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Exact Relation Between Continuous and
Discrete Linear Canonical Transforms
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Abstract—Linear canonical transforms (LCTs) are a family of
integral transforms with wide application in optical, acoustical,
electromagnetic, and other wave propagation problems. The
Fourier and fractional Fourier transforms are special cases of
LCTs. We present the exact relation between continuous and
discrete LCTs (which generalizes the corresponding relation for
Fourier transforms), and also express it in terms of a new defi-
nition of the discrete LCT (DLCT), which is independent of the
sampling interval. This provides the foundation for approximately
computing the samples of the LCT of a continuous signal with
the DLCT. The DLCT in this letter is analogous to the DFT and
approximates the continuous LCT in the same sense that the DFT
approximates the continuous Fourier transform. We also define
the bicanonical width product which is a generalization of the
time-bandwidth product.

Index Terms—Bicanonical width product, fractional Fourier
transform, linear canonical series, linear canonical transform.

I. INTRODUCTION

ISCRETE counterparts of continuous transforms are not
D only of intrinsic interest, but are important for approxi-
mately computing the samples of continuous transforms. For in-
stance, the discrete Fourier transform (DFT) is commonly used
to obtain the samples of the Fourier transform (FT) of a function
from the samples of the original function.

Linear canonical transforms (LCTs) are a three-parameter
family of integral transforms with wide application in wave
propagation problems [1] and have also found use in optimal
filtering [2]. The Fourier and fractional Fourier transforms,
coordinate scaling, and chirp multiplication and convolution
operations, are special cases of LCTs. In this letter, we de-
rive the exact relation between the continuous LCT and the
discrete LCT (DLCT) defined in [3] and implemented in [4].
This provides the underlying foundation for approximately
computing the samples of the LCT of a continuous signal by
replacing the transform integral with a finite sum, and consti-
tutes a generalization of the exact relation between continuous
and discrete FTs, which has been regarded as a fundamental
theorem by Papoulis [5]. Consequently, the DLCT in this letter
approximates the continuous LCT in the same sense that the
DFT approximates the continuous FT.

To state the above theorem for FTs, let f(u) and F(u) be
a continuous-time signal and its FT, and define the periodically
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replicated functions f(u) = > 0. ___ f(u—nAu)and F(p) =

S F(p—nAp), where Au and Ay are arbitrary. Then,
the samples of these functions form a DFT pair as follows [5]:

F(mép) = éu Z F(kbu)e12mmE/N (1)
kE(N)
for any m, where 6u = 1/Ap, 6p = 1/Au, N = AuAp, and
(N) denotes any interval of length N. This exact relation be-
tween the continuous and discrete Fourier transforms, provides
the basis for approximately computing the samples of the con-
tinuous FT of a function by using the DFT.

In addition to generalizing the above fundamental theorem to
LCTs, we also show that it can be expressed in terms of a new
definition of the DLCT which, unlike certain earlier definitions,
can be expressed without reference to the underlying continuous
functions or their extents and sampling intervals. This new def-
inition would be useful in purely discrete settings and in devel-
oping fast algorithms. In the process we define the linear canon-
ical series, which is the generalization of the ordinary Fourier se-
ries. We also compare a computational algorithm based on these
definitions of the DLCT, with earlier algorithms. Furthermore,
we find an expression for the number of degrees of freedom of
signals confined to finite intervals in the time and LCT domains.
This result is significant since it constitutes a generalization of
the time-bandwidth product. We refer to this new quantity as the
time-canonical width product or more generally the bicanonical
width product.

