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equation_x1 = u1 and the expression of the controlu1(x; t) (see [10],
for example).
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Fixed Zeros of Decentralized Control Systems

Konur A. Ünyeliǒglu, Ümit Özgüner, and A. Bülent Özgüler

Abstract—This paper considers the notion ofdecentralized fixed zerosfor
linear, time-invariant, finite-dimensional systems. For an -channel plant
that is free of unstable decentralized fixed modes, an unstable decentral-
ized fixed zero of Channel (1 ) is defined as an element of the
closed right half-plane, which remains as a blocking zero of that channel
under the application of every set of 1 controllers around the other
channels, which make the resulting single-channel system stabilizable and
detectable. This paper gives a complete characterization of unstable decen-
tralized fixed zeros in terms of system-invariant zeros.

Index Terms—Decentralized control, fixed zeros, linear systems, stabi-
lization.

I. INTRODUCTION

The main objective of this paper is to give a definition and a char-
acterization of unstable decentralized fixed zeros of a linear, time-in-
variant, finite-dimensional plant.

Consider theN -channel decentralized plantZ in Fig. 1, which is
assumed to be free of unstable decentralized fixed modes [13]. Let
i 2 f1; � � � ; Ng be fixed. Assume, without loss of generality,i = 1.
Let the closed-loop transfer matrix betweenu1 andy1 be denoted by
Ẑ11, where the dependence ofẐ11 on the controllersZc2; � � � ; ZcN is
suppressed for simplicity.

An unstable decentralized fixed zero of Channel 1 is defined as an
element of the closed right half-plane, which remains as a blocking zero
[2], [3] of Ẑ11 for the application of every collection ofN � 1 local
controllersZc2; � � � ; ZcN , which yield that the partially closed-loop
system is stabilizable and detectable around Channel 1.

Decentralized fixed zeros deserve attention because of the perfor-
mance limitations they impose on various sensitivity minimization
problems, which can be explained by referring to Figs. 2 and 3,
whereZc1; � � � ; ZcN are local controllers to achieve two objectives:
1) closed-loop stability and 2) minimization of theH1 norm of the
transfer matrix betweenw andz in Fig. 2.

In Fig. 2, the signalw is a noise affecting the first channel observa-
tion. In Fig. 3, the signalr is a reference signal to be tracked by the first
channel outputy1. The transfer matrix betweenr and the error signale
is identical to the one betweenw andz in Fig. 2. It is easy to compute
the transfer matrix betweenw andz (or thesensitivity function around
Channel 1) equalsS := (I + Ẑ11Zc1)

�1. Let Zc1; Zc2; � � � ; ZcN
be any collection of local controllers satisfying the closed-loop sta-
bility. From [8, Remark and Theorem 3.2] (see also Lemma 2 in the
next section), the controllersZc2; � � � ; ZcN yield that the closed-loop
system is stabilizable and detectable around Channel 1 in the partially
closed-loop configuration of Fig. 1. Then, observe, at each unstable de-
centralized fixed zeros0 of Channel 1,kS(s0)k = 1, regardless of the
controllers chosen. In other words, 1) the sensitivity of the closed-loop
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Fig. 1. Partially closed-loop system.

Fig. 2. Disturbance attenuation.

Fig. 3. Reference tracking.

system against the disturbance signals affecting the first channel mea-
surement, and 2) the tracking error with respect to the reference signals
to be followed by the first channel output cannot be minimized at those
frequencies matching the decentralized fixed zeros of Channel 1.

The rest of the paper is organized as follows. Section II includes
the notation, terminology, and the definitions of certain mathematical
concepts. Section III gives a precise definition of the concept of decen-
tralized fixed zeros and provides their characterization in terms of the
invariant zeros of certain subsystems. Section IV is devoted to some
concluding remarks. The Appendix contains the proof of the main re-
sult.

