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From (13) and property 1),_ei(t) are bounded,1 � i � �.
By virtue of Barbalat’s lemma [18], [21], [22] it follows that
limt!1 ei(t) = 0; 1 � i � �, which implies, in particular, that
limt!1 [y(t)� yr(t)] = 0.

Remark II.1: The adaptation gain
 in (14) is a positive real
constant in the proof of Theorem II.1. Note that if we set
 = 0, that is
the adaptation is switched off, the arguments used to show properties
1) and 2) still apply while the arguments used to show property 3) do
not apply. This shows that adaptation may be switched off at any time
still guaranteeing bounded signals and disturbance attenuation at the
expense of not achieving asymptotic tracking even when disturbances
are zero.

Remark II.2: The result stated in Theorem II.1 may also be
obtained for the class of nonlinear systems introduced in [15, Lemma
2.2], following the proofs of Lemma II.1 and Theorem II.1 with
obvious modifications.

III. CONCLUSIONS

We formulate in Definition II.1 the state feedback adaptive tracking
problem with transient specifications and disturbance attenuation and
provide a constructive solution to such a problem in Theorem II.1 for
a class of nonlinear systems. The result obtained improves and gen-
eralizes those presented in [15], [16], and [23]. The proposed robust
adaptive control (14) has the built-in property of still guaranteeing
bounded signals and disturbance attenuation when the adaptation is
switched off. Moreover, it offers the advantage of achieving zero
asymptotic tracking error when disturbances are not present and time-
varying parameters become constant; this is not guaranteed by the
robust (nonadaptive) control presented in [16].
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Stabilization and Disturbance Rejection
for the Wave Equation

Ömer Morg̈ul

Abstract—We consider a system described by the one-dimensional
linear wave equation in a bounded domain with appropriate boundary
conditions. To stabilize the system, we propose a dynamic boundary
controller applied at the free end of the system. The transfer function
of the proposed controller is a proper rational function of the complex
variable s and may contain a single pole at the origin and a pair of
complex conjugate poles on the imaginary axis, provided that the residues
corresponding to these poles are nonnegative; the rest of the transfer
function is required to be a strictly positive real function. We then show
that depending on the location of the pole on the imaginary axis, the
closed-loop system is asymptotically stable. We also consider the case
where the output of the controller is corrupted by a disturbance and
show that it may be possible to attenuate the effect of the disturbance
at the output if we choose the controller transfer function appropriately.
We also present some numerical simulation results which support this
argument.

Index Terms—Boundary control systems, distributed parameter sys-
tems, disturbance rejection, semigroup theory, stability.

I. INTRODUCTION

Many mechanical systems, such as spacecraft with flexible at-
tachments or robots with flexible links, and many practical systems
such as power systems and mass transport systems, contain certain
parts whose dynamic behavior can be rigorously described only by
partial differential equations (PDE’s). In such systems, to achieve
high precision demands, the dynamic effect of the system parts whose
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behavior are described by PDE’s on the overall system has to be taken
into account in designing the controllers.

In recent years, boundary control of systems represented by PDE’s
has become an important research area. This idea is first applied to the
systems represented by the wave equation (e.g., elastic strings, cables;
see, e.g., [1] and [5]) and recently extended to beam equations [2] and
to the rotating flexible structures (see [10] and [11]). In particular, it
has been shown that for a string which is clamped at one end and is
free at the other end, a singlenondynamicboundary control applied
at the free end is sufficient to exponentially stabilize the system; see
[1]. For more references on the subject the reader is referred to [7].

In this paper, we consider a linear time-invariant system which
is represented by the one-dimensional wave equation in a bounded
domain. We assume that the system is fixed at one end and a boundary
control input is applied at the other end. For this system, we propose
a finite-dimensionaldynamic boundary controller. This introduces
extra degrees of freedom in designing controllers which could be
exploited in solving a variety of control problems, such as disturbance
rejection, pole assignment, etc., while maintaining stability. The
transfer function of the controller is a proper rational function of
the complex variables and may contain a single pole ats = 0 and
a pair of complex conjugate poles ats = �j!1; !1 6= 0; provided
that the residues corresponding to these poles are nonnegative; the
rest of the transfer function is required to be a strictly positive
real function. The class of strictly positive real transfer functions
(e.g., excluding the poles on the imaginary axis) has been proposed
before for the stabilization of flexible structures; see [12] for the
beam equation, [13] for the wave equation, and [14] for disturbance
rejection. We then show that if!1 6= m� for some natural number
m 2 NNN; then the closed-loop system is asymptotically stable. We also
consider the case where the output of the controller is corrupted by a
disturbance. We show that if the structure of the disturbance is known
(i.e., the frequency spectrum), then it may be possible to choose the
controller accordingly to attenuate the effect of the disturbance at the
system output. To support this idea, we also present some numerical
simulation results.

