [13], except that nonuniform sampling is used
A= - T in (5).
00 .1 We generate the control input t§ by a discrete-time dynamic
0 0 0 feedback controller followed by a generalized hold function as
ro
: C:zo(tptr) = Aczo(tn) + Tkl,inlbcy(tk)
by = 0 w(ty) = ctae(te) + T " y(tr)
1 up(s) =py T W(s)wlty), 0<s<1  (9)
e =[1 0 - 0] (4) wherex. € R"- is the state andv € R is the output ofC, and

. . . ézr: [0,1) — R is a bounded hold function. In the case of static
anddo1, dio, andd;; are constant vectors of appropriate dimensions. .
. - . output feedback, the controller in (9) reduces to
We note that without any restrictions om, and «j in (2),
Assumption 2) is necessary in order to guarantee stabilizability of ur(s) = png,j”lw(s)y(tk), 0<s<1. (10)
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The systens in (6) and the controlle€ in (9) form a closed-loop
hybrid systemS = (S, C). The open-loop solutions & are given
for0 < s < 1as

zok(s) = e H 20701 (0) + Eorls, 20k (0), 214(0), w(ty)]

21k(8) :6‘4181'1k(()) + &ikls, ok (0), 21£(0), w(tr)]

+ Ty (W) w(tr) (11)
where
Eorls, wor(0), z1x(0), w(ts))]
=T / eT"'AO(S_T)eOk[T, k(7)) d7
0
6”-"[57 4’:0"7(0)7 ;l'1],~,(0)7 ’Uj(t];‘)]
=T / cAl(s_T)(ilk[T, 2o (7), w1k (7)) dT (12)
0
and
"1 \
P1 (1[)) = / 6‘41(1_1—)1)1@(1—) dT. (13)
0

Defining the discrete-time signals

P (k) =[21,0) 2L @t0)*

and using (9) and (11), the dynamic behaviorsoft the sampling
instants is described by a discrete-time system

1k +1) =®181 (k) + & [k, #o(k), #1(k)) (14)
where
<i>0(k‘,) — o TrAo
@1 _ P, + 1“1’(%")0/1[ 1—1(’749)03‘ (15)

bcclT A,
with &, = ¢“1. In the case of static output feedback as in (1),
in (15) reduces to
O =® 4+ (). (16)

The terms¢ in (14) are due to the perturbatiogs, and&ix in
(11). The following lemma gives bounds gnwhich will be the key
to stabilization of the discrete modél.

Lemma 2: Suppose that the sampling periods satisfy

Tigr <Tr <1
ny—1
< T ) <1+T. (17)
Tri1
Then the perturbation termsin (14) are bounded as
€0 (k, o, @1)|| < T§ Boolol| + TeBou [|21 |
161 (k. &0, @1)|| < TiSrollzoll + T fu [l | (18)

for some constants’s which depend on the nominal system param-

eters and the perturbation bounds.
Proof: See the Appendix. O
In the next section, we investigate stabilizability?foy a suitable
choice of the discrete controller parametérs., b., c.) and the
generalized hold functiog in (9) and the sampling periods, .
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Ill. STABILIZATION OF THE DISCRETE MODEL

We first note that due to the special structuresdef 4, andey,
the pair(®,, ci ) is observable, and the paifd,, b;) and(®,, ')
are controllable, wher&, = I'1(1).

First, consider the case where static output feedback is used so that
®, is as given in (16). Observability of the paib,, <! ) implies that
there existsl; € R™ such thatb; + ¥, ¢! has a desired spectrum.
On the other hand, controllability of the pairt, b:) implies that
for any ¥, ¥(s) in (9) can be chosen to satisfy(v) = ¥;.

As a result,y»(s) can be chosen to assign any stable spectrum to
o) =P, + Fl(d))a-lT = &, + T, ¢7. Next, consider the case where
¥(s) = 9. (a constant, corresponding to a zero-order hold). Then
from (13) we havel's (v) = I'1¢., and from (15)

b — [®1+Tatee]  Trveel
' bee! A,

Note that &, represents the system matrix of a hypothetical sys-
tem consisting of a discrete plari®,, I'i. ¢{) and a discrete
dynamic output feedback compensatdr., b., ¥.c., v¥.). Since the
plant (®, ['y, ¢] ) is controllable and observable, the compensator
(A, be, Yecl, ) with n. > n; — 1 can be chosen to result in
a &, with a desired spectrum [14]. A wide choice ofs) and the
controller exists between the two extreme cases.

