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Exact Analysis of Offset-Based Service Differentiation in
Single-Channel Multi-Class OBS

H. Emre Kankaya and Nail Akar

Abstract—We study a multi-class optical burst switching (OBS)
node using the horizon reservation scheme. Multiple traffic
classes are differentiated using different offset times per class.
Assuming Poisson burst arrivals and phase-type distributed burst
lengths, we exactly solve for per-class blocking probabilities using
the well-known theory of feedback Markov fluid queues.

Index Terms—OBS, horizon reservation, offset-based service
differentiation, Markov fluid queues.

I. INTRODUCTION

PTICAL Burst Switching (OBS) is a candidate archi-

tecture for the future optical Internet that is based on
aggregation of client packets into so-called bursts at the edge
of the OBS domain. When a burst is formed, its reservation
request is signalled out of band using a burst control packet
(BCP). The burst is transmitted after an offset time and is
transported in the optical domain. When a BCP arrives at the
OBS node, the switch configuration is initiated for the corre-
sponding burst. Different reservation models are proposed for
the timing and duration of the reservation. Delayed reservation
schemes, such as horizon [1], that do not perform any void
filling, are simpler to implement than void filling-based JET
(Just Enough Time) schemes [2]. In the horizon scheme, we
only keep track of the channel horizon that is the earliest time
after which there is no planned use of the channel.

In OBS, service differentiation among traffic classes can be
achieved by assigning additional offset values to classes that
require preferential treatment. Other methods also exist, see
for example [3]. There are analytical models of multi-class
OBS systems that rely on the assumption of Poisson arrivals
and exponentially distributed burst lengths. In [4], an approx-
imative model is proposed that assumes complete isolation
between classes for multi-channel OBS. Per-class loss prob-
abilities for multi-class single-channel JET are approximately
calculated in [5] under low offered load assumption and for
generally distributed burst lengths. Focusing on horizon-based
single-channel OBS networks in this study, we improve upon
the existing literature by proposing an exact solution while
allowing more general phase-type distributed burst lengths.
Our solution is based on the well-known theory of feedback
Markov fluid queues (FMFQ) [6].

We provide the stochastic model in Section 2. A brief sum-
mary and notation for general FMFQs is given in Section 3.
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Our proposed solution is presented in Section 4. Numerical
examples are given in Section 5 to verify the method. Finally,
we conclude.

II. STOCHASTIC MODEL

To model burst lengths, we use phase-type distribu-
tions (PH-type). Consider a Markov process on the states
{1,2,...,m,m+ 1} with initial probability vector [v,0],v =
[v1,v2, ..., U] and infinitesimal generator

S SO
o= 5 5]
where S is an m X m nonsingular matrix, SO is m x 1,
Se + 5% = 0, and e is a column vector of ones of appro-
priate size. The time till absorption into the absorbing state
m + 1 is a random variable X which is said to have a PH-
type distribution with representation (v, S) whose distribution
function is written as Fix(z) = 1 — veS%e, x > 0.

We focus on a tagged output port of an OBS node com-
prising a single wavelength channel with the channel capacity
normalized to unity. In our system, bursts are assumed to
belong to one of the traffic classes in the class-set Z =
{1,2,...,1}. We assume that burst (or BCP) arrivals destined
to the tagged output port are Poisson with rate \; for class-
whose lengths, 1 < ¢ < I, are assumed to be modeled by a
PH-type distribution characterized with the pair (v;, S;) with
m; transient states. Let S{ = —S;e = [S?,50,,...,50,..1"
and v; = [v;1,Vi2,.-.,Vim,] Also let the (k,1)*" entry of
S; be denoted by {5}, ;.

A class-i BCP arrives at the OBS node on behalf of a class-:
burst §; seconds prior to the arrival of the corresponding burst.
The class-7 offset §; is assumed to be deterministic. If the
channel horizon is less than or equal to §; at the arrival epoch
of a BCP belonging to a class-¢ burst, then the burst is admitted
by reserving the channel for that burst and the channel horizon
increases to a value equal to the sum of the burst length (in
seconds) and the offset value ¢;. Otherwise, the corresponding
burst is blocked (dropped). The channel horizon decreases at
a unity rate between burst arrival epochs with a boundary at
the origin. Moreover, without loss of generality we assume
that inequality J; < d; holds for all 4, j € T satisfying ¢ < j.