This paper is organized as follows. In the next section we introduce
the system considered and propose a class of controller for stabi-
lization. In Section III we give some stability results. In Section IV
we consider the disturbance rejection problem, and in Section V we
present some numerical simulation results. Finally, we give some
concluding remarks.

II. PROBLEM STATEMENT

We consider a string as an example of a system whose behavior
is modeled by the wave equation. Without loss of generality, we
assume that the string length, mass density, and the string tension
are given asL = 1; � = 1; and T = 1; respectively. We denote
the displacement of the string byy(x; t) at x 2 (0; 1) and t � 0:

Furthermore, we assume that the string is fixed at one end and
stabilized bydynamicboundary control at the other end. Thus, the
system under consideration is represented by

ytt(x; t) = yxx(x; t); x 2 (0; 1) t � 0 (1)

y(0; t) = 0; t � 0 (2)

yx(1; t) =�f(t); t � 0 (3)

y(x; 0) =w0(x); yt(x; 0) = w1(x) (4)

where a subscript, as inyt, denotes a partial differential with respect
to the corresponding variable,f(�): RRR+ ! RRR is the boundary control
force applied at the free end of the string, and initial conditions
w0(�) andw1(�) belong to appropriate function spaces which will be
introduced later [see (18)–(21)]. We note that the systems represented

by (1)–(4) are not restricted to strings; for example, vibrations of long
cables, the longitudinal motion, and the torsional vibrations of elastic
beams can also be represented by these equations (see, e.g., [9]).

It is well known that if we apply the following boundary controller:

f(t) = dyt(1; t); d> 0 (5)

then the closed-loop system given by (1)–(5) is exponentially stable.
That is, the energyE(t) associated with the solutions of (1)–(5),
which is given by

E(t) = 1

2

1

0

(y
2

t + y
2

x) dx (6)

decays uniformly exponentially as follows:

E(t) �Me
��t

E(0); t � 0 (7)

for someM > 0 and � > 0: Moreover, ford 6= 1; the decay rate�
is given by

� = �
1

2
ln

1� d

1 + d
(8)

(see, e.g., [7]). Ford = 1; the estimate (8) will not be valid, but in this
case all solutions become zero fort> 2; see, e.g., [8]. This result can
also be obtained by using the so-called wave propagation method;
see e.g., [3]. The solution of the wave equation can be written as
the sum of two waves traveling in opposite directions. These waves
will be reflected at the boundaries, and at any particular timet and
position x, the solutiony(x; t) is the sum of these waves. It can
be shown that the reflection coefficient� at the boundaryx = 1 is
� = (1�d)=(1+d) (i.e., the incoming wave amplitude is multiplied
by � to find the amplitude of the reflected wave). Since ford = 1 we
have� = 0; and since any traveling wave will reach the boundary
x = 1 at most 2 s after the initial timet = 0; it follows that for t> 2

we havey(x; t) = 0; for details see [3], [7], and [8]. Hence, for the
controller given by (5), the best choice ofd for stabilization seems
to bed = 1: However, we will show later that when the system is
subjected to a disturbance, due to measurements and actuation, this
choice may not be a good one.

The problem we consider in this paper is to choose the controller
which generatesf(t) appropriately to make the closed-loop system
stable in some sense. Later we will analyze the effect of this controller
on the output of the system(yt(1; t)) when the controller is corrupted
by a disturbance.

We assume thatf(t) is given by the following equations:

_z1 =Az1 + byt(1; t) (9)

_x1 =!1x2 (10)

_x2 =�!1x1 + yt(1; t) (11)

f(t) = c
T
z1 + dyt(1; t) + k1y(1; t) + k2x2 (12)

where z1 2 RRRn for some natural numbern is the actuator state,
A 2 RRRn�n is a constant matrix,b; c 2 RRRn are constant column
vectors,d 2 RRR; and the superscriptT denotes transpose.