II. NOTATION AND PRELIMINARIES

Let C denote the field of complex numbers. We letRe(s) denote
the real part ofs 2 C and defineC+ = fs 2 CjRe(s) � 0g, and
C+e = C+ [ f1g. The set of proper real rational functions in the
indeterminates is denoted byPPP and the set of stable proper real rational
functions ofs bySSS. The setPPP s denotes the set of real rational functions
whose denominator polynomials have no roots inC+. In other words,
PPP s is the set of stable (but not necessarily proper) rational functions.
By Ir , we denote the identity matrix of sizer and, by0r�t, the zero
matrix withr rows andt columns. The subscript is dropped if the size
is clear from the context. The transpose of a matrixB is denoted by
B0. LetA be a matrix over ringC or ringPPP . Then, the notationA = 0
is equivalent to sayingA is identically zero; i.e., every entry ofA is the
zero element of the associated ring. IfA is overPPP , rankA is the rank
of A overPPP andrankA(s) is the rank ofA(s) overC, wheres 2 C+
is such that it is not a pole ofA.

Let y = Zu andyc = Zcuc be the transfer matrix representations
of a plant and a compensator, respectively, whereZ 2 PPP p�r andZc 2
PPP r�p. The plant and the compensator are interconnected according to
the rulesu = ve � yc, uc = vce + y, whereve andvce denote some
external inputs to the closed-loop system. The closed-loop system is
well definedif (I + ZZc) is nonsingular and(I + ZZc)

�1 is overPPP ,
in which case the transfer matrix description for the closed-loop system
is [y0 y0c]

0 = G[v0e v0ce]
0, where

G :=
Z � ZZc(I + ZZc)

�1Z �ZZc(I + ZZc)
�1

Zc(I + ZZc)
�1Z Zc(I + ZZc)

�1
:

We say(Z; Zc) is astable pairif the closed-loop system is well defined
andG is a matrix overSSS [12]. The following statements are equivalent
by definition: (Z; Zc) is a stable pair;Zc stabilizesZ; Zc is a stabi-
lizing controller forZ; andthe closed-loop system associated with the
pair (Z; Zc) is stable. The set of stabilizing controllers ofZ will be
denoted by�[Z].

Let a bicoprime fractional representation ofZ overSSS be given by

Z = PQ
�1
R: (1)

An elements0 of Ce is called ablocking zeroof Z 2 PPP p�r if Z(s0) =
0 [2], [3]. An unstable blocking zero can also be characterized via the
proper stable Rosenbrock system matrix

� :=
Q R

�P 0

associated with a bicoprime fractional representation (1). A number
s0 2 C+e is an unstable blocking zero ofZ if and only ifrank�(s0) =
size(Q). Given a (not necessarily bicoprime) fractional representation
(1), a numbers0 2 C+e is called anunstable invariant zeroassoci-
ated with thelth invariant factor of� (or of the system(P;Q;R)) if
rank�(s0) � l � 1. Now, letZc = PcQ

�1
c be a right coprime frac-

tional representation ofZc overSSS. Then,(Z; Zc) is a stable pair if and
only if the matrix

Q RPc

�P Qc

(2)

is unimodular overSSS [1] or, equivalently, invertible overSSS.
We denote byN the ordered set of integersf1; 2; � � � ; Ng. LetZ =

[Zij ], Zij 2 PPP p �r , i; j 2 N , be anN -channel plant.Decentral-
ized stabilization problem(DSP) is defined as determining a controller
Zc = diagfZc1; � � � ; ZcNg, whereZci 2 PPP r �p , i 2 N , such that
(Z; Zc) is stable. If such aZc exists, we sayZc solves DSP forZ.
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By definition, this is equivalent to sayingZc is a decentralized sta-
bilizing controller forZ. Let the matricesP andR in (1) be parti-
tioned asP = [P 0

1 � � � P 0

N ]0 andR = [R1 � � � RN ], where
PiQ

�1Rj = Zij . DSP forZ is solvable if and only ifZ has noun-
stable decentralized fixed modes[13]. An equivalent solvability con-
dition can be given in terms of the fractional representation above as
follows. For a proper subsetL of N , defineN � L to be the com-
plement ofL in N . For a setK of positive indexes,RK denotes the
submatrix ofR consisting ofRi ’s with indexes inK. PK is defined
similarly.