II. DISCRETE LINEAR CANONICAL TRANSFORMS
The LCT with parameter matrix M is defined as [1]

fae) = (@) = [ Cualuat)f

CM(U7 UI) = \/Eefiw/4ei7r(au272/5’uu'+'yu/2) )
where Cpp is the LCT operator, and «, (3, v are real parame-
ters. The transform is unitary and Cy;' (u, w') = Cpp—1 (u, ') =
Cip(v',u). The unit-determinant matrix M is equivalent to the
three parameters and either set can be obtained from the other
[11: M = [v/8,1/8; -8 + avy/B, a/B]. The LCT reduces to
the ath-order fractional Fourier transform (FRT) when o =
cot(ar/2), f = csc(arw/2), v = cot(ar/2). The FRT oper-
ator F* is additive in index: F2 F** = F?2F and reduces to
the FT and identity operators for a = 1 and a = 0.

The discrete LCT fy(mdéun ) of f(kdu) has been defined as
follows form = —=N/2,...,N/2 — 1 [3], [4]:

N/2-1
fa(méune) =6u S f(kéu)Ona(mbun, kdu),
k=—N/2
O (mbunt, k6u) = /Be " e ¥ (@ T m* - 20km by 520 ?)

3
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where dunt = (|B|N6u)~!. Here éu and Sung are the sam-
pling intervals in the time and LCT domains. NV is the number
of samples. The carets in (3) are to remind us that fyg is not the
continuous LCT of f. The special case of (3) for the FRT has
been defined in [6], but we note that this definition is different
than the discrete FRT in [7]. The definition in (3) can be made
unitary by including an additional factor /éun/éu.

The definition in (3), while suitable for certain purposes, is
not a usual way of defining a discrete transform, since the trans-
form matrix exhibits the undesirable quality of depending on the
sampling intervals, whereas ideally it would depend only on the
number of samples NV and «, (3, . One of our contributions is
to show that an interval-independent definition of the DLCT can
still be used to approximately compute continuous LCTs with
arbitrary sampling intervals.

We express the transform matrix of this interval-independent
and unitary definition of the DLCT as follows:

—imw /4 . .
CM [m7 ]C] — \/BG / eiﬂﬁ (ozm2 —2,3km+'yk2) ) (4)
VNI
This corresponds to the matrix elements in (3) with du = dung.
We will demonstrate in Section III how to use this interval-in-
dependent DLCT to exactly compute DLCTs as defined in (3),
as well as to approximately compute continuous LCTs.

III. FUNDAMENTAL THEOREM FOR LCTS

Let f(u) and fag(u) be a continuous-time signal and its LCT
with parameters «, 3, v. Define the following periodically repli-
cated functions where each period has been modulated with
varying phase terms:

f(u)(M*HAu) = Z f(u - nAu)

X e77J‘1r'ynAu(2uanu)7 (5)
JFM(U)(M,AU,M) = Z fvi(u — nAung)
X eiﬂ(ynAuM(?u—nAuM) (6)

where Au and Awuypg are arbitrary. Both definitions are of iden-
tical form since the value of o for M~ ! is —~ [1]. Itis also worth
noting that the functions we have just defined are chirp-periodic
in the sense of [6], [8].

The generalization of the exact relation between continuous
and discrete FTs (1) to LCTs will be stated as a theorem:

Theorem: The samples of the functions defined in (5) and
(6) are exactly related to each other through the samples of the
continuous kernel [the DLCT matrix in (3)]:

S (méunt) (v, Aun)
=6u > f(kbu) -, auCn(mbung, kéu) (7)

ke(N)
for any m, where
1
ou=———, dump=-——, N=AuAu . (8
Blau M BlAw mlfl- ®)

Postponing the proof, we also express this exact relation in
terms of the interval-independent DLCT as a Corollary:

Tv(méun) (v, aun)

A _
- m Z f(k6u>(M_1,Au)CM’ [m7k] (9)

ke(N)
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where M’ corresponds to o/ = aAunp/Au, f' = 8, =
vAu/Aupng. Thus, the interval-independent DLCT defined in
(4) exactly relates the samples of the functions defined in (5)
and (6) to each other. The parameters o/, 3, 7' differ from the
original «, 3, v because using the interval-independent DLCT
effectively involves a rescaling of the sampling intervals, and
the LCT of a scaled version of a function, is a scaled version of
the LCT of the original function with different parameters.

