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Improved Testing of the Magnetic-Field
Integral Equation
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Abstract—An improved implementation of the magnetic-field
integral equation (MFIE) is presented in order to eliminate some
of the restrictions on the testing integral due to the singularities.
Galerkin solution of the MFIE by the method of moments em-
ploying piecewise linear Rao–Wilton–Glisson basis and testing
functions on planar triangulations of arbitrary surfaces is consid-
ered. In addition to demonstrating the ability to sample the testing
integrals on the singular edges, a key integral is rederived not only
to obtain accurate results, but to manifest the implicit solid-angle
dependence of the MFIE as well.

Index Terms—Integral equations (IEs), magnetic-field integral
equation (MFIE), moment methods, numerical analysis.

I. INTRODUCTION

AMULTITUDE of microwave applications have been en-
joying the modeling and simulation capabilities offered

by the recent progress in computational electromagnetics, espe-
cially by novel numerical methods employing iterative solvers
and achieving fast matrix-vector multiplications, such as the fast
multipole method (FMM) [1] and the multilevel fast multipole
algorithm (MLFMA) [2], [3]. Even though the earlier imple-
mentations of these fast iterative solution methods employed
the electric-field integral equation (EFIE) exclusively, the need
to reduce the number of iterations for large problems necessi-
tated the use of the combined-field integral equation (CFIE) [4],
which involves the magnetic-field integral equation (MFIE) [5]
in addition to the EFIE. Thus, the desire to reduce the iteration
counts in a class of novel solvers created a renewed interest in
the MFIE [3] despite its continuing importance that was recog-
nized more than three decades ago [6].

In this letter, we consider the implementation of the MFIE
within the context of versatile computational methods, such as
the method of moments (MOM) [7], FMM, and MLFMA, which
can treat piecewise planar surface triangulations of three-di-
mensional (3-D) arbitrary geometries. The unknown surface
current is discretized with the Rao–Wilton–Glisson (RWG) [8]
basis functions to obtain a piecewise linear approximation. RWG
functions are also selected as testing functions in a Galerkin
scheme. Then, the electromagnetic interactions of pairs of half
RWG functions need to be computed via numerical integrations
on both the basis and the testing triangles. However, the magnetic
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Fig. 1. Definition of the geometric variables for the near-neighbor interactions,
where the observation point is a sampling point on the testing triangle.

field is usually singular at the edges of a basis triangle. This leads
to numerical difficulties, especially for the near-neighbor inter-
actions, for which the basis and testing triangles are touching.
The difficulties have been traditionally circumvented in the
literature by choosing the integration points strictly inside the
testing triangle, i.e., by avoiding to sample the singularity at the
edge. In this letter, we report for the first time, to our knowledge,
an implementation of the MFIE achieving the sampling of the
integrals on the edges of the basis and testing triangles, even
for the singular near-neighbor interactions.

II. MFIE FORMULATION

Among various MFIE formulations [9] that are suitable for
3-D MOM implementations employing the RWG basis and
testing functions, the most widely used formulation expresses
the elements of the impedance matrix as

(1)

where represents the th testing function, represents the
th basis function, and

(2)

denotes the free-space Green’s function in phasor notation with
convention. Due to the singularity of the MFIE kernel,

accurate and efficient computation of (1) requires the use of the
singularity-extraction methods for both the inner integral [10]
and the outer integral [9], [11] especially for the near-neighbor
interactions. Without losing generality, the basis triangle can be
rotated to lie on the - plane and to align one of its edges along
the axis, as shown in Fig. 1. Then, extracting the singularity
of the inner integral of (1) calls for the analytical evaluation of
the three basic integrals

(3a)
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(3b)

(3c)

over the basis triangles. Analytical expressions for these three
integrals are derived in [12], however, the derivation of in
(3c) will be revisited in Section III.

As the observation point in Fig. 1 approaches the edge of the
basis function, and become singular. Since the triangu-
lation of an arbitrary geometry gives rise to many such edges,
all near-neighbor interactions, where the basis and testing trian-
gles share a common edge, involve an outer integral with a sin-
gular integrand. For this reason, earlier implementations of the
MFIE opted for sampling this singular integrand strictly inside
the testing triangle, hence avoiding the singular edges. A rare
example of sampling at the edges [13] employs a non-Galerkin
scheme, where the testing is performed at a constrained direc-
tion in order to avoid the singularity. We propose to improve
the testing of the MFIE by removing all of the restrictions over
the choice of the sampling points in the testing triangle. This
can be achieved by employing a novel scheme to extract the
logarithmic singularities in the outer integral [9], [11]. Such a
scheme enhances not only the versatility of the testing procedure
by allowing sampling at the edges, but also the accuracy and the
efficiency of the numerical integrations, as demonstrated in [9].

As the testing point approaches the edge of the basis triangle,
the logarithmic singularities in the outer integral caused by the
inner integrals similar to and in (3a) and (3b) can be han-
dled according to [9]. For the same limit case, the value of the
remaining integral in (3c), although not singular, should be
correctly determined. For this purpose, will be rederived in
Section III.