Suppose that the generalized hold functiofs) and the discrete
feedback controlle€ are designed to have a Schur-stable Since
Ap is Hurwitz-stable by assumption, there exist positive definite
matrices P, and P, satisfying

AP+ PoAo =
TP d, — P

-1
-1

Let

L. T A T A
v(Zo, #1) = &g Podo + 21 Pidy

(19)

be a candidate for a Lyapunov function for the systBrin (14).

Noting that
[
o dt

.l'k
T
= - / etotetot g
0

L (k) Podo (k) — Py (™0 ety dt

so thatl|®] (k) Py®o (k) — Po|| < —~oT} for somevo > 0, and using
(18), the difference o along the solutions oP can be computed
and bounded foff}, satisfying (17) as

Au(k) < = 70Telldol|* = II31]1% + 265 Podoso
+ 25{[’1@)151 + éé Poéo + 5/1[1—)151
— Twv" ()W (Ty)v (k)

IN

wherev(k) = [llao(k)]| [ld2 (k)"

Yo — Trqoo(Tk) —qo1 (Tk)
—qo1(T%) T = qu(T)

andq’s are polynomials il of degree at most 2 with nonnegative
coefficients independent @f,.. Thus, there exists a sufficiently small
T* < 1 such that provided, < 7™ in addition to (17), we have

A’U(k‘) < —O'Tk'l/'(yk) (20)

W(Ti) =

for somes > 0. This shows thaD in (14) can be made exponentially
stable.

From the proof of Lemma 2 in the Appendix, it follows that the
open-loop solutions:;(s) in (11) of S are bounded for a bounded
input sequencéw(¢;)}. Hence, if the discrete-time systefnin (14)
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is asymptotically stable, and ;. are also bounded from below so V. EXAMPLE
thatty = tO":ZI;:l Tj— o0 ask—oc, then the closed-loop sampled- 1o jllustrate our results we consider the equation of a damped
data systend is also asymptotically stable (in the continuous senséhverted pendulum
We summarize the above results as a theorem.

Theorem 1: Suppose the controller parametérs., b., ¢.) and
the generalized hold function in (9) are chosen to havé, in (9) whered is the clockwise angular displacement from the vertieal,
exponentially stable and that the sampling periBdsatisfy (17) and is the normalized control torque, and the parameters:; > 0 are
(20). Then the closed-loop discrete systnin (14) is exponentially determined by the damping coefficient, mass, and the length of the
stable. If, in additionTx > T., k=0, 1, --- for someT, > 0, then pendulum. Withx; = 4, 22 = 4, we get the state equations

é:u—cl Sine—l—czé

the closed-loop sampled-data systénis exponentially stable. [ 0 171 [z 0
From the development leading to Theorem 1, we observe that the S LJ = L) ()} LJ L}”

choice ofC is independent of the system parameters and perturbation 0

bounds except; andp,. However, the sampling intervals; should Ll sin 2y — 02¢E2:|

be smaller than a critical valu€™, which depends on the nominal
system parameters and the perturbation bounds. To eliminate the need o )
to know these bounds, we propose in the next section an adaptatfifre the terms containing andc; are treated as perturbations. The

mechanism which decreases the valuedioBlowly until it is small "ominal system witth(s) = 1/s* has high-frequency gaip, = 1
enough to stabilize the system. and relative degree, = 2. Assumptions 1)-4) are satisfied, and the

nominal system matrices are already in the form in Lemma 1, with
Ay nonexisting.
We first consider a dynamic controller followed by a zero-order
hold. After few trials, we choose the controller parameters as-
T =Ty ' + TSk (21) —0.15, b, = —0.75, ¢. = 1, ¥(s) = ¢, = —0.5, which results in
a nominal discrete model having the poles:at. = 0.8 F j0.4 and
z3 = 0. We choose the adaptation rule for the sampling periods as
Sk = min {co, a,|y(ti)]” + acllzc(t)]]} T,y = T, ' +min {1, 5[y*(tx) + 22(k)]}. The simulation results
corresponding to arbitrarily selected system parametets co = 1
and the initial conditions:1(0) = x2(0) = To = 0.5 are shown in
Fig. 1, which are obtained by Runge—Kutta method with a step size of
Casel: T, < T* for somek* > 0. ThenD is exponentially ().()1@ for the kth sampli_ng period. It is observed t_hat the cont_roller
stable. Also, noting thatS, < #u(k) for somen > 0 where stabilizes the system with a reasonable control input and with the

v is the Lyapunov function in (19), from (20) and (21) we haveampling period converging to a not too small steady-state value.