Lemma 1: DSP is solvable if and only if for every proper subsetL
of N , [8], [5, Ch. 4], it holds that

rank
Q RL

�PN�L 0
(s) � size(Q); 8 s 2 C+: (3)

For all other undefined terminology and notation pertaining to the
algebraic and topological structure of the ringSSS and for matrices over
SSS, we refer the reader to [7], [11], and [12].

III. D ECENTRALIZED FIXED ZEROS

LetZ be the transfer matrix of anN -channel system(N > 1), so it
is in the partitioned formZ = [Zij ], whereZij 2 PPP p �r , i; j 2 N
such that N

i=1 pi = p and N

i=1 ri = r. Let a bicoprime fractional
representation ofZ overSSS be given by

Z = [P 01 � � � P 0N ]0Q�1 [R1 � � � RN ] (4)

for somePi 2 SSSp �q, Ri 2 SSSq�r , i = 1; � � � ; N , andQ 2 SSSq�q,
soZij = PiQ

�1Rj , i; j = 1; � � � ; N . For eachi 2 NNN , define the
matrix shown at the bottom of the page, wherePcjQ

�1
cj = Zcj ,

j = 1; � � � ; N , j 6= i, are coprime representations overSSS. If the
controllersZcj , j = 1; � � � ; N , j 6= i, are such that the repre-
sentation above is bicoprime. Then, it is said the transfer matrix
�i(Zc1; � � � ; Zc(i�1); Zc(i+1); � � � ; ZcN ) is stabilizable and de-
tectable around Channeli [7, Ch. 7]. In other words,Zci is the
set of all controllers, which, when applied around the Channels
1; � � � ; i � 1; i + 1; � � � ; N , make the resulting single-channel system

around Channeli stabilizable and detectable. A relation betweenZci

and the set of decentralized stabilizing controllers ofZ is constructed
by the following lemma, a proof of that can be obtained via [8, Remark
and Theorem 3.2].

Lemma 2: For any diagfZc1; � � � ; ZcNg solving DSP
for Z, (Zc1; � � � ; Zc(i�1), Zc(i+1); � � � ; ZcN ) 2 Zci, for
all i 2 N . Conversely, for a fixedi 2 N , consider any
(Zc1; � � � ; Zc(i�1), Zc(i+1); � � � ; ZcN ) 2 Zci. Then, Zci exists
such thatdiagfZc1; � � � ; Zc(i�1),Zci; Zc(i+1); � � � ; ZcNg solves DSP
for Z.

Let i 2 N be fixed. A numbers0 2 C+e is called an unstablede-
centralized fixed zero of Channeli of theN -channel systemZ if s0 is
a blocking zero of�i(Zc1; � � � ; Zc(i�1); Zc(i+1); � � � ; ZcN ) for every
element(Zc1; � � � ; Zc(i�1), Zc(i+1); � � � ; ZcN ) of Zci. That is,s0 is
called an unstable decentralized fixed zero of Channeli of Z, if s0 ap-
pears as a blocking zero of Channeli in the partially closed-loop system
resulting from the application of everyN � 1 local controllers around
the other channels, which yield that the single-channel system around
Channeli is stabilizable and detectable. For some local controllers in
Zci, an elements0 of C+e can appear as a blocking zero at Channel
i in the partially closed-loop system, regardless of whethers0 is a de-
centralized fixed zero. Ifs0, however, is not a decentralized fixed zero,
it can always be removed by the application of some other local con-
trollers inZci.

The following theorem is the main result of this paper and gives an
explicit characterization of unstable decentralized fixed zeros. Using
the Fuhrmann equivalence overPPP s of any two bicoprime fractional
representations ofZ [6], the characterization below does not depend
on a particular bicoprime representation ofZ.