The definition of the functions in (5) and (6), and the theorem
and corollary can easily be specialized to the FRT by replacing
a — cot(ar/2), B — csc(am/2), v — cot(am/2).

Proof of Theorem: Let fs(u) be the sampled version of a

continuous signal f(u) with sampling interval du:

flw) =3 fnbu)s(u - nou)

n=—oo

1 «— ;
:E Z f(u)ez%rnu/éu‘

Then, apply the LCT operator Cy; to the equivalent expressions
for fs(u) in (10) to obtain

(10)

(1) (M, Aun) = 0U Z f(néu)Cn(u, néu)
where Aups = (|3|6w) 1. This result is the generalization of
the Poisson sum formula [5], and is related to the LCT sampling
theorem [9]-[11]. The right-hand side of this expression defines
the discrete-time LCT [4] and its special case for the FRT defines
the discrete-time FRT [6].

Now, sample fnr (), Auy,) in (11) with a sampling interval
chosen as Sups = (|B|N6u)™" with N an arbitrary integer.
Then write the integer n as n = k + rN, k € (N), where r
is an integer running from —oo to oo:

fM(m5uM)(M,AuM) = bu Z Z
r=—o00 ke(N)
x f((k 4+ rN)ouw)Cm(mbum, (k + rN)bu). (12)
After changing the order of summations in the above
equation and substituting Cm(mbéum, (K + rN)bu) =
Cp(mbung, kéu) ™ Now*(2k+7N) e collect all the terms
that depend on r in a summation and recognize this summation
as the sampled version of (5) with the sampling interval du
where Au = Néu. This completes the proof of (7). O
Proof of Corollary: Substitute o’, 3, v’ for a, 3, v in (4).
Use (8) and the DLCT matrix in (3) to obtain Cpy [, k] =
Voudun O (mbunt, kdu). Substitute this in (7). O
Had the proof of the theorem been carried out by applying
the operator Cl\_/[1 to the sampled version of fyr(u) instead of
applying Cp to the sampled version of f(u), one would obtain
the duals of (7) and (11):

Y

f(kéu)(Mfl,Au)
:6’UJM Z fM(m(ﬁuM)(M,A“M)CK/I(m&uMkéu)

me(N)
(13)

J?(U)(Mfl,au)
=dum Z v (ndung) Cag(ndun, ). (14)

Here (13) pro;ides the exact relation for the inverse DLCT and
(14) gives the expression for the linear canonical series, which
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generalizes ordinary Fourier series. The fractional Fourier se-
ries in [6], [12], [13] is a special case of this series. Just as peri-
odic functions have Fourier series, a function in the form of (5),
which is chirp-periodic, has a linear canonical series. Here, the
series coefficients of f(u) -1 au) are dun fu(ndun). Again
in analogy with the ordinary Fourier case, linear canonical se-
ries can also be used to represent an aperiodic signal f(u) with
finite extent. In this case, the series will give the periodically
replicated and phase modulated extension of f(u) outside its fi-
nite extent. Unlike the discrete-time LCTs, which take discrete
signals to continuous signals [4], [6], [12], linear canonical se-
ries, which take continuous signals to discrete signals, do not
seem to have received attention in the literature.

Just as periodicity and discreteness in either the time or fre-
quency domain implies the dual property in the other domain
[14], (11) and (14) show that discreteness in either the time or
LCT domain implies periodic replication and phase modulation
in the other domain, and vice versa [6]. If both are present in one
domain, they will both also be present in the other domain. It is
precisely in this case that, there exists an exact relation between
these two sets of samples ( (7) and (13)).