Yy=mn

IV. ADAPTATION OF THE SAMPLING INTERVALS
We employ a simple adaptation rule for the sampling intervals

whereT, < 1 is arbitrary, and

with ¢ = 2/("1=Y _ 1 anda,, a. > 0 being arbitrary numbers.
This choice guarantees théll} } satisfies the inequalities in (17).
Two cases are possible.

T/;ll < T-' = (n/o)Av(k) for k > k" so that Next, we consider az statif:gcontrollef as in (1Q). A choice of
, P(s) = —19.2s 4+ 55.25° — 36s” results in ad, having the same
T <1+ 2 v(k"). nonzero eigenvalues ak, above does. Since/(0) = ¥ (1) = 0,
. 1 . 7 this choice ofi also guarantees a continuous inpyt) independent
Thus lim;—o Ty = T exists, and Theorem 1 guaranteegy ;) The simulation results for the same system parameters and
stability of the closed-loop sampled-data system initial conditions as before and with the adaptation riflg}, =

Casell: Ti. > T" for all k > 0. In this case, sincdTi} is -1 4 i) 11 54%(#,)} indicate that stability is achieved without
nonincreasinglim; —oo T = Toe < oo exists. Then from (21) We yhe sampling periods getting too small: however, the input is highly
have oscillatory. This is a further verification of the observation in [16],

T S, < Z T.S, where it was argued that generalized hold functions result in poor
intersample behavior.

We note that in both of the above simulations, adaptation of the
sampling period was necessary. In both cases, a fixed sampling period

<o (22) atT, = Ty, = 0.5 resulted in an unstable closed-loop system. By
which implies that the sek = {k|S, = co} = {k|ay|y(t,)> + trial, the critical value of a fixed sampling period that resulted in a
aellze(te)]|? > co} is finite. Since solutions o cannot escape Stable system was found to be abdut~ 0.4 (for the chosen initial
infinity in finite stepsy(tx) anda. (¢, ) are bounded of. Then, (22) conditions). However, in both cases, the adaptation rule decreased
further implies thats"5% (v, |y(t4)|? + acllz(te)]|?) < oo. Thus T, to a steady-state value about half of this critical value. This
limg oo y(tx) = 0 andlims_ .. z(tx) = 0, which shows thapD is Observation suggests that the adaptation rule can be modified to allow
stable. However, internal stability of the adaptive closed-loop systdff an increase in the sampling period after the system is taken under
S cannot be guaranteed due to a possibility of the existence of hiddgntrol. With this in mind, we changed the adaptation rule to increase
oscillations. To avoid the difficulty, we introduce a small randomneds: slightly whenever the decrease in the previous step is smaller
in T, and assume théitn; ., y(t) = 0. Then,limy_ .. w(ty) =0, than a certain percent. Fig. 2 shows the variationZpfwith the
and the fact thaf, > 7 for all k& > 0, together with boundednesssame dynamic discrete controller considered above and the modified
of ¢, imply thatlim, .., u(t) = 0. We then complete our analysisadaptation rule for two different initial values. In both cases the
with the following result of [15]. system was stable with responses almost identical to those in Fig. 1.

Lemma 3: Under Assumptions 1)-4), fm; .. u(t) = lim;
y(t) = 0 for the systemS in (1), thenlim;—., z(¢) = 0.

In conclusion, if the closed-loop adaptive sampled-data systems hasVe would like to discuss few points about our results.
no hidden oscillations in the output, then it is stable in the continuousAs explained in Section Ill, the design of the controller parameters
sense for the cas&, > T* too. (A., be, ¢), and v in (9) is independent of the choice of the

VI. CONCLUDING REMARKS
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0.8 1

-0.8 : : ‘
0.0 2.0 4.0 6.0

Fig. 1. States and input of the inverted pendulum with dynamic compensator and zero-order;haldshed,r»: dotted,«/2: solid).

0.60 , : ‘

0.50 .