We make the following assumptions concerning the actuator given
by (9)–(12) throughout this work.

Assumption 1:All eigenvalues ofA 2 RRRn�n have negative real
parts.

Assumption 2:(A; b) is controllable and(c; A) is observable.
Assumption 3:d � 0; k1 � 0; k2 � 0; and there exists a constant


; d � 
 � 0; such that the following holds:

d+Refc
T
(j!I � A)

�1
bg>
; ! 2 RRR: (13)

Moreover, ford> 0; we assume
 > 0 as well.
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Remark 1: If we take the Laplace transform of (9)–(12) and use
zero initial conditions for the actuator (i.e.,z1(0) = 0; x1(0) =
x2(0) = 0), then we obtain

f̂(s) = g(s)ŷt(1; s) +
k1

s
y(1; 0) (14)

where a hat denotes the Laplace transform of the corresponding
variable and

g(s) = g1(s) +
k1

s
+

k2s

s2 + !2
1

g1(s) = c
T (sI � A)�1

b+ d: (15)

Then, Assumptions 1)-3) imply thatg1(s) is a strictly positive real
transfer function, and ifk1> 0 and/ork2> 0; then g(s) is only a
positive real (but not strictly) transfer function; see, e.g., [17].

III. STABILITY RESULTS

Let Assumptions 1)–3) stated above hold. Then, since the transfer
function g1(s) = d + cT (sI � A)�1b is strictly positive real,
it follows from the Meyer–Kalman–Yakubovich lemma that given
any symmetric positive definite matrixQ 2 RRRn�n; there exists a
symmetric positive definite matrixP 2 RRRn�n; a vectorq 2 RRRn; and
a constant�> 0 satisfying

A
T
P + PA =�qq

T
� �Q (16)

Pb� c = 2(d� 
)q (17)

(see [17, p. 133]).
To analyze the system given by (1)–(4) and (9)–(12), we first define

the function spaceH as follows:

H := f(uvz1x1x2)
T
ju 2 HHH

1
; v 2 LLL

2
; z1 2 RRR

n
;

x1; x2 2 RRR; u(0) = 0g (18)

where the spacesLLL2 andHHHk are defined as follows:

LLL
2 = f : [0; L] ! RRRj

1

0

f
2
dx<1 (19)

HHH
k = ff 2 LLL

2
jf; f

0

; f
00

; � � � ; f
(k)

2 LLL
2
g: (20)

System (1)–(4), (9)–(12) can be written in the following abstract form:

_z = Lz; z(0) 2 H (21)

wherez = (yytz1x1x2)
T 2 H; the operatorL: H ! H is a linear

unbounded operator defined as

L

u

v

z1
x1
x2

=

v

uxx
Az1 + bv(1)

!1x2
�!1x1 + v(1)

: (22)

The domainD(L) of the operatorL is defined as

D(L) := f(uvz1x1x2)
T
2 Hju 2 HHH

2
; v 2 HHH

1
; z1 2 RRR

n
;

x1; x2 2 RRR; u(0) = 0; v(0) = 0;

ux(1) + c
T
z1 + dv(1) + k1u(1) + k2x2 = 0g: (23)

Let Assumptions 1)–3) hold, letQ 2 RRRn�n be an arbitrary
symmetric positive definite matrix, and letP 2 RRRn�n; q 2 RRRn be the
solutions of (16) and (17) whereP is also a symmetric and positive
definite matrix. InH; we define the following “energy” inner-product:

hz; ~ziE = 1

2

1

0

yt~yt dx+ 1

2

1

0

yx~yx dx

+ 1
2
k1y(1)~y(1) +

1
2
~zT1 Pz1

+ 1

2
k2(x1~x1 + x2~x2) (24)

wherez = (yytz1x1x2)
T ; ~z = (~y~yt~z1~x1~x2)

T : It can be shown that
H; together with the energy inner-product given by (24), becomes a
Hilbert space. The “energy” norm induced by (24) is

E(t) := kz(t)k2E = 1

2

1

0

y
2
t dx+ 1

2

1

0

y
2
x dx

+ 1

2
k1y

2(1; t) + 1

2
z
T

1 Pz1

+ 1

2
k2(x

2
1 + x

2
2): (25)

Theorem 1: Consider the system given by (21).
i: The operatorL generates aC0-semigroup of contractionsT (t)

in H (for the terminology of semigroup theory, the reader is referred
to [15]).

ii: If !1 6= m� for some natural numberm 2 NNN; then the
semigroupT (t) generated byL is asymptotically stable, that is all
solutions of (21) asymptotically converge to zero.