IV. COMPUTATION OF CONTINUOUS LCTS

The exact relation between continuous and discrete LCTs
provides the underlying foundation for approximately com-
puting the samples of the LCT of a continuous signal by
replacing the transform integral with a finite sum. Sampling the
continuous input function and the transform kernel will always
lead to a finite sum; however, this sum will not be exactly equal
to the samples of the continuous output. We may still choose
this finite sum as the definition of the discrete version of our
transform, but then the relationship between the discrete input
and output vectors, and the samples of the continuous input
and output remains to be shown. In particular, for the DLCT in
(3), the relation of f and fy with the samples of the original
continuous functions is not apparent and our main contribution
is to exactly provide this relation ( (7) and (9)).

Let us assume that a large percentage of the total en-
ergy of the signal is respectively concentrated in the in-
tervals [—Au/2,Au/2] and [—Aunm/2,Aupm/2] in the
time and LCT domains. Then, f(u)mn-1,au) ~ f(u) and
S () (M, Aun) = Saa(u) in the respective intervals, and from
(7) and (9) the discrete LCT of the samples of the function
are the approximate samples of the continuous LCT of that
function:

N/2—-1

fa(mbun) =ou Y f(kSu)Cna(mbug, kdu) — (15)
k=—N/2
Au N/2-1

Fai(méung) &~/ Ay k:;m f(k6u)Cnp[m, k] (16)

where du, bun, and N are as in (8). If both the functions f(u)
and fy(u) could be identically zero outside of the given inter-
vals, the mapping between the samples of these functions would
be exact. But, since the extent of a function and its LCT cannot
both be finite for § # oo [15], there will be overlaps between
the periodically replicated and phase modulated functions, and
the DLCT will be an approximation between the samples of the
continuous signals. This approximation for the LCT and FRT
is similar to that for the FT. The functions (5) and (6) reveal
the precise nature of overlap and aliasing that occurs, which is
somewhat different than the Fourier case due to the phase terms

appearing in the periodic replication. As with the DFT, the ap-
proximation improves with increasing IV since this decreases
the overlap between the replicas.

As is well-known, if the time-domain vector is periodic or
periodically extended, the DFT summation can run over any in-
terval of length IV; furthermore, the output vector is periodic
with period V. Likewise, if the time-domain vector is chirp-pe-
riodic or chirp-periodically extended (as in (5)), then the DLCT
summation can run over any interval of length N; furthermore,
the output vector is chirp-periodic (as in (6)).

Both the DLCT in (3) and the interval-independent DLCT
whose matrix is given in (4) can be computed by performing
a chirp multiplication, a fast Fourier transform (FFT) and a
second chirp multiplication, which takes 2N + (N/2)log N
time, where N = AuAupg|A] [3], [6]. It is interesting to com-
pare this approach to computing LCTs with the algorithms given
in [16]-[18]. All of these produce output vectors which are good
approximations to the samples of the continuous transform, lim-
ited only by the fundamental fact that a signal cannot have finite
extent in more than one domain; since the sampling interval is
ensured to satisfy the Nyquist criterion, the output samples can
be used to reconstruct good approximations of the continuous
output. On the other hand, while the algorithms in [16], [17]
also take ~ IV log N time, most of them involve more than one
FFT and therefore a larger factor in front, in addition to being
less transparent. However, this does not automatically mean that
these earlier algorithms are slower since the number of samples
N in these works are not directly comparable to that in this letter,
as discussed below.

V. GENERALIZATION OF THE TIME-BANDWIDTH PRODUCT

The conventional time-bandwidth product AuA is the min-
imum number of samples to identify a signal out of all sig-
nals whose energies are confined to time and frequency inter-
vals of length Awu and Ap. Likewise, the product AuAun ||
is the minimum number of samples to identify a signal out of
all signals whose energies are confined to time and LCT in-
tervals of length Au and Aupng. We refer to AuAupn |G| as
the time-canonical width product. More generally, the term bi-
canonical width product will be used to refer to the product
Aupn, Aun, |B12], where Aupg, and Aupng, are the extents of
the signal in two arbitrary LCT domains and (312 is the param-
eter of the LCT between these domains. The minimum number
of samples to uniquely identify a signal is also referred to as the
number of degrees of freedom.

