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equationi; = u; and the expression of the conteal(z, t) (see [10], Fixed Zeros of Decentralized Control Systems
for example). [ ]
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1. NOTATION AND PRELIMINARIES

—4ieN
‘ Let C denote the field of complex numbers. We I&t(s) denote

the real part ofs € C and defineCy = {s € C|Re(s) > 0}, and
Cte = C4 U {oo}. The set of proper real rational functions in the
S indeterminate is denoted byP and the set of stable proper real rational
functions ofs by S. The setP, denotes the set of real rational functions
whose denominator polynomials have no root§.in In other words,
P, is the set of stable (but not necessarily proper) rational functions.
By I., we denote the identity matrix of sizeand, by0, «:, the zero
Uy — YN _matrix withr rows andt columns. The subscript is drppped if the size

: : is clear from the context. The transpose of a maBixs denoted by

Uy O Z : Y2 DB'. Let A be a matrix over ring or ring P. Then, the notationt = 0
is equivalent to saying is identically zero; i.e., every entry of is the
zero element of the associated ringAlfis over P, rank A is the rank
of A overP andrank A(s) is the rank ofA(s) overC, wheres € C
Fig. 1. Partially closed-loop system. is such that it is not a pole of.

Lety = Zu andy. = Z.u. be the transfer matrix representations
of a plant and a compensator, respectively, wiere P?*" andZ. €
725 B — PP, The plant and the compensator are interconnected according to
the rulesu = v, — y., . = v.. + vy, Wherev, andv.. denote some
external inputs to the closed-loop system. The closed-loop system is
well definedf (I + ZZ.) is nonsingular andl + ZZ.)™" is overP,

/7 N h— in which case the transfer matrix description for the closed-loop system
isly vy.]' = GJv. v..]', where

L2

Ul — —_— 1

[Z-ZZ(1+ Z2Z)'2 -zZzZ.(I1+22Z.)""

G = . )
a Z.I1+22.)"'Z Z(I+22.)""
Uy _.é N YN
: Z : _ We say(Z. Z..) is astable pairif the closed-loop system is well defined
U NG . IR =z ? A i i
! i n andG is a matrix ovelS [12]. The following statements are equivalent
w by definition: (Z, Z..) is a stable pairZ. stabilizesZ; Z. is a stabi-

lizing controller for Z; andthe closed-loop system associated with the
pair (Z, Z.) is stable The set of stabilizing controllers & will be
denoted by:[Z].

e r Let a bicoprime fractional representationfoverS be given by

Fig. 2. Disturbance attenuation.

_ — (O
< - 7 =PQ7'R. )
An elements, of C. is called ablocking zeroof Z € PP*" if Z(s) =
I I DU 0 [2], [3]. An unstable blocking zero can also be characterized via the
e proper stable Rosenbrock system matrix
_| @ R
= {—P 0
U1 —0) t W associated with a bicoprime fractional representation (1). A number
: A : so € C+. isanunstable blocking zero gfif and only ifrank TI(s¢) =
UN _.O_. Un . . . . . . .
lin size((Q). Given a (not necessarily bicoprime) fractional representation

(1), a numbersy € C4. is called anunstable invariant zerassoci-
ated with the'th invariant factor oflT (or of the system{ P, Q. R)) if
rankII(s0) < I — 1. Now, letZ. = P.Q." be a right coprime frac-
tional representation df. overS. Then,(Z, Z.) is a stable pair if and
system against the disturbance signals affecting the first channel mgaly if the matrix
surement, and 2) the tracking error with respect to the reference signals
to be followed by the first channel output cannot be minimized at those @ RP.
frequencies matching the decentralized fixed zeros of Channel 1. {_p Q. }

The rest of the paper is organized as follows. Section Il includes
the notation, terminology, and the definitions of certain mathematicalunimodular ovesS [1] or, equivalently, invertible ove§.
concepts. Section Ill gives a precise definition of the concept of decenWe denote by\" the ordered set of integef,2,---, N}. LetZ =
tralized fixed zeros and provides their characterization in terms of thg;;], Z;; € P**"3,4,5 € N, be anN-channel plantDecentral-
invariant zeros of certain subsystems. Section 1V is devoted to soimed stabilization problertDSP) is defined as determining a controller
concluding remarks. The Appendix contains the proof of the main r&. = diag{Z.1,---, Z.n}, WwhereZ,, € P"*?i i € A/, such that
sult. (Z,Z.) is stable. If such &, exists, we sayZ. solves DSP forZ.

Fig. 3. Reference tracking.

