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approximate formula for the 3-dB  cutoff 
frequency as a function of polynomial 
order N  and impulse response half-
length M. Engineers with a frequency-
domain mindset (like the author) may 
find this useful if they choose to use 
S-G filters in their application. 
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I
n this article, the goal is to show 
that it is possible to filter non-
u n i f o r m l y  s a m p l e d  s i g n a l s 
according to specs defined in the 
Fourier domain. In many practi-

cal applications, it is necessary to fil-
ter irregularly sampled data including 
seismic signal processing, synthetic 
aperture radar (SAR) imaging sys-
tems, three-dimensional (3-D) mesh-
es, and digital terrain models [1], [2]. 
In almost all of these practical prob-
lems, it is possible to define the 
desired filtering solution in a set the-
oretic framework. This lecture note 
presents a new method for filtering 
irregularly sampled data by defining 
stopband tolerance regions in the 
Fourier domain and time-domain 
upper and lower bounds on the signal 

samples as a part of the filtering pro-
cess. Since there are specifications in 
both time and frequency domains, it 
is possible to iterate between time and 
frequency domains using the fast 
Fourier transform (FFT) while impos-
ing the constraints in each domain. 

RELEVANCE
The ideas presented here can be used to 
develop filtering algorithms for irregu-
larly sampled one or higher dimension-
al data. It can be used as a teaching 
material in advanced undergraduate 
and graduate discrete-time signal pro-
cessing, optimization as well as applied 
mathematics courses. 

PREREQUISITES
The prerequisites for understanding this 
article’s material are linear algebra, dis-
crete-time signal processing, and basic 
optimization theory. 

PROBLEM STATEMENT
Let us assume that samples xc 1ti 2 , 
i5 0, 1, 2, c, L2 1,  of a continuous 
time-domain signal xc 1t 2  are available. 
These samples may not be on an uni-
form sampling grid. Let us define 
xd 3n 45 xc 1nTs 2  as the uniformly sam-
pled version of this signal. We assume 
that the sampling period Ts is sufficient-
ly small (below the Nyquist period) for 
the signal xc 1t 2 . In a typical discrete-
time filtering problem, we have xd 3n 4 or 
its noisy version, and we apply a dis-
crete-time low-pass filter to the uni-
formly sampled signal xd 3n 4. However, 
xd 3n 4 is not available in this problem. 
Only nonuniformly sampled data xc 1ti 2 ,  
i50, 1, 2, c    , L21 are available in this 
problem. 

GOAL
Our goal is to low-pass filter the non-
uniformly sampled data xc 1ti 2  according 
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[lecture NOTES] continued

to a given cutoff frequency. One can try 
to interpolate available samples to the 
regular grid and apply a discrete-time 
filter to the data but this will amplify 
the noise because the available samples 
may be corrupted by noise [3]. In fact, 
only noisy samples are available in some 
problems [4]. 

PROPOSED SOLUTION
The proposed filtering algorithm is essen-
tially a variant of the well-known 
Papoulis-Gerchberg interpolation method 
[1], [5]–[10] and our earlier finite impulse 
response (FIR) filter design method [11]. 
The solution is based on the projections 
onto convex sets (POCSs) framework. In 
this approach, specifications in the time 
and frequency domain are formulated as 
sets and a signal in the intersection of 
constraint sets is defined as the solution, 
which can be obtained in an iterative 
manner. In each iteration, the FFT algo-
rithm is used to go back and forth 
between the time and frequency domains. 

In many signal reconstruction and 
band-limited interpolation problems [1], 
[5]–[7], Fourier domain information is 
represented using a set, which is defined 
as follows: 

Cp5 5x : X 1ejw 2 5 0 for wc # w # p6, 
 (1)

where X 1ejw 2  is the discrete-time 
Fourier transform (DTFT) of the dis-
crete-time signal x 3n 4  and wc is the 
band-limitedness condition or the 
desired normalized angular low-pass 
cutoff frequency [1], [5], [6]. This con-
dition is imposed on a given signal 
xo 3n 4  by orthogonal projection onto 
the set Cp as follows. The projection xp 
is obtained by simply imposing the 
frequency domain constraint on the 
signals 

Xp 1ejw 2 5 eXo 1ejw 2 for 0 # w # wc

0 for w . wc    
,

 (2)

where Xo 1ejw 2  and Xp 1ejw 2  are the DTFTs 
of xo and xp, respectively. Members of 
the set Cp are infinite extent signals, so 
the FFT size should be large during the 
implementation of the projection on to 
the set Cp. 