The time-bandwidth product is a notion derived from simul-
taneously specifying the time and frequency extents of signals.
Although this is commonly seen as an intrinsic property, it is in
fact a notion that is specific to the frequency domain. However,
itis always possible to specify the extent of a signal in other FRT
or LCT domains. The set of signals thus specified will constitute
a different family of signals with a different number of degrees
of freedom than that defined through specifying the extent in the
frequency domain. Indeed, there is no reason to think that fami-
lies of signals encountered in practice will necessarily uniformly
fall into a rectangular region in the time-frequency space. For
instance, in applications where the underlying physics involves
LCT type integrals as is the case with propagation problems,
specification of Au and Aung may provide a better fit to the set
of signals we are dealing with.

While having a finite extent in one LCT domain is not suf-
ficient to ensure that a family of signals has a finite number
of degrees of freedom, specifying two LCT domains in which
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the signal is approximately confined to finite intervals allows
us to approximately represent the family of signals with a finite
number of degrees of freedom. The family of signals thus de-
fined depends both on the chosen LCT domains and the extent
of the signals in those domains.

To approximately compute LCTs, we assume that the signal
is approximately confined to Aw and Awupg in the time and LCT
domains. In contrast, in [16], [17] it is assumed that the signal
is confined to a rectangle or ellipse orthogonal to the time-fre-
quency axes in the time-frequency plane, regardless of the pa-
rameters of the FRT or LCT to be computed. As noted, it is not
possible to directly compare the present algorithm to those in
[17] since different families of signals are assumed. Therefore,
which algorithm is better will depend strongly on what assump-
tions are best suited to the family of signals we are dealing with.
However, if we focus on [16] which deals with the special case
of FRTs, a comparison becomes possible. There the signal is
assumed to have negligible energy outside a circle of diameter
Aw in the time-frequency plane. This implies that the signal will
be approximately confined to Aw in both the time and FRT do-
mains [19], so that the results of this letter can be applied. The
value of N = Au?| csc(ar/2)| in our complexity expressions is
smaller than N = 2Aw? appearing in [16] for 0.5 < |a| < 1.5,
but the real advantage lies in the fact that the numerical factor
in front of N log N will be considerably smaller than in this
widely-used method.

It is interesting to note that the relations between the param-
eters given in (8) are consistent with sampling theorems for the
FRT [6], [13], [20], [21] and LCT [9]-[11], as well as with
the bicanonical width product. In (8), su=! = |3|Aup is the
minimum rate for sampling the time-domain representation of a
signal that has finite extent Auyg in the LCT domain in question.
If we sample the time-domain signal at this rate, the total number
of samples over the extent Aw is given by N = Au/éu =
AuAupng| S|, which is the same as the number of samples N
given in (8), and nothing but the bicanonical width product. Al-
ternatively, duy; = |3|Aw in (8) is the minimum rate for sam-
pling the LCT-domain representation of a signal that has finite
extent Aw in the time domain. If we sample the LCT-domain
signal at this rate, the total number of samples over the extent
Auyy is once again given by N = Aupng /éupm = AuAupn|f).
Thus we have accomplished to formulate such that the number
of samples in both domains are equal to each other regardless
of the LCT parameters, and this number of samples is the min-
imum possible for both domains, for the given extents. This
simple approach is in contrast to some earlier works where the
starting assumption is knowledge of the extent of the signal in
the time and frequency domains and the number of samples is
determined from the ordinary Nyquist sampling theorem [17],
[22], whereas in our formulation it is knowledge of the extents
in two LCT domains and the number of samples is determined
from the LCT sampling theorem. We also note that the relations
in (8) reduce to the well-known results for the FT when 8 = 1.

As a final remark, we note that the relation between the ex-
tents of the signals and the number of samples expressed as
AuAupg = N/|F| is in agreement with the uncertainty rela-
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tion for LCTs. Since N > 1 we can write AuAun > 1/|5]
which is precisely the uncertainty relation for LCTs [1].
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