)
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By definition, this is equivalent to saying. is a decentralized sta- around Channel stabilizable and detectable. A relation betwegn
bilizing controller for Z. Let the matricesP and R in (1) be parti- and the set of decentralized stabilizing controllergaé constructed
tioned asP = [P --- Py]) andR = [R1 --- Rx], where by the following lemma, a proof of that can be obtained via [8, Remark
P,Q 'R; = Z;;. DSP forZ is solvable if and only iZ has noun- and Theorem 3.2].
stable decentralized fixed modgs]. An equivalent solvability con- Lemma 2:For any diag{Z.,---,Z.n} solving DSP
dition can be given in terms of the fractional representation abovefas Z, (Z.i,---,Zc—1), Ze(it1)s-*"»>ZeN) € 2., for
follows. For a proper subset of A, defineA” — £ to be the com- all i € A. Conversely, for a fixedi € A", consider any
plement ofZ in A, For a set of positive indexesRx denotes the (Z.1,++, Z.i—1), Zetit1),* "> Zen) € Ze. Then, Z., exists
submatrix of R consisting ofR;’s with indexes inkC. Px is defined suchthatliag{Z..,---, Z.(i—1), Zei, Ze(it1), - -+ » Zen } SOVES DSP
similarly. for Z.
Lemma 1: DSP is solvable if and only if for every proper subget Let: € N be fixed. A number, € C.. is called an unstablde-
of \V, [8], [5, Ch. 4], it holds that centralized fixed zero of Channetf the N -channel systen? if sq is
a blocking zero ofb; (Zc1, - -+, Ze(i—1)s Ze(i+1), - -+ » Zen' ) fOr every
element(Ze.i, -+, Zoi—1y, Ze(it1), "+ Zen) Of Zei. That is, sq is
called an unstable decentralized fixed zero of ChahoélZ, if s ap-
pears as a blocking zero of Chanhil the partially closed-loop system
For all other undefined terminology and notation pertaining to th@sulting from the application of every — 1 local controllers around
algebraic and topological structure of the rifigind for matrices over the other channels, which yield that the single-channel system around

Q

nk
ran |:_P.N'—L

Tlozse@. vee. @

S, we refer the reader to [7], [11], and [12]. Channeli is stabilizable and detectable. For some local controllers in
Z.i, an element, of C;. can appear as a blocking zero at Channel
IIl. D ECENTRALIZED FIXED ZEROS i in the partially closed-loop system, regardless of whethds a de-

centralized fixed zero. l§o, however, is not a decentralized fixed zero,
it can always be removed by the application of some other local con-
trollers in Z..;.

The following theorem is the main result of this paper and gives an
explicit characterization of unstable decentralized fixed zeros. Using
the Fuhrmann equivalence ovE; of any two bicoprime fractional

Let Z be the transfer matrix of alV-channel systertV. > 1), so it
is in the partitioned forn¥ = [Z;;], whereZ,; € P*i*"i i, j € N
such thaty>"  p, = pand>.", r; = r. Let a bicoprime fractional
representation of overS be given by

Z=[P - PYI'Q7'[Ri --- Ry] (4)  representations o [6], the characterization below does not depend
on a particular bicoprime representationf
for someP; € S**4 R, € §9*",{ =1,---,N,andQ € §9*1, Theorem 1: Let an N-channel transfer matri¥ = [Z;;] have no
soZij = P,Q'R;,i,j = 1,---,N.Foreach € N, define the (¢, decentralized fixed modes and have the bicoprime fractional rep-
matrix shown at the bottom of the page, th?BjQ;jl = Z, resentation (4). Defin€ = NV — {i}. Leti € N be fixed. A number
j =1,---,N,j # i, are coprime representations ov&r If the s, ¢ C,. is an unstable decentralized fixed zero of Charireflthe
controllersZ.;, j = 1,---,N, j # i, are such that the repre- N¥-channel systent if and only if for some subseX of £ the fol-

sentation above is bicoprime. Then, it is said the transfer matiigwing holds:
Q(Zer, . Zeim1)s Ze(igr), -+ Zen) IS stabilizable and de-

tectable around Channél [7, Ch. 7]. In other wordszZ.; is the Q R, Rk
set of all controllers, which, when applied around the Channels rank | —F; 0 0 | (s0) =gq(=size(Q)). (5)
1,---,i—=1,i+ 1,---, N, make the resulting single-channel system —Pr_x 0 O
Zui = (Zt‘l‘/...7ZC(T.71)?ZC(i+1)E---7ZCJ’\/) S P7'1><p1 X X PW’g71XPg71 X P"i+1><l’i+1 Xoeee X P”NXPN
B (Zets ooy Ze(io1)s Ze(in)s + s Zon ) 1=
rQ Py -+ RioaPyioy RitiPegyny -+ BNPenT - [R;T
-P Qo1 ... 0 0 . 0 0
[Pi0---00---0] [ P 0 o Qegizn 0 0 0 | is bicoprime
—Pity 0 0 Qu(i+l) 0 0
| —Pn 0 0 0 cer Qv L O ] J
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Remark 1: WheneveK or £ — K is empty, the corresponding block Remark 4: By hypothesis of the theorer#, has no unstable decen-
in (5) does not appear. For instance, whién= 2, the set of unstable tralized fixed modes, which implies
decentralized fixed zeros of Channel 1 is