Theorem 1: Let anN -channel transfer matrixZ = [Zij ] have no
C+ decentralized fixed modes and have the bicoprime fractional rep-
resentation (4). DefineL = N � fig. Let i 2 N be fixed. A number
s0 2 C+e is an unstable decentralized fixed zero of Channeli of the
N -channel systemZ if and only if for some subsetK of L the fol-
lowing holds:

rank

Q Ri RK

�Pi 0 0

�PL�K 0 0

(s0) = q(= size(Q)): (5)

Zci = Zc1; � � � ; Zc(i�1); Zc(i+1); � � � ; ZcN 2 PPP
r �p � � � � � PPP

r �p � PPP
r �p � � � � � PPP

r �p j

�i Zc1; � � � ; Zc(i�1); Zc(i+1); � � � ; ZcN :=

[Pi 0 � � � 0 0 � � � 0]

Q R1Pc1 � � � Ri�1Pc(i�1) Ri+1Pc(i+1) � � � RNPcN

�P1 Qc1 � � � 0 0 � � � 0
...

...
. . .

...
...

...
�Pi�1 0 � � � Qc(i�1) 0 � � � 0

�Pi+1 0 � � � 0 Qc(i+1) � � � 0
...

...
...

...
...

. . .
...

�PN 0 � � � 0 0 � � � QcN

�1
Ri

0
...
0

0
...
0

is bicoprime:
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Remark 1: WheneverK orL�K is empty, the corresponding block
in (5) does not appear. For instance, whenN = 2, the set of unstable
decentralized fixed zeros of Channel 1 is

s0 2 C+e rank
Q R1 R2

�P1 0 0
(s0) = q or

rank

Q R1

�P1 0

�P2 0

(s0) = q :

Similarly, whenN = 3, the set of unstable decentralized fixed zeros
of Channel 1 is given by

s0 2 C+e rank
Q R1 R2 R3

�P1 0 0 0
(s0) = q or

rank

Q R1

�P1 0

�P2 0

�P3 0

(s0) = q or

rank

Q R1 R2

�P1 0 0

�P3 0 0

(s0) = q or

rank

Q R1 R3

�P1 0 0

�P2 0 0

(s0) = q :

Remark 2: The result of the theorem can be equivalently stated as
follows. LetZ in (4) be free of unstable decentralized fixed modes. A
numbers0 2 C+e is a decentralized fixed zero of Channeli if and only
if it is an invariant zero associated with theq + 1st invariant factor of
one of the subsystems

Pi
�PL�K

; Q; [Ri RK ] :

Remark 3: The characterization in the theorem has been given,
starting with a particular fractional representation as in (1) or (4) of
Z. This is only for notational convenience. The result of the theorem
extends to the more general bicoprime representation

Z =

P1
...
PN

Q�1 [R1 � � � RN ] +

W11 � � � W1N

...
...

WN1 � � � WNN

(6)

as follows. A numbers0 2 C+e is an unstable decentralized fixed
zero ofZ of Channeli; i.e., it is a blocking zero of any partially
closed-loop system obtained by applying local controllers around the
channels1; � � � ; i � 1; i + 1; � � � ; N such that the closed-loop system
is stabilizable and detectable and free of unstable decentralized fixed
modes, if and only if for some subsetK of L the following holds:

rank

Q Ri RK
�Pi Wii WfigK

�PL�K W(L�K)fig W(L�K)K

(s0) = q(= size(Q))

where WMN denotes the submatrix of[Wij ] in (6) consisting
of Wmn’s with m 2 M; n 2 N . Given a state-space rep-
resentationZ = H(sI � F )�1G + J , a fractional rep-
resentation of the type (6) can be readily obtained by letting
(P;Q;R;W ) := (H=(s+ �); (sI � F )=(s+ �); G; J), where� is
an arbitrary positive real number.

Remark 4: By hypothesis of the theorem,Z has no unstable decen-
tralized fixed modes, which implies

rank

Q Ri RK
�Pi 0 0

�PL�K 0 0

(s0) � q

for anys0 2 C+e, as by Lemma 1, each matrix above has a submatrix
of rank more thanq. We can then use “=” and “�” interchangably in
(5).