0.40

0.30

0.20 [

0.10 : :
0.0 2.0 4.0 6.0

Fig. 2. Sampling period with standard (solid) and modified (dashed and dotted) adaptations.

sampling periodTy. In the case of dynamic controller with zero-[1 — H,(z)H.(z)] ' H,(z) has desired (stable) poles. The actual
order hold, the discrete model of the nominal system is treatedntroller of (9) is obtained by a simple scaling wif.
(after inclusion of thelo:, dio, anddy; terms in the corresponding A closer look at the development leading to Theorem 1 reveals

perturbation terms) as having the pulse transfer funcfibpy) = that for Case I considered in Section IV
[do(2)/do(2)]H:(z), wheredo(z) = det (2T — e”?) corresponds to

the uncontrollable and unobservable part of the system represented K-1

by Ao, andH, (z) = ¢! (:1 — &,)7'T = (1 — =~ Z{1/s"1F'}, o(k+K) <o) [ (1= oTis)

where the Z-transform is taken with unity sampling period, de- =0

scribes the high-frequency behavior. The design of the controller
parameters then reduces to findidg.(z) = v.[1 + ¢/ (I — foranyk > k", K > 0, whereo is as in (20). This shows that the
A.)7'b.] such that the closed-loop pulse transfer functfdfz) = sampled-data closed-loop system has an equivalent continuous-time
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degree of stability

K—-1

Z In(1—0Tk41)

=0

~
~

In particular, in steady-state whé@h ~ T, poo & —0 /2, consistent
with the expected behavior of the closed-loop system.

APPENDIX
PrROOF OF LEMMA 2

We first find suitable bounds for thé terms in (12). For this
purpose, we define

T Aowor + Treow(s, ir)
Arxr + Trewr (s, Tok, T1k)

Fls) = {blg(s)}

Then, withu(s) as in (9), (6) can be written in a compact form as

Ei(s, ap) = {

2rx(s) = FEx(s, xp) + F(s)w(ty), 0<s<1. (23)
The solution of (23) is given by
2e(s) = 2£(0) + /‘S {Eilr, 2e(T)] + F(T)w(ty)}dr.  (24) (1]
0

Using the bounds in (8) and boundedness/¢%), we obtain from
(24)

(2]

(3]
lewl < lewOll+ [ faslla(ml+ ar o ar @9
for some constantevz, ar > 0. Using a variation of the Bell- :
man—Gronwall lemma [17], (25) implies that [5]
e ()I] < e [lx (O)]] + / ape® ™ w(ty)] dr
< sl Ol + e O]+ ()] ©

[7]
for 0 < s < 1, wherea,, a,, > 0 are constants. Taking the norm of

& in (12), and using (8) and (264, is easily bounded as

(26)

[8]
€1k (s, wos @1, w)|| < TiBrollwoll + T Bl ||

+ Tk B12|w]. (27) [9]
Now, using (27), we can bound, in (11) as
, [10]
21k ()] < Teyiollwor O + yuullerw (O + yizfw(ts)].  (28)
[11]
Finally, taking norm of¢,,. in (12), and using (8) and (28), we get
l€on (5, w0, 21, w)|| <TF Boollzo | + ThBor ||| [12]
—|— Tkﬁ()Q |ll)| (29) [13]
Having obtained bounds fofor. and &1, we now note that by
continuity of solutions ofS and (5) we have [14]
20, k+1(0) =z (tryr) [15]
=zo(ty + Tk)
_ ot [16]
21, k4+1(0) = D7 w1 (Feg1)
:D;ll‘:+1.1’1(fk +Tk) (17]

:D;11C+1D1},~l’1},~(1). (30)

Since ||D1f1k+1
satisfying (17); (27), (29), (32), and (33) yield the bounds in (18),
completing the proof.
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Also, from (11) we have

2or (1) = e 9201 (0) + Eor[1, 20x(0), 211(0), w(ty)]
21x(1) = P11 (0) + &1k (1, 20x(0), 212(0), w(tr)]

+ Ty (P)w(ty). (31)
Then (14) follows from (7), (9), (30), and (31) with
éo[k. io(k), il(k)] :£0A[1, gLDA([)). le(()), ({Jlk([))
+ clwe(ty)]
Eulks Bo(k). &1(k)) = {€L [k, &o(k), 21(K)] 01} (32)
where
&k, &o(k), &1(k)]
= (Dl_,lchrlle - I)
(@1 4 Tref )1k (0) + Diel 2e(te)]
+ D]ilk_H le
&L, 20k (0), 211(0), ef 14(0) + l xe(ty)]. (33)

D, = 1I|| = (Te/Teg)"* ™" =1 < Ty, for T
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