R R rank —P, 0 0 |(s0)>¢q
so € Cye |rank |:—?31 01 02:| (s0) = ¢ or —Prx O 0
0 R foranyso € Cy., as by Lemma 1, each matrix above has a submatrix
of rank more thary. We can then use=" and “<” interchangably in

rank | =Py 0 | (s0) =¢

-, 0 (5).

Remark 5: In [8], a hierarchically stable design procedufer de-
Similarly, whenN = 3, the set of unstable decentralized fixed zerogentralized stabilizing controllers has been proposed, where at each
of Channel 1 is given by step the local compensator can be chosen as a stabilizing compen-
sator of the respective channel in the closed-loop systemsd et

C4+. not be an unstable decentralized fixed zero of Channel 1, and

50 € Cyo |rank Q I R I3 (s0) = g or consider any permuta_tio{ig, ceeyin—t,inyof {2,--- N —1,N}.
|-/ 0 0 O Lemma 4(ii) (Appendix), the proof of [Only If] part of the Theorem
(Appendix), and [8, Thm. 4.2] show, in a hierarchically stable design
T Q R procedure following the ordetv, in—1,--,i2, 1 (i.e., a local con-
P 0 troller is first applied to Channélv, then Channelr_,, etc.) for al-
rank _pP, 0 (s0) =gor most alF local compensators stabilizing the respective channel in the
P 0 partially closed-loop systens, is not a blocking zero of Channel 1.
- O R Rl This result is needed in the synthesis of decentralized stabilizing con-
trollers achieving a tracking objective (see Example 4 below).
rank | =P 00 | (s0) =g or Examples 1: Consider a 2 x 2 plant
|- 0 0 |
s—3 §— 2
[ Q@ R Rz s+ 1 s+ 1
rank | =P 0 0 | (s0)=g¢q,. zZ= 2As—3) s—2
L= 00 o1 s 1- s—3 s—2
Remark 2: The result of the theorem can be equivalently stated as _ {1 0} {1 9 Yl osHD s+l
follows. LetZ in (4) be free of unstable decentralized fixed modes. A 0 1][0 s+14 2(s—3) s—2
numbersy € C4. is a decentralized fixed zero of Channéland only s+1 s+ 1

if it is an invariant zero associated with thet 1st invariant factor of By the theorem, the only unstable decentralized fixed zero of Channel
one of the subsystems 1is 3 and the only unstable decentralized fixed zero of Channel 2 is 2.

P, Example 2: In this example, we show an unstable decentralized
<|:—Pg J s Q,[Ri Rg ]) . fixed zero can also be a pole of the plant. Consider the following 2
B x 2 plant

Remark 3: The characterization in the theorem has been given,
starting with a particular fractional representation as in (1) or (4) of 7 0 1 [t o0 1 0 0 1
Z. This is only for notational convenience. The result of the theorem = ~— | 1 s+1]= 0 1 0 s—1 Q 10
extends to the more general bicoprime representation s s+1 s+1
The only unstable decentralized fixed zero of Channel 1 is one, which
Py Wi - Win is also a pole.
Z=| 1 |Q "' [R - Rn]+ : : (6) Example 3: Consider the stable transfer matrix

Py Wyt -+ Wnan s 0.1s 0.1s

2 2 2
as follows. A number, € Cy. is an unstable decentralized fixed (84_11) (8—1—11) (s+1)

zero of Z of Channeli; i.e., it is a blocking zero of any partially 7 .= 0.1s
closed-loop system obtained by applying local controllers around the (s+1) (s+1) (s+1)?
channeld,---,i — 1,i + 1,---, N such that the closed-loop system 0.1s 0.1s s

is stabilizable and detectable and free of unstable decentralized fixed (s+1)2 (s+1)2 (s+1)
modes, if and only if for some subsktof £ the following holds:

Q R; Rx
- . [yl Y2
rank —-PF Wii Wink (50) = q(=size(Q))
—Pex Wiy We—nx Assume the objective is to design a decentralized controller consisting
of three scalar local controller8.i, Z.», Z.s to guarantee that the
outputy,; tracks the step inputs at steady state while maintaining the

—1

It represents the following input/output relation:

yg]l = Z[ﬂ1 Uz U3]I.

where Waqn denotes the submatrix ofi¥;;] in (6) consisting

of Win's with m M, N. Given a state-space rep- . . .