Remark 5: In [8], a hierarchically stable design procedurefor de-
centralized stabilizing controllers has been proposed, where at each
step the local compensator can be chosen as a stabilizing compen-
sator of the respective channel in the closed-loop system. Lets0 2
C+e not be an unstable decentralized fixed zero of Channel 1, and
consider any permutationfi2; � � � ; iN�1; iNg of f2; � � � ; N � 1; Ng.
Lemma 4(ii) (Appendix), the proof of [Only If] part of the Theorem
(Appendix), and [8, Thm. 4.2] show, in a hierarchically stable design
procedure following the orderiN , iN�1; � � � ; i2, 1 (i.e., a local con-
troller is first applied to ChanneliN , then ChanneliN�1, etc.) for al-
most all1 local compensators stabilizing the respective channel in the
partially closed-loop system,s0 is not a blocking zero of Channel 1.
This result is needed in the synthesis of decentralized stabilizing con-
trollers achieving a tracking objective (see Example 4 below).

Examples 1: Consider a 2 × 2 plant

Z =

s� 3

s+ 1

s� 2

s+ 1

2(s� 3)

s� 1

s� 2

s� 1

=
1 0

0 1

1 0

0
s� 1

s+ 1

�1
s� 3

s+ 1

s� 2

s+ 1

2(s� 3)

s+ 1

s� 2

s+ 1

:

By the theorem, the only unstable decentralized fixed zero of Channel
1 is 3 and the only unstable decentralized fixed zero of Channel 2 is 2.

Example 2: In this example, we show an unstable decentralized
fixed zero can also be a pole of the plant. Consider the following 2
× 2 plant

Z =
0 1

1
s+ 1

s� 1

=
1 0

0 1

1 0

0
s� 1

s+ 1

�1 0 1
s� 1

s+ 1
1

:

The only unstable decentralized fixed zero of Channel 1 is one, which
is also a pole.

Example 3: Consider the stable transfer matrix

Z :=

s

(s+ 1)2
0:1s

(s+ 1)2
0:1s

(s+ 1)2

1

(s+ 1)

1

(s+ 1)

0:1s

(s+ 1)2

0:1s

(s+ 1)2
0:1s

(s+ 1)2
s

(s+ 1)2

:

It represents the following input/output relation:

[y1 y2 y3]
0 = Z[u1 u2 u3]

0:

Assume the objective is to design a decentralized controller consisting
of three scalar local controllersZc1, Zc2, Zc3 to guarantee that the
outputy1 tracks the step inputs at steady state while maintaining the
stability of the system [consider Fig. 3, whereN = 3, ui = �Zciyi,
i = 2; 3,u1 = Zc1(r�y1),ui = 0, i = 1; 2; 3]. Obtain the bicoprime

1The term “almost all” is defined with respect to the subspace topology in-
duced by graph topology [7, Ch. 1], [12].
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fractional representation (4) ofZ overSSS such thatQ = I3, P1 =
[1 0 0], P2 = [0 1 0], P3 = [0 0 1], andRi equals theith column
of Z, i = 1; 2; 3. Observe

rank

Q R1 R2

�P1 0 0

�P3 0 0

(0) = 3

implying that zero is an unstable decentralized fixed zero associated
with Channel 1. In other words, no decentralized stabilizing feedback
is available to achieve thaty1 tracks the step inputs at steady state.