To illustrate the operational policy for a two class OBS
horizon system, we depict a sample path of the channel
horizon process in Fig 1. We take 01 = 2 and d2 = 4. Burst
lengths for class-1 and class-2 are 1 and 2, respectively. Class-
1 BCP arrivals occur at t = 1, 3,8 whereas class-2 arrivals at
t = 3.5,5.5, and 7. The BCPs arriving at t = 7,8 are blocked
since the channel horizon (denoted by H (t)) is strictly larger
than the corresponding offset times at the arrival instants. Note
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Fig. 1. Evolution of the channel horizon H (t) for an example of a two-class
OBS node.

that an accepted burst leads to an immediate jump in H ()
whereas a blocked burst does not have any effect.

ITI. MULTI-REGIME FEEDBACK FLUID QUEUES

We briefly describe the FMFQ model based on [6]. We let
C(t) denote the fluid level in the queue and M (t) denote
the state of the background process at time ¢. Thresholds for
the FMFQ are 0 = T < T < .. < T(K) = 0. The
fluid queue is said to be in regime k (at threshold 7)) if
T*E=D < C(t) < T® (C(t) = T™)). We assume that the
background process {M(t);t > 0} has a finite state space
{1,2,..., M}. When the system is in regime k (at threshold
T*)) then the background process M (t) behaves according to
a Markov process with generator Q) (Q(*)). The drift (net
rate of change of the queue) while at state m, 1 < m < M,
in regime k (at threshold 7)) is denoted by r,(ﬁ) (ﬁ(ff)) We
let R%) (R(®) to be the diagonal matrix of drifts in regime
k (at threshold T(k)). The dynamics of the buffer content for
the FMFQ is given by:

max(0,7y)),) if C(t) =0,
={ 0 it =D < O(t) < T®,

dC(t)
dt M)
if O(t) =T®),

~(k)
T ()

ey
Let F,,(x,t) denote the joint transient probability distribution
function F,,(z,t) = Pr{C(t) <z, M(t) =m} for 1 <m <
M. The steady-state joint distribution function can then be
defined by taking the limit F, (z) = tlg& Fp(z,t). A spectral
solution to the steady-state behavior, i.e. F),,(-), 1 <m < M,
of the FMFQ is given in [6]. This method requires the solution
of K eigenvalue problems for matrices of size M and the
solution of a matrix equation of size at most K M. In this
method, all eigenvalues for a given regime other than the ones
at zero are assumed to be distinct [6].

IV. PROPOSED SOLUTION

The basic idea is as follows. We like to use FMFQs to model
multi-class OBS nodes. However, the channel horizon H (t)
can not be modeled directly by an FMFQ due to the jumps
involved at arrival epochs. However, consider the transformed
process Hrp(t) obtained through H(t) by simply replacing
the jumps in the sample path by a linear increase (say with
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Fig. 1.

Sample path for the transformed process Hr(t) for the example of

unity rate) which makes it possible for us to use an FMFQ to
describe the evolution of Hr(t); see Fig. 2 for an evolution of
Hyp(t) for the same example given in Fig. 1. Note that we do
not allow new arrivals when Hr(t) is increasing. We will then
show that the steady-state behavior of the original process can
be derived from that of the transformed process.

For this purpose, we first define I + 1 regimes by defining
I+ 2 thresholds 0 = T < TW = §; < TA =4, < ... <
TW = §; < TUHY = 0. We denote the state corresponding
to a decrease in Hr(t) by P. Moreover, for each class-1,
we define m; dummy states which we denote by D7, for
1 < 5 < m;. We inherit the notation we used for FMFQs in
Section 2 including the queue content C(¢), the background
process M (t), and the matrices Q®, Q) R(’f), and R,
Moreover, we assume that the states P and DZ- are the pth
and d’ th states of the background process M (t), respectively.
Let qf’;-) and (ji(’;-) denote the (i, /)" entry of Q%) and Q).
Also note that the cardinality of the state space of this FMFQ
is M=1+" m,