. '_” € M E —1 SP P stability of the system [consider Fig. 3, whe¥e= 3,u; = —Z.;y:,
resentatonZ = H(sI — F)~'G + J, a fractional rep- 9.3 = Zo1 (r—y1 ), us = 0, = 1,2, 3], Obtain the bicoprime
resentation of the type (6) can be readily obtained by letting - ~'"!' = <!\ =¥l U =00 =129l : icoprt
(P,Q,RW):=(H/(s+0),(s] - F)/(s+0),G,J), wheres is IThe term “almost all” is defined with respect to the subspace topology in-
an arbitrary positive real number. duced by graph topology [7, Ch. 1], [12].
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fractional representation (4) &f over S such thatQ) = I3, P, = We need Lemma 4 below in the proof of the Theorem. Lemma 4(i)
[100,P=[010],Ps=[0 0 1], andR; equals théth column can be proven using [11, Lemma 6]. The proof of Lemma 4(ii) is based
of Z,i = 1,2,3. Observe on Lemma 3 and is straightforward.
Lemma 4: ConsiderI; € S§'* S, € §%%*% ; = 1,2, and a
O R R biproperQq1 € $7*% such that{Q11,[S1 S2]) and(Q11,[T] T3]')

are left and right coprime, respectively, and the two-channel plant
[T T3)Q7'[S1 S2] has no unstable decentralized fixed modes.
DefineZn = T1Q171151 . Let

implying that zero is an unstable decentralized fixed zero associated
with Channel 1. In other words, no decentralized stabilizing feedback = .— ! 7z — p.g=' € P*2*** for right copriméQ.. P.)|
is available to achieve thgt tracks the step inputs at steady state. o

rank [-P1 0 0 |(0)=3
-P 0 0

Example 4: To illustrate the synthesis of a decentralized stabilizing
compensator as in Fig. 3, which guarantees the oufputacks the [I> 0] {
step inputs at steady state while maintaining the stability of the system,
suppose in the previous exampl 1, 2) is changed taZ(1,2) =
(0.1(s 4+ 0.5)/(s + 1)%). In this new system, Channel 1 becomes free i) For anyso € Cy. satisfying
of unstable decentralized fixed zeros. In this case, a decentralized con-

—1
,QTH Séch} {%} is bicoprime}.
—41 c

troller can be designed to achieve the tracking objective as follows. Let rank { Qu S 5 } (s0) < qor

Z.; be any controller stabilizingZ(3, 3) and applyZ.; to the third - 0 0 -

control channel ofZ. The controllerZ.; should satisfy that 1) the re- Qi 52

sulting two-channel partially closed-loop system, denoted big sta- rank | =75 0 | (s0) <q, @)
bilizable, detectable, and free of unstable decentralized fixed modes, -7 0

and 2) Channel 1 of is devoid of decentralized fixed zeros at the

origin. [Even if Z.3 does not satisfy both 1) and 2), from Remark 5, it holds thats, is a blocking zero of

any neighborhood of .3 contains a controller satisfying both 1) and
2). So no loss of generality occurs by assumifig satisfies both 1)
and 2).] Now, letZ., be any controller stabilizing the second channel
transfer function ofZ, and applyZ., to the second control channel
of Z. Via Remark 5, we can assume, possibly by slightly perturbing  forall Z, = P.Q.! € Z., where the fractional representation
Z.2, the resulting single-channel partially closed-loop system is stabi-  of 7. is coprime.
lizable, detectable, and free of blocking zeros at the origin. It is now ji) Let (7) fail for somes, € Ci.. Then, for almost allZ. €
well known how to design a controller for that single-channel system  ¥[Z,,], s, is not a blocking zero off ., where the term “almost
that achieves stability and the desired tracking objective (see, for ex-  all” is defined with respect to the subspace topology induced by
ample, [4, Ch. 9]). graph topology.
Proof of the Theorem:We prove the theorem for the ca®e= 3.
IV. CONCLUSIONS The caseV > 3 can be handled via induction in a straightforward way.