Example 4: To illustrate the synthesis of a decentralized stabilizing
compensator as in Fig. 3, which guarantees the outputy1 tracks the
step inputs at steady state while maintaining the stability of the system,
suppose in the previous exampleZ(1; 2) is changed toZ(1; 2) =
(0:1(s+ 0:5)=(s+ 1)2). In this new system, Channel 1 becomes free
of unstable decentralized fixed zeros. In this case, a decentralized con-
troller can be designed to achieve the tracking objective as follows. Let
Zc3 be any controller stabilizingZ(3; 3) and applyZc3 to the third
control channel ofZ. The controllerZc3 should satisfy that 1) the re-
sulting two-channel partially closed-loop system, denoted by~Z , is sta-
bilizable, detectable, and free of unstable decentralized fixed modes,
and 2) Channel 1 of~Z is devoid of decentralized fixed zeros at the
origin. [Even ifZc3 does not satisfy both 1) and 2), from Remark 5,
any neighborhood ofZc3 contains a controller satisfying both 1) and
2). So no loss of generality occurs by assumingZc3 satisfies both 1)
and 2).] Now, letZc2 be any controller stabilizing the second channel
transfer function of~Z, and applyZc2 to the second control channel
of ~Z . Via Remark 5, we can assume, possibly by slightly perturbing
Zc2, the resulting single-channel partially closed-loop system is stabi-
lizable, detectable, and free of blocking zeros at the origin. It is now
well known how to design a controller for that single-channel system
that achieves stability and the desired tracking objective (see, for ex-
ample, [4, Ch. 9]).

IV. CONCLUSIONS

This paper gives a characterization of unstable decentralized fixed
zeros in terms of the plant-invariant zeros. The motivation for studying
the decentralized fixed zeros originates from the performance limita-
tions imposed by decentralized feedback structures, especially in the
tracking and regulation problems. Because an unstable decentralized
fixed zero associated with a particular channel appears as a blocking
zero of that channel under any decentralized stabilizing controller, it
prescribes a bound beyond which the norm of the sensitivity function
cannot be minimized by a stabilizing decentralized controller.

In [11], decentralized blocking zeros that determine the solvability
conditions for the decentralized strong stabilization problem have been
described in terms of decentralized fixed zeros. For 2 × 2 decentralized
systems, the notion of decentralized fixed zeros and its implications on
H1 sensitivity minimization problem have earlier been studied in [10].

APPENDIX

The following easy technical result is Lemma A.1 in [9].
Lemma 3: Let ~D 2 SSS~p�~r , ~E 2 SSS~p�~n, ~F 2 SSS ~m�~r andX0 2

SSS~n� ~m, where~p � 2, ~r � 2. Let q0 be an integer satisfying0 < q0 <
min(~p; ~r) such thatrank( ~D+ ~EX0

~F ) � q, for all z 2 C+e. Then,
givenz0 2 C+e, any ball aboutX0 2 SSS~n� ~m contains aX0 for which
rank( ~D + ~EX0

~F )(z0) > q0 if and only if

rank[ ~D ~E](z0) > q0 and rank[ ~D0 ~F 0]0(z0) > q0:

We need Lemma 4 below in the proof of the Theorem. Lemma 4(i)
can be proven using [11, Lemma 6]. The proof of Lemma 4(ii) is based
on Lemma 3 and is straightforward.

Lemma 4: ConsiderTi 2 SSSt �q , Si 2 SSSq�s , i = 1; 2, and a
biproperQ11 2 SSSq�q such that(Q11; [S1 S2]) and(Q11; [T

0

1 T 02]
0)

are left and right coprime, respectively, and the two-channel plant
[T 01 T 02]

0Q�111 [S1 S2] has no unstable decentralized fixed modes.
DefineZ11 = T1Q

�1

11 S1. Let

Zc := Zc = PcQ
�1
c 2 PPP s �t for right coprime(Qc; Pc)j

[T2 0]
Q11 S1Pc
�T1 Qc

�1
S2
0

is bicoprime :

i) For anys0 2 C+e satisfying

rank
Q11 S2 S1
�T2 0 0

(s0) � q or

rank

Q11 S2
�T2 0

�T1 0

(s0) � q; (7)

it holds thats0 is a blocking zero of

GZ := [T2 0 ]
Q11 S1Pc
�T1 Qc

�1
S2
0

(8)

for all Zc = PcQ
�1
c 2 Zc, where the fractional representation

of Zc is coprime.
ii) Let (7) fail for somes0 2 C+e. Then, for almost allZc 2

�[Z11], s0 is not a blocking zero ofGZ , where the term “almost
all” is defined with respect to the subspace topology induced by
graph topology.