This approach is different from the 
Papoulis-Gerchberg type method [1], 
[5], [6] because it allows the signal to 
have some high-frequency components 
according to the tolerance parameter 
ds. The use of the stopband and the 
transition regions eliminates ringing 
artifacts due to the Gibbs phenomenon. 
We define another set corresponding to 
the stopband condition in the Fourier 
domain as follows: 

Cs5 5x : |X 1ejw 2 | # ds for ws # w # p6,
 (3)

where the stopband frequency ws . wc. 
The set Cs is also a convex set [6], [12], 
and we can impose this condition on 
iterates during iterative filtering. We find 
a member xg of the set Cs corresponding 
to a given signal xo 3n 4 as follows: 

Xg 1ejw 2 5
 •Xo 1e jw 2  for 0 , w , ws

Xo 1e jw 2  for |Xo 1e jw 2 | # ds,  w $ ws

dse
jfo1w2  for  |Xo 1e jw 2 | $ ds,  w $ ws

,

 (4)

where fo 1w 2  is the phase of Xo 1ejw 2 . 
Clearly, xg is in the set Cs. In our 
implementation, the set Cs plays the 
key role rather than the set Cp because 
almost all signals that we encounter in 
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[FIG1] (a) 32-point nonuniform sampled version of the Heavisine function. (b) The 1,024-point interpolated versions of the 
function given at (a). 
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practice are not band-limited signals. 
Most signals have some high-frequen-
cy content.  The frequency band 1wc, ws 2  corresponds to the transition 
band used in ordinary discrete-time 
filter design. 

As pointed out above, we use a sam-
pling period, which is smaller than the 
Nyquist period. Let us assume that 
0, Ts, 2Ts, c, 1N2 1 2Ts is a dense grid 

covering ti, i5 0, 1, 2, c, L2 1 and 
let us also assume that all ti , ti11 and 
ti $ 0 and tL21 # 1N2 1 2Ts without 
loss of generality. The set describing the 
time-domain information is defined 
using the regular sampling grid 
0, Ts, 2Ts, c, 1N2 1 2Ts. Let us assume 
that the sample at t5 ti is close to nTs. 
We impose upper and lower bounds on 
x 3n 4 as follows: 

 xc 1ti 2 2 ei # x 3n 4 # xc 1ti 2 1 ei (5)

and the corresponding time-domain set 
is defined as 

 Ci5 5x : xc 1ti22ei# x 3n4# xc 1ti21ei6,
 (6)

where the time-domain bound parame-
ter ei can be either selected as a constant 
value or as an a -percent of xc 1ti 2  in a 
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[FIG2] (a) The Heavisine signal, (b) 256 Heavisine signal samples corrupted by additive Gaussian noise with variance s 5 0.3, and 
(c) 1,024 point restored signal using the samples given in (b).
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[FIG3] Restored signals after 1, 10, 20, and 58 iteration rounds.
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[lecture NOTES] continued

practical implementation. Although we 
do not know the signal value at nTs on 
the regular grid, it should be close to the 
sample value xc 1ti 2  due to the low-pass 
nature of the desired signal. Therefore, 
we model this information by imposing 
upper and lower bounds on the discrete-
time signal in sets Ci ,  i5 0, 1, 2, 
c, L2 1. Furthermore, samples may 

be corrupted by noise and upper and 
lower bounds on sample values provide 
robustness against noise. If there are two 
signal samples close to x 3n 4, the grid 
size can be increased, i.e., the sampling 
period can be reduced so that there is 
one x 3n 4 corresponding to each xc 1ti 2 . 
Other time-domain constraints that can 
be used in an iterative algorithm include 
the positivity constraint x 3n 4 $ 0, if the 
signal is nonnegative, and the finite 
energy set 

 CE5 5x : ||x||2 # E6, (7)

which is introduced in [6] for band-lim-
ited interpolation problems to provide 
robustness against noise. 

ITERATIVE FILTERING ALGORITHM
The iterative filtering algorithm consists 
of going back and forth between time 
and frequency domains and imposing 
the time and frequency constraints on 
iterates. We start with an arbitrary initial 
signal xo 3n 4. We project it onto sets Ci by 
using the time-domain constraints 
defined in (5) and obtain the first iterate 
x1 3n 4. Next, we need to compute the 
DTFT of x1 3n 4 and impose the frequency 
domain constraint defined in (4) to 
obtain X2. 

We then compute the inverse-DTFT 
of X2 to obtain x2. At this stage, other 
time-domain constraints such as positiv-
ity and finite energy can be also imposed 
on x2, if the signal is known to be a non-
negative signal. Once x2 is obtained, it 
probably violates the time-domain con-
straints defined by inequalities (5). 
Therefore, x3 is obtained by imposing 
the constraints on x2. The iterates 
defined in this manner converge to a sig-
nal in the intersection of the time-
domain set Ci and the frequency domain 
set Cs, if they intersect. In other words, 
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[FIG5] Reconstructed model using one fourth of the randomly chosen samples of 
the original model. The reconstruction parameters are wc 5 p/4, ds 5 0.03, and 
ei 5 0.01. 

[FIG6] Reconstructed model using one eighth of the randomly chosen samples of 
the original model. The reconstruction parameters are wc 5 p/8, ds 5 0.03, and 
ei 5 0.01.