III. DERIVATION OF

When the basis triangle is on the - plane as depicted in
Fig. 1, the value of the third integral in (3c) is given as

(4)

where

(5)

and

(6)

The geometric variables in (6) are shown in Fig. 1 for the edge,
which the observation point approaches ( 3). As explained in
[12], some of the variables have signs that are defined as

(7)

Then, as the observation point approaches the edge

(8)

Fig. 2. (a) Observation points approaching the edge of the basis triangle at
different angles. (b) The value of I in (3c) for various approach angles of the
observation point.

Fig. 3. Sampling points used for the numerical integration on the testing
triangle.

where is the angle between the approach path of the observa-
tion point and the – plane, and

(9)

so that

(10)

Consequently, in the calculation of the interactions between
touching basis and testing triangles, the value of depends
on the angle between the triangles when the observation point
approaches the edge. In [12], the limit value is given as

`` '' (11)

which is correct only for the approaches along the axis, i.e.,
2.

Fig. 2(b) presents the value of with respect to the distance
between the observation point and the edge of the basis triangle

for different approach angles as depicted in Fig. 2(a). The
curves in Fig. 2(b) clearly indicate that the value of depends
on the angle of approach, which is the same as the angle between
the testing and basis triangles. This is also related to the solid
angle of the wedge formed by the basis and testing triangles.
Indeed, this is exactly how the solid-angle factor of the MFIE
can be computed correctly and implicitly [11], [14].

IV. RESULTS

To demonstrate the necessity of the correct calculation of the
limit value in (10), we present the results of a scattering problem
involving a perfectly conducting sphere of radius 0.3 .
Fig. 3(a) shows the sampling points on the testing triangles used
for the numerical integrations. Using the six-point integration
rule illustrated in Fig. 3(a), which is merely an example (any
other numerical integration scheme can also be employed), the
result of the integration over a triangle is expressed as [15]

(12)



ERGÜL AND GÜREL: IMPROVED TESTING OF THE MAGNETIC-FIELD INTEGRAL EQUATION 617

Fig. 4. (a) Conducting sphere of radius 0.3� with �=10 triangulation.
(b) Total value of normalized RCS (RCS/r in decibels) on the x–y plane for a
sphere illuminated by a y-polarized plane wave propagating in the�x direction.

Fig. 5. Geometric configuration of two touching triangles.

where is the area of the triangle and is the value of
the integrand at point 1,2, 6. The first three points are
located on the edges of the testing triangle, and therefore, they
are also on the edges of the neighboring basis triangles.

Fig. 4(a) shows the geometry with /10 triangulation and
Fig. 4(b) shows the total value of the normalized radar cross
section (RCS/ in dB) on the - plane when the sphere is il-
luminated by a -polarized plane wave with incidence in the
direction. Mie series result is compared to the numerical results
employing (10) (correct limit) and (11) (incorrect limit). We
have confirmed that the small discrepancy between the Mie se-
ries and “correct” numerical results is due to the coarse meshing
of the sphere, i.e., this small error disappears as the mesh be-
comes finer. On the other hand, the incorrect use of the limit
value as given in (11) causes a persistent error that cannot be
corrected by refining the mesh. This example demonstrates the
successful implementation of the testing of the MFIE on the tri-
angle edges and that it is critical to correctly evaluate the limit
value in (3c) to obtain accurate results.

Furthermore, Table I shows that electromagnetic interactions
between pairs of touching triangles are computed more accu-
rately by sampling the testing integral on the edges compared to
sampling strictly inside the testing triangle. As opposed to the
previous paragraph, incorrect limit of the integral is not used
in any of the three cases. Fig. 5 depicts the interaction of two
touching triangles with an angle 180 between them. The
reference values, which are used to assess the percent error of
other results in Table I, are obtained in [9] by using higher-order
integrations. The six-point numerical integration rule [Fig. 3(a)]
sampling the testing integral on the edges performs better than
the four- point rule [Fig. 3(b)] sampling strictly inside the testing
triangle. Both integration rules are of third order [16]. Testing on
the edges [Fig. 3(a)] performs even better than the six-point in-
tegration rule in [Fig. 3(c)], which is of the fourth order [16]. All
errors can be further reduced by adaptively dividing the testing
triangle.

TABLE I
ELECTROMAGNETIC INTERACTIONS BETWEEN PAIRS

OF TWO TOUCHING TRIANGLES

V. CONCLUSION

In this letter, we report an improvement for the testing of
the MFIE leading to the freedom to sample on the edges of
the testing triangle, even for the singular near-neighbor interac-
tions. This improvement, which allows for the Galerkin imple-
mentations of the MFIE solutions with RWG discretizations, re-
quires the use of a novel singularity-extraction method [9], [11].
Testing on the edges of the triangular domains relies on the cor-
rect calculation of the limit values of some integrals. One such
critically important integral is rederived in this letter not only
to obtain a correct limit value, but also to establish the implicit
solid-angle dependence of the MFIE [11], [14].
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