[If] Assume, for notational simplicity,= 1. Let two coprime fractions
This paper gives a characterization of unstable decentralized fixed,)', P.sQ%' overS be such that
zeros in terms of the plant-invariant zeros. The motivation for studying

8)

Gz =T 0]{ Q11 sm}‘l {SQ}

=T Q. 0

the decentralized fixed zeros originates from the performance limita- Q R:Po RsPs| 'R
tions imposed by decentralized feedback structures, especially in the Pr 0 0]|-P Qe 0 0 9)
tracking and regulation problems. Because an unstable decentralized _P 0 Ous 0

fixed zero associated with a particular channel appears as a blocking

zero of that channel under any decentralized stabilizing controller,dtpicoprime. It holds that [8, Thm. 3.2]

prescribes a bound beyond which the norm of the sensitivity function

cannot be minimized by a stabilizing decentralized controller. PO Q RsPs] '[Ri R
In [11], decentralized blocking zeros that determine the solvability |:P2 0} |:—P3 Qus } { 0 0 }

conditions for the decentralized strong stabilization problem have been

described in terms of decentralized fixed zeros. For 2 x 2 decentralizg@|so bicoprime, and the two-channel system (10) hag;ndecen-

systems, the notion of decentralized fixed zeros and its implications §glized fixed modes. Let, € C4. be such that

H_. sensitivity minimization problem have earlier been studied in [10].

(10)

rank |: @ B I R3:| (s0) < qor
APPENDIX —ho0 00
Q@ R R
The following easy technical result is Lemma A.1 in [9]. rank [ =P, 0 0 | (s0)<q. (11)
Lemma3:LetD € SP*", E € §P*" F € §™*" and X, € -P; 0 0
S wherep > 2,7 > 2. Letgo be an integer satisfying < qo <
min(f, 7) such thatank(D+ EX,F) > g, forall = € Ci.. Then, Equation (11) implies
givenzo € Cy., any ball aboutX, € §"*™ contains aX for which

rank(D + EXoF)(z) > qo if and only if Q RsPs | Ri Ry
rank -P Qo 0 0 (so) <qg+ps. (12)
rank[[) E](:o) >qo and rank[[)’ l:"/]’(zo) > qo. -P 0 | 0 0
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Similarly, if sy € C4. satisfies

Q Ri]
-P 0
rank P 0 (s0) < qor
-P; 0 ]
Q IRy R
rank [=P1 0 0 | (s0)<q, (23)
-2 0 0
then,
Q BR3P I
P Qes 0
rank (s0) < g+ ps. (14)
-P 0 ‘ 0
-P 0 0

Because the statement holds true 8= 2, anysq € C4. for which

(12) or (14) holds is a decentralized fixed zero of Channel 1 of the

two-channel system (10). Now, by Lemma 36i),€ C... is a blocking

zero of (9). Becaus®.2 (', P.sQ ;' are arbitraryso € Cy. is an

unstable decentralized fixed zero of Channel 1ZofThis completes
the proof.

[Only If] For N 2, the proof follows from Lemma 4(ii). For
N =3,letZ; = PsQn' € S[Q ' R;] for a right coprime pair
of matrices( P.s, Q.3) be such that the fraction in (10) is bicoprime
and the two-channel transfer matrix in (10) has(hodecentralized
fixed modes. Such &3 exists via [8, Thm 3.2] and the fact thathas
noC; decentralized fixed modes. L&t € C4. be such that (11) and
(13) both fail. Using Lemma 3, we can pertufb; and@.; slightly
t0Pes = Py + Ap andQ,5 = Qus + Ag t0 ensurePsQ, =
(Ps+Ap)(Qu3+Ag) ™" isstillaright coprime fraction?cga;;1 €
S[PQ ™" Rs]

Q RiPs R R
rank [ =P Q.3 0 0 | (s0)
-P 0 0 0
Q 0 R R
= rank -P; 0 0 0
-P 0 0 0
N 133 ? {0 Ps 0 0}
o ol Lo Qs 00
> q+ ps, -
@ BR3P R
_P 9)
rank : PT QOP% g (s0)
-P 0 0
Q 0 R Ry 0
-P; 0 0 0 I|[Pes
= rank - I
Al _p 0 ot o o [QCJ[O 0]
-P 0 0 0 0
> q+ps3,

and the fractional representation of the two-channel plant

ool | IRk

is bicoprime and devoid of unstable decentralized fixed modes. A
plying the result forN- = 2 to Z, s¢ is not an unstable decentralized

0
0

P
P

@ Rs(Ps+ Ap
—-P;  (Qs+Ag)

Ry
0

Ry
0
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fixed zero of Channel 1 aZ. Consequentlys, is not an unstable de-
centralized fixed zero of Channel 1 8f This completes the proof.
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