1,200

1,000

800

600

400

200

0

220
200

180
160

140
120

100
80

60
40

20 50 100 150 200 250 300 350 400

[FIG4] The original terrain model. The original model consists of 225 3 425 samples.
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we eventually find a low-pass filtered ver-
sion of the  signal xc 1t 2  on the regular 
grid defined by 0, Ts, 2Ts, c, 1N2 1 2Ts. 
If the intersection of the sets Ci and Cs is 
empty then either the bounds ei should 
be increased or the cutoff frequency ws 
should be increased. 

The iterative algorithm is globally 
convergent regardless of the initial start-
ing signal, xo 3n 4. The proof of conver-
gence is due to the POCSs theorem [6], 
[7], because the sets Cs, Ci, and CE are all 
convex sets in l2. Successive orthogonal 
projections onto these sets lead to a solu-
tion, which is in the intersection of Cs, 
Ci, and CE. Papoulis-Gerchberg type iter-
ations jumping back and forth between 
time and frequency domains converge in 
a relatively slow manner. Convergence 
speed can be increased using the nonor-
thogonal projection methods described 
in [6], [7], and [13]. 

NUMERICAL EXAMPLES
Figure 1 demonstrates the use of the 
low-pass filtering method for Donoho’s 
Heavisine signal shown in Figure 2(a). 
Due to the edges, this signal has high-
frequency content. Therefore neither the 
strict band-limited interpolation employ-
ing the set Cp nor the use of spline inter-
polation will produce satisfactory results 
for this signal as demonstrated in [3]. 

In Figure 1, the number of available 
samples of the Heavisine signal is 32. 
Available samples are shown in Figure 
1(a). In this case, the cutoff frequency   
w5 12 #p # 11 2 /1024, stopband parame-
ter, ds5 0.03, and the time domain 
bound parameter ei5 0.01. The restored 
signal is shown in Figure 2(b). The 
restored signal is similar to the signal 
obtained using the wavelet domain 
methods described in [3]. 

In Figure 2, we randomly chose 256 
points from the Heavisine signal, and we 
estimate the underlying continuous-time 
signal at 1,024 uniformly selected 
instances, i.e., x 3n 4,  n50, 1, 2, c    ,1023. 
The available signal samples are corrupted 
by Gaussian noise with variance s5 0.3 as 
in [3]. Corrupted Heavisine signal samples 
are shown in Figure 2(b). The restored sig-
nal using the sets Cs and Ci is shown in 
Figure 2(c). The cutoff frequency 

w51 2 # p# 20 2 /1024, stopband para-
meter ds5 0.03, and the time domain 
bound parameter ei5 0.05. The recon-
struction result is comparable to the wave-
let domain interpolation method described 
in [3]. It is possible to restore the main fea-
tures of Donoho’s Heavisine signal. 

Convergence of the iterative algo-
rithm can be proved using the projec-
tions onto the convex sets theorem [6], 
[7] because the set Cs and sets Ci are 
closed and convex sets. In Figure 3, 
restored signals after 1, 10, 20, and 58 
iteration rounds are shown. 

A two-dimensional (2-D) example is 
provided in Figures 4, 5, and 6. The origi-
nal terrain model given in Figure 4 con-
sists of 2253425 sample points. As a first 
example, we assumed that one-fourth of 
the samples of the original signal are 
available in a random manner. The 2-D 
signal shown in Figure 5 is recon-
structed using the parameters wc5p/4, 
ds5 0.03, and ei5 0.01. In the second 
example, we assume that one eighth of 
the samples of the original signal are 
available in a random manner. The recon-
structed signal using the parameters 
wc5p/8, ds5 0.03, and ei5 0.01 is 
shown in Figure 6. Reconstruction 
results, which are given in Figures 5 and 
6, are low-pass filtered versions of the 
original 2-D signal in a dense 2-D grid. 

CONCLUSIONS
It is shown that it is possible to filter a 
nonuniformly sampled signal by using 
the stopband region in the Fourier 
domain. The filtering concept can be 
easily extended to bandpass, bandstop, 
and high-pass filtering. Rather than 
defining the passband region, desired 
stopband regions should be defined and 
used in the iterative filtering process. 
Moreover, as a byproduct, the method 

can also be used for interpolating irregu-
larly sampled data into a regularly 
 sampled grid. In standard Papoulis-
Gerchberg signal interpolation frame-
work, high-frequency components are 
forced to take zero values. In our case, 
high-frequency values of the signal are 
allowed to take values according to stop-
band condition defined in (3). 
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THE ITERATIVE FILTERING 
ALGORITHM CONSISTS OF 
GOING BACK AND FORTH 

BETWEEN TIME AND 
FREQUENCY DOMAINS AND 

IMPOSING THE TIME AND 
FREQUENCY CONSTRAINTS 

ON ITERATES.