Proof of i: We use the Lumer–Phillips theorem (see [15, p. 14])
to prove the assertioni. To prove thatL is dissipative, we differentiate
(25) with respect to time. Then by using (1)–(3), (9)–(12), integrating
by parts, and using (16), (17), we obtain

_E =
1

0

ytytt dx+
1

0

yxyxt dx+
1

2
z
T

1 (AT
P + PA)z1

+ z
T

1 Pbyt(1; t) + k1y(1; t)yt(1; t)

+ k2yt(1; t)x2

=�yt(1; t)f(t) +
1

2
z
T

1 (AT
P + PA)z1

+ z
T

1 Pbyt(1; t) + +k1y(1; t)yt(1; t)

+ k2yt(1; t)x2

=�c
T
z1yt(1; t)� dy

2
t (1; t) + z

T

1 Pbyt(1; t)

�
1

2
z
T

1 qq
T
z1 �

�

2
z
T

1 Qz1

=�
y
2
t (1; t)�

1

2
[ 2(d� 
)yt(1; t)� z

T

1 q]
2

�
�

2
z
T

1 Qz1: (26)

Since _E � 0; it follows thatL is dissipative [see (24)–(26)].
Let z = (lhrr1r2)

T 2 H be given. To show that�I�L: H ! H

is onto for�> 0; one must show that for somew = (uvz1x1x2)
T 2

D(L); we must have(�I�L)w = z; hence the following equations
should hold:

�u� v = l; �v � uxx = h (27)

�z1 �Az1 � bv(1) = r; �x1 � !1x2 = r1

�x2 + !1x1 � v(1) = r2 (28)

u(0) = 0; ux(1) + c
T
z1 + dv(1)

+ k1u(1) + k2x2 = 0: (29)

It can easily be shown that the solutionu(�) of (27) satisfying
u(0) = 0 is given by

u(x) = c1 sinh �x �
1

�

x

0

(h(s)

+ �l(s)) sinh �(x� s) ds (30)

wherec1 is a constant andsinh(�) is the hyperbolic sine function.
By using (28) and (29), after some straightforward calculations, we
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obtain

�(cosh�+ g(�) sinh�)c1

=
1

0

(h(s) + �l(s))(cosh�(1� s) + g(s) sinh

� �(1� s)) ds+ g(�)�
k1

�
l(1)

� c
T (�I �A)�1r �

k2�

�2 + !21
r2 �

!1r1

�
(31)

where g(�) is given by (15). Sinceg(�) is a positive real transfer
function, it follows thatg(�)> 0 for all �> 0; see, e.g., [17, pp.
129–130]. It then follows thatcosh�+g(�) sinh�> 0 for all �> 0;
hence the constantc1 can be uniquely determined from (31). The
remaining unknownsv; z1; x1; x2 can be found from (27) and (28).
Hence it follows that�I � L: H ! H is onto for all �> 0:
Then, it follows from the Lumer–Phillips theorem thatL generates a
C0-semigroup of contractionsT (t) on H:

ii: To prove assertionii , we use LaSalle’s invariance principle,
extended to infinite-dimensional systems; see [16, p. 78]. According
to this principle, all solutions of (21) asymptotically tend to the
maximal invariant subset of the following set:

S = fz 2 Hj _E = 0g (32)

provided that the solution trajectories fort � 0 are precompactin
H: Since the operatorL : H ! H generates aC0-semigroup of
contractionson H (hence the solution trajectories areboundedon
H for t � 0), the precompactness of the solution trajectories are
guaranteed if the operator(�I � L)�1 : H ! H is compact for
some�> 0; see [16, p. 241]. To prove the last property, we first
show thatL�1 exists and is a compact operator onH: To see this,
let z = (lhrr1r2)

T 2 H be given. We want to solve the equation
Lw = z for w; wherew = (uvz1x1x2)