Proof of the Theorem:We prove the theorem for the caseN = 3.
The caseN > 3 can be handled via induction in a straightforward way.
[If] Assume, for notational simplicity,i = 1. Let two coprime fractions
Pc2Q

�1

c2 , Pc3Q�1c3 overSSS be such that

[P1 0 0]

Q R2Pc2 R3Pc3
�P2 Qc2 0

�P3 0 Qc3

�1 R1

0

0

(9)

is bicoprime. It holds that [8, Thm. 3.2]

P1 0

P2 0

Q R3Pc3
�P3 Qc3

�1
R1 R2

0 0
(10)

is also bicoprime, and the two-channel system (10) has noC+ decen-
tralized fixed modes. Lets0 2 C+e be such that

rank
Q R1 R2 R3

�P1 0 0 0
(s0) � q or

rank

Q R1 R2

�P1 0 0

�P3 0 0

(s0) � q: (11)

Equation (11) implies

rank

Q R3Pc3 R1 R2

�P3 Qc3 0 0

�P1 0 0 0

(s0) � q + p3: (12)
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Similarly, if s0 2 C+e satisfies

rank

Q R1

�P1 0

�P2 0

�P3 0

(s0) � q or

rank

Q R1 R3

�P1 0 0

�P2 0 0

(s0) � q; (13)

then,

rank

Q R3Pc3 R1

�P3 Qc3 0

�P2 0 0

�P1 0 0

(s0) � q + p3: (14)

Because the statement holds true forN = 2, anys0 2 C+e for which
(12) or (14) holds is a decentralized fixed zero of Channel 1 of the
two-channel system (10). Now, by Lemma 3(i),s0 2 C+e is a blocking
zero of (9). BecausePc2Q�1c2 , Pc3Q�1c3 are arbitrary,s0 2 C+e is an
unstable decentralized fixed zero of Channel 1 ofZ. This completes
the proof.

[Only If ] For N = 2, the proof follows from Lemma 4(ii). For
N = 3, letZc3 = Pc3Q

�1

c3 2 �[P3Q
�1R3] for a right coprime pair

of matrices(Pc3; Qc3) be such that the fraction in (10) is bicoprime
and the two-channel transfer matrix in (10) has noC+ decentralized
fixed modes. Such aZc3 exists via [8, Thm 3.2] and the fact thatZ has
noC+ decentralized fixed modes. Lets0 2 C+e be such that (11) and
(13) both fail. Using Lemma 3, we can perturbPc3 andQc3 slightly
to P c3 = Pc3 + �P andQc3 = Qc3 + �Q to ensureP c3Q

�1

c3 =

(Pc3+�P )(Qc3+�Q)
�1 is still a right coprime fraction,P c3Q

�1

c3 2

�[P3Q
�1R3]

rank

Q R3P c3 R1 R2

�P3 Qc3 0 0

�P1 0 0 0

(s0)

= rank

Q 0 R1 R2

�P3 0 0 0

�P1 0 0 0

+

R3 0

0 I

0 0

0 P c3 0 0

0 Qc3 0 0

> q + p3;

rank

Q R3P c3 R1

�P3 Qc3 0

�P1 0 0

�P2 0 0

(s0)

= rank

Q 0 R1

�P3 0 0

�P1 0 0

�P2 0 0

+

R3 0

0 I

0 0

0 0

P c3

Qc3

[ 0 I 0 ]

> q + p3;

and the fractional representation of the two-channel plant

Z :=
P1 0

P2 0

Q R3(Pc3 +�P )

�P3 (Qc3 +�Q)

�1
R1 R2

0 0

is bicoprime and devoid of unstable decentralized fixed modes. Ap-
plying the result forN = 2 to Z , s0 is not an unstable decentralized

fixed zero of Channel 1 ofZ . Consequently,s0 is not an unstable de-
centralized fixed zero of Channel 1 ofZ. This completes the proof.
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