We now find the parameters of the FMFQ corresponding to
the process Hr(t). Note that C(¢) is to track the same path as
Hr(t) and therefore when the background process is in state
P, we define the drift at that state as

TZ()k):_ngkgI—kl, 2
[ -1 ifk>0,
"p —{ 0 ifk=0. )

When a new class-i burst is admitted, then a transition occurs
from state P to D] with probability v; ;. However, for a class-
1 burst to be admitted, the queue content should be less than
6;. Therefore, for 1 < k < 1T

I
— Ao ifl=p,
(j(k) — q(k) — 12@ pl (4)
pl Nivi; ifl=d} and i >k,
0 otherwise.
Moreover,
¢ =0,1<1<M, )
i =q"), 1<1< M ©6)

If the background process is at state Df , C(t) increases with
unity rate up to d; without any state transitions. Then, C(t)
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Fig. 3. The steady-state horizon pdf f(z) of the two class OBS example

holds on to its unity rate increase until the corresponding phase
type distribution reaches its absorbing state. Therefore,

P = =1 1<k < T+, 7
@) =) =011 M 1<k <, 8)
SO, ifl=p,
gy V=g = {8, ifl=d 1<n<m (9)

v v 0 otherwise.

This concludes the characterization of the FMFQ describing
the process Hrp(t). We can then solve for the steady-state
joint distribution function F),(z) using the method of [6].
If we condition only on the P state then the steady-state
distribution of the original process can be found. This is due to
the observation that if we delete the intervals in Fig. 2 during
which the queue is increasing, then we obtain the sample path
given in Fig. 1. Mathematically,

F(z) = tlim Pr{H(t) <z} = Fy(x)/Fp(c0). (10)
Let f(x) denote the corresponding density function such that
F(z) = [*__ f(y)dy. Moreover, due to Poisson arrivals and
from the PASTA property, a class-i burst reservation request
is blocked with probability Pross; = 1 — F(d;).

V. NUMERICAL EXAMPLES

Let mx and cx denote the mean and the coefficient of vari-
ation (CoV) of a random variable X. For given mx > 0 and
cx > 1 based on empirical data, one can find a 2-phase PH-
type distribution, i.e., hyper-exponential distribution, whose
mean and CoV match to mx and cx, respectively [7]. Note
that, for an exponential random variable X, cx = 1. We
use the fitting procedure of [7] in the numerical examples
to follow. We first assume a two-class OBS system with
parameters 01 = 1,d2 = 2. Moreover, burst lengths for both
classes have a mean of 1 and CoV of 2. In Fig. 3, we compare
the steady-state horizon pdf obtained using the method of this
letter and simulations for light, moderate, and heavy loaded
systems. We show that the results exactly match irrespective of
the load. In the next example, we study the effect of the second
order statistics of the distribution of burst lengths on loss
probabilities. The system under study has A\; = 0.1, Ay = 0.2,
and 9; = 1. Burst lengths of both classes possess the same
distribution with unity mean but varying CoV =1, 2, and 5.
In Fig. 4(a), we plot the loss probability ratio PLoss,1/PLoss,2
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as a function of d9 — d;. We observe that the degree of loss
differentiation increases with increased offset difference as
expected but decreases as a function of the CoV of the burst
lengths. In Fig. 4(b), we plot the overall loss probability Py s
as a function of d, —47. It is clear that Py, increases with the
offset difference due to the lack of a void filling mechanism.
However, the increase in P45 is much higher for larger burst
length CoV. We therefore conclude that second order statistics
of the burst length is crucial in multi-class OBS systems. This
result is important because several approximate methods in
the literature use the Erlang-B loss model as a basis which is
insensitive to the higher order statistics of the burst lengths
and in particular the CoV [8],[9],[10].

VI. CONCLUSIONS

We exactly derive the steady-state distribution for the
channel horizon and per-class blocking probabilities for a
multi-class single-channel OBS node with offset-based service
differentiation among traffic classes. For this purpose, we
use the theory of feedback Markov fluid queues and the
algorithmic solution given in [6]. We validate the proposed
method by numerical examples.
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