T 2 D(L): The solution of
this equation can easily be found as

u(x) =�
x

0

�

0

h(�) d� d� + cx; x 2 (0; 1) (33)

v(x) =�l(x); x 2 (0; 1) (34)

z1 =A
�1(l(1)b� r) (35)

x1 =
l(1)� r2

!1
(36)

x2 =�
r1

!1
(37)

where the constantc can be uniquely determined from (12). It follows
thatL�1 exists and mapsH intoHHH2�HHH1�RRRn�RRR�RRR; moreover,
(uvz1x1x2)

T 2 D(L): Sincez = (lhrr1r2)
T 2 H; it follows that

l(0) = 0 and thatl 2HHH1; see (18). Hence, ifkzk is bounded inH; it
follows easily thatl(1) is bounded as well. Therefore,L�1 maps the
bounded sets ofH into the bounded sets ofHHH2�HHH1�RRRn�RRR�RRR:

Since the embedding of the latter intoH is compact (see [18, p. 14]),
it follows thatL�1 is a compact operator. This also proves that the
spectrum ofL consists entirely of isolated eigenvalues and that for
any � in the resolvent set ofL; the operator(�I � L)�1: H ! H

is a compact operator; see [6, p. 187]. Furthermore, our argument
above shows that� = 0 is not an eigenvalue ofL: Since the
operatorL generates aC0-semigroup of contractions onH; by the
argument given above it follows that the solution trajectories of (21)
are precompact inH for t � 0; hence by LaSalle’s invariance
principle, the solutions asymptotically tend to the maximal invariant
subset ofS [see (32)]. Hence, to prove that all solutions of (21)
asymptotically tend to the zero solution, it suffices to show thatS

contains only the zero solution, which is a typical procedure in the
application of LaSalle’s invariance principle.

To prove thatS contains only the zero solution, we set_E = 0 in
(26), which results inz1 = 0: This implies that _z1 = 0; hence by
using (9) and (12) we obtainyt(1; t) = 0; f(t) = k1y(1; t) + k2x2:

Hence, all solutions of (21) inS satisfy the following equations:

ytt = yxx (38)

_x1 =!1x2; _x2 = �!1x1 (39)

y(0; t) = 0; yt(1; t) = 0 (40)

yx(1; t) =�k1y(1; t)� k2x2: (41)

The solutionx2 of (39) can be written as

x2 = c1 cos!1t+ c2 sin!1t (42)

wherec1 and c2 are arbitrary constants.
Since the boundary conditions in (40) are separable, the solution

of (38) can be found by using separation of variables; see [9]. That
is, the solution of (38) and (40) assumes the following form:

y(x; t) = A(t)B(x) t � 0; x 2 [0; 1] (43)

where the functionsA: RRR+ ! RRR and B: [0; 1] ! RRR are
twice differentiable functions to be determined from the boundary
conditions (40). We distinguish the following cases.

a: _A � 0: In this case, the solution of (38) isy(x; t) = c3 + c4x:

From (40) it follows thatc3 = 0; and by using this in (41) we find
that c1 = c2 = c4 = 0 as well. Hence, the only possible solution
is y(x; t) � 0:

b: _A 6= 0: In this case, the solution of (38) is in the following
form:

A(t) = c3 cos�t+ c4 sin�t

B(x) = c5 cos�x+ c6 sin�x (44)

wherec3; � � � ; c6 are arbitrary constants. From (40) we obtainc5 = 0
and c6 sin� = 0: (For otherwiseyt(1; t) = 0 would yield only
the trivial solutiony(x; t) � 0.) Hence, for a nontrivial solution,�
should satisfysin� = 0; hence� = m� for some natural number
m 2 NNN: Now using the arguments inaaa; it can easily be shown that
� 6= 0: By using these in (41), it can easily be shown that to have a
nontrivial solution, we must have� = !1; i.e., !1 = m� for some
natural numberm 2 NNN: For otherwise, the only solution inS would
yield c1 = c2 = � � � = c6 = 0; which yieldsy(x; t) � 0: Therefore,
if !1 6= m� for some natural numberm 2 NNN; we conclude that the
only solution of (21) which lies in the setS given by (32) is the zero
solution. Hence, by LaSalle’s invariance principle, we conclude that
the solutions of (21) asymptotically tend to the zero solution.

Remark 2: It was proven in [13] that fork2 = 0; if d> 0; then
the closed-loop system (1)–(4), (9), and (12) is exponentially stable,
and if d = 0; then the same system is asymptotically stable. Since
the subsystem (10), (11) is essentially finite-dimensional, one might
expect the same conclusions to hold for the casek2> 0 as well.
However, this point needs further investigation.

IV. DISTURBANCE REJECTION

In this section we show the effect of the proposed control law
given by (9)–(12) on the solutions of the system given by (1)–(4)
when the output of the controller is corrupted by a disturbancen(t);
that is (12) has the following form:

f(t) = c
T
z1 + dyt(1; t) + k1y(1; t) + k2x2 + n(t) (45)

or equivalently (14) has the following form:

f̂(s) = g(s)ŷt(1; s) + n̂(s) (46)
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Fig. 1. Tip displacement for Case i.1.

Fig. 2. Tip displacement for Case i.2.

where n̂(s) is the Laplace transform of the disturbancen(t): Note
that in deriving (46), we neglected the effect ofy(1; 0); cf., (14).
Sincey(1; 0) is a constant, we may include it as an additional term
in the disturbance.

To find the transfer function fromn(t) to yt(1; t); we take the
Laplace transform of (1)–(3), and set initial conditions to zero. Then,
the solution of (1), (2) becomes

y(x; s) = c sinhxs (47)

wherec is a constant andsinh is the hyperbolic sine function. By
using (3) and (46), we obtain

c =�
1

s(cosh s+ g(s) sinh s)
n̂(s) (48)

ŷt(1; s) =�
sinh s

cosh s+ g(s) sinh s
n̂(s): (49)

Now, consider the controller given by (5). It was stated in
Section II that, without disturbance, this system is exponentially
stable and that by choosingd appropriately, one can achieve arbitrary
decay rates [see (7)]. Moreoverg(s) = d = 1 is the best choice
since in this case all solutions become zero fort> 2: However, from
(49) one can easily see that this is not a good choice for disturbance
rejection. To see this, first note that in this case the controller transfer
function g(s) is given byg(s) = d = 1 [see (5), (14), and (46)].
Hence, (49) becomes

ŷt(1; s) =
1

2
(e
�2s

� 1)n̂(s) (50)

which yields, in time domain

yt(1; t) =
1

2
(n(t� 2)� n(t)): (51)

In casen(t) is sinusoidal, from (51) it follows thatyt(1; t) is
sinusoidal and its magnitude is not small (i.e., half of the magnitude
of the disturbance). Hence the caseg(s) = d = 1 is not a good
choice for disturbance rejection. It can be shown thatd 6= 1; d 2 RRR

yields similar results.
Another choice for disturbance rejection is the use of dynamic

controllers [e.g., of the type (15) or (9)–(12)]. From (49) we can also
derive a procedure to designg(s) if we know the structure ofn(t):
For example ifn(t) has a band-limited frequency spectrum (i.e., has

Fig. 3. Tip displacement for Case ii.1.

Fig. 4. Tip displacement for Case ii.2.

frequency components in an interval of frequencies[
1;
2]), then
we can chooseg(s) to minimize

c(!) =
sinh j!

cosh j! + g(j!) sinh j!
; ! 2 [
1;
2]:

Note that to ensure the stability of the closed-loop system,g1(s)

should be a strictly positive real function as well [see (15)]. As
a simple example, assume thatn(t) = a cos!0(t): Then we may
chooseg(s) in the form (15) with!1 = !0: Provided that As-
sumptions 1)–3) are satisfied and that!0 6= m� for some natural
numberm 2 NNN; the closed-loop system is asymptotically stable (see
Theorem 1). Moreover, ifk2> 0; theng(s) given by (15) has a pair
of complex conjugate poles ats = �!0; hencec(!) given above
satisfiesc(!0) = 0: From (49) we may conclude that this eliminates
the effect of the disturbance at the outputyt(1; t):

V. SIMULATION RESULTS

In this section, we show the effect of the proposed control law
given by (46), whereg(s) is given by (15) on the solutions of the
system (1)–(3), by means of some numerical simulation results.

For simulations, we first obtain a state-space representation [i.e.,
(9) and (12)] for the compensator given by (15). For this purpose
we choose the well-known controllable canonical representation of
g(s): Then we use the finite difference technique withN point spatial
discretization, approximating the spatial derivatives by using a central
difference formula; see [4]. The resulting equations can be written in
the form

_z = Fz + bd(t)

where the vectorz contains the displacements and the velocities
at N points andn compensator states. HenceF 2 RRRm�m and
b 2 RRRm; m = 2N + n: This equation is then simulated by using a
trapezoidal type algorithm. In the simulations we chooseN = 50: As
for the initial conditions we choose the initial displacement along the
first mode of the uncontrolled system (i.e., (1)–(3) withf(t) � 0),
and we set

y(x; 0) = �0:5 sin(0:5�x); yt(x; 0) = 0; 0 � x � 1:

Initial conditions for the controller states are set to zero.
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Fig. 5. Tip displacement for Case ii.3.

Fig. 6. Tip displacement for Case ii.4.

For the disturbancen(t); we choose two different types of wave-
forms which are given below.

i: n(t) = cos 10t:

For this disturbance, we choose the following controller:

g(s) = d+
k2s

s2 + !2

1

: (52)

Note that in (15), for simplicity we chooseg1(s) = 0; and it can
easily be shown that the conclusions of Theorem 1 are still valid
in this case as well. For the controller we use the following sets of
parameters.

Case i.1: d = 1; k2 = 0; !1 = 10:

Case i.2: d = 1; k2 = 10; !1 = 10:

The resulting endpoint positionsy(1; t) for Cases i.1 and i.2 are
shown in Figs. 1 and 2, respectively. Obviously, withk2 = 0; the
controller given by (52) reduces to the controller given by (5), with
g(s) = d = 1: As explained in Section II, the best choice for stability
is g(s) = d = 1; see (8). However, as explained in Section IV, this
is not a good choice for disturbance rejection, and Fig. 1 confirms
this point. Also, Fig. 2 shows that the effect of disturbance can be
attenuated by use of an appropriate dynamic controller.

ii: n(t) = �5

k=1 (cos 10kt=k):

The purpose of this choice of disturbance is to investigate the
effect of the controller given by (52) on the system response when
n(t) contains harmonics of a fundamental frequency as well. For the
controller given by (52), we choose the following sets of parameters.

Case ii.1: d = 1; k2 = 0; !1 = 10:

Case ii.2: d = 1; k2 = 10; !1 = 10:

The resulting endpoint positionsy(1; t) for Cases ii.1 and ii.2 are
shown in Figs. 3 and 4, respectively. As can be seen from these
figures, the disturbance rejection is better fork2> 0:

Note that in Case ii.2, the controller is “tuned” to eliminate the
fundamental harmonic of the disturbance. We can put additional terms

in g(s) to eliminate the higher harmonics as well. For this, we choose
the following controller:

g(s) = d+
k2s

s2 + !2
1

+
k3s

s2 + !2
2

: (53)

For this controller, we choose the following sets of parameters.
Case ii.3: d = 1; k2 = 0; !1 = 10; k3 = 100; !2 = 20:
Case ii.4: d = 1; k2 = 10; !1 = 10; k3 = 50; !2 = 20:
The resulting endpoint positionsy(1; t) for Cases ii.3 and ii.4 are

shown in the Figs. 5 and 6, respectively. As can be seen in these
figures, the additional terms attenuate the effect of higher harmonics
as well.

These simulations suggest that by using dynamic compensators
one may improve the system response in case the system is subject
to a disturbance. Moreover, once the compensator transfer function
is parameterized [see (52)], optimum values for these parameters to
shape the system response may be obtained (e.g., to decrease the
overshoot, to decrease the rise time, etc.). However, this point needs
further investigation.

VI. CONCLUSION

In this paper, we considered a linear time-invariant system which
is represented by the one-dimensional wave equation in a bounded
domain. We assumed that the system is fixed at one end and a
boundary control input is applied at the other end. For this system,
we proposed a finite-dimensionaldynamicboundary controller. This
introduces extra degrees of freedom in designing controllers which
could be exploited in solving a variety of control problems, such
as disturbance rejection, pole assignment, etc., while maintaining
stability. The transfer function of the controller is a proper rational
function of the complex variables and may contain a single pole
at s = 0 and another pair of complex conjugate poles ats =
�j!1; !1 6= 0; provided that the residues corresponding to these



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 1, JANUARY 1998 95

poles are nonnegative; the rest of the transfer function is required to
be a strictly positive real function. We then proved that the closed-
loop system is asymptotically stable provided that!1 6= m� for some
natural numberm 2 NNN: We also studied the case where the output
of the controller is corrupted by a disturbance. We showed that if the
frequency spectrum of the disturbance is known, then by choosing the
controller appropriately we can obtain better disturbance rejection. To
support this idea, we presented some numerical simulation results.

We note that the ideas presented here can also be applied to other
flexible structures (e.g., flexible beams). The work on this subject is
still in progress and the results will be presented elsewhere.
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[10] Ö. Morgül, “Control and stabilization of a flexible beam attached to a
rigid body,” Int. J. Contr., vol. 51, pp. 11–33, 1990.

[11] , “Orientation and stabilization of a flexible beam attached to a
rigid body: Planar motion,”IEEE Trans. Automat. Contr., vol. 36, pp.
953–963, Aug. 1991.

[12] , “Dynamic boundary control of a Euler–Bernoulli beam,”IEEE
Trans. Automat. Contr., vol. 37, pp. 639–642, May 1992.

[13] , “A dynamic boundary control for the wave equation,”Automat-
ica, vol. 30, no. 11, pp. 1785–1792, Nov. 1994.
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Mixed / -Control of Discrete-Time
Markovian Jump Linear Systems

Oswaldo L. V. Costa and Ricardo P. Marques

Abstract—In this paper we consider the mixedH2/H1-control problem
for the class of discrete-time linear systems with parameters subject to
Markovian jump linear systems (MJLS’s). It is assumed that both the
state variable and the jump variable are available to the controller. The
transition probability matrix may not be exactly known, but belongs to an
appropriate convex set. For this controlled discrete-time Markovian jump
linear system, the problem of interest can be stated in the following way.
Find a robust (with respect to the uncertainty on the transition Markov
probability matrix) mean-square stabilizing state and jump feedback
controller that minimizes an upper bound for the H2-norm, under the
restriction that the H1-norm is less than a prespecified value�. The
problem of the determination of the smallestH1-norm is also addressed.
We present an approximate version of these problems via linear matrix
inequality optimization.

Index Terms—Coupled Lyapunov equations, LMI optimization, Mar-
kovian jump systems, mixedH2/H1-control.

I. INTRODUCTION

A great deal of attention has been given nowadays to a class
of stochastic linear systems subject to abrupt variations, namely,
Markovian jump linear systems (MJLS’s). This family of systems
is modeled by a set of linear systems with the transitions between the
models determined by a Markov chain taking values in a finite set.
Due to a large number of applications in control engineering, several
results on this field can be found in the current literature, regarding
applications, stability conditions, and optimal control problems (see,
for instance, [1]–[11], [13]–[18], and [21]–[28]).

The mixedH2/H1 andH1 control problems for time-invariant
discrete-time linear systems has been studied in the current literature,
usually using a state-space approach, leading to nonstandard algebraic
Riccati equations and Lyapunov-like equations (see, for instance,
[12], [19], and [20]). TheH2- andH1-control problems for MJLS’s
have recently been analyzed in [5], [6], and [11]. For theH2-
control problem, a convex programming approach was applied in
[5] and numerical algorithms developed. In this paper we study
the mixedH2/H1-control andH1-control problems of a discrete-
time MJLS’s. We will assume that the transition probability matrix
for the Markov chain is not exactly known, but belongs to an
appropriate convex set. In this case a robust mean-square (state and
jump feedback) stabilizing controller is defined as a state-feedback
controller, which also depends on the jump Markov variable, that
stabilizes in the mean-square sense the MJLS for every appropriate
Markov transition probability matrix. This kind of concept was first
introduced by Rami and El Ghaoui in [27] for continuous-time
MJLS’s. Under these conditions, the mixedH2/H1-control problem
of an MJLS’s can be formulated as follows: we are interested in
finding a robust mean-square stabilizing controller that minimizes an
upper bound for theH2-norm, under the restriction that theH1-
norm is less than a prespecified value�. The problem of minimizing
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