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R
ecent advances in evaluating and measuring the per-
ceived visual quality of three-dimensional (3-D) 
polygonal models are presented in this article, which 
analyzes the general process of objective quality 
assessment metrics and subjective user evaluation 

methods and presents a taxonomy of existing solutions. Simple 
geometric error computed directly on the 3-D models does not 
necessarily reflect the perceived visual quality; therefore, inte-
grating perceptual issues for 3-D quality assessment is of great 
significance. This article discusses existing metrics, including 
perceptually based ones, computed either on 3-D data or on 

two-dimensional (2-D) projections, and evaluates their perfor-
mance for their correlation with existing subjective studies.

INTRODUCTION
Technologies underlying 3-D computer graphics have matured 
to the point that they are widely used in several mass-market 
applications, including networked 3-D games, 3-D virtual and 
immersive worlds, and 3-D visualization applications [1]. 
Furthermore, emerging products, such as 3-D TVs and 
3-D-enabled gaming devices, are opening new avenues of oppor-
tunity for an enhanced user experience when interacting with 
3-D environments. Thus, 3-D models are emerging as a newly 
popular form of media [2], usually in the form of 3-D polygonal 
meshes. 
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Three-dimensional mesh mod-
els are generally composed of a 
large set of connected vertices and 
faces required to be rendered and/
or streamed in real time. Using a 
high number of vertices/faces 
enables a more detailed representation of a model and possi-
bly increases the visual quality while causing a performance 
loss because of the increased computations. Therefore, a 
tradeoff often emerges between the visual quality of the 
graphical models and processing time, which results in a 
need to judge the quality of 3-D graphical content. Several 
operations in 3-D models need quality evaluation. For exam-
ple, transmission of 3-D models in network-based applica-
tions requires 3-D model compression and streaming, in 
which a tradeoff must be made between the visual quality and 
the transmission speed. Several applications require accurate 
level-of-detail (LOD) simplification of 3-D meshes for fast 
processing and rendering optimization. Watermarking of 3-D 
models requires evaluation of quality due to artifacts pro-
duced. Indexing and retrieval of 3-D models require metrics 
for judging the quality of 3-D models that are indexed. Most 
of these operations cause certain modifications to the 3-D 
shape (see Figure 1). For example, compression and water-
marking schemes may introduce aliasing or even more com-
plex artifacts; LOD simplification and denoising result in a 
kind of smoothing of the input mesh and can also produce 
unwanted sharp features. To bring 3-D graphics to the mass-
es with a high fidelity, different aspects of the quality of the 
user experience must be understood. 

Three-dimensional mesh models, as a form of visual media, 
potentially benefit from well-established 2-D image and video 
assessment methods, such as the visible difference predictor 
(VDP) [3]. Various metrics have thus been proposed that 
extend the 2-D objective quality assessment techniques to 
incorporate 3-D graphical mechanisms. Several aspects of 3-D 
graphics make them a special case, however. Three-
dimensional models can be viewed from different viewpoints, 
thus, depending on the application, view-dependent or view-
independent techniques may be needed. In addition, once the 
models are created, their appearance does not depend only on 
the geometry but also on the material properties, the texture, 
and the lighting [4]. Furthermore, certain operations on the 
input 3-D model, such as simplification, reduce the number of 
vertices; and this makes it necessary to handle changes in the 
input model. 

VIEWPOINT-INDEPENDENT QUALITY ASSESSMENT
One category of quality assessment metrics directly works on 
the 3-D object space. The quality of a processed (simplified, 
smoothed, watermarked, etc.) model is generally measured in 
terms of how “similar” it is to a given original mesh. These 
similarity metrics measure the impact of the operations on the 
model. Another possible approach to evaluate the 3-D models 
is to consider 2-D rendered images of them according to cer-

tain viewpoints; however, 
viewpoint-independent error 
metrics would be necessary 
because they provide a unique 
quality value for a model even 
if it has been rendered from 

various viewpoints. Such metrics can be used for comparing 
compressed models or selecting a level of detail, for example. 

GEOMETRIC-DISTANCE-BASED METRICS
The simplest estimation of how similar two meshes are is pro-
vided by the root mean square (RMS) difference 

 RMS 1A, B 2 5Åa
n

i51
||ai 2 bi||

2,  (1)

where A and B are two meshes with the same connectivity, ai 
and bi are the corresponding vertices of A and B, and 7 # # 7  is the 
Euclidean distance between two points. The problem is that this 
metric is limited to comparing meshes with the same number 
of vertices and connectivity. 

One of the most popular and earliest metrics for compar-
ing a pair of models with different connectivities is the 
Hausdorff distance [5]. This metric calculates the similarity 
of two point sets by computing one-sided distances. The one-
sided distance D 1A, B 2  of surface A to surface B is computed 
as follows: 

 dist 1a, B 2 5 minb[B 1 ||a 2 b|| 2
 D 1A, B 2 5 maxa[A 1dist 1a, B 22 . (2)

As this distance is nonsymmetric, the two-sided Hausdorff 
distance is computed by taking the maximum of D 1A, B 2  and 
D 1B, A 2  (Figure 2) 

 H 1A, B 2 5 max 1D 1A, B 2 , D 1B, A 22. (3)

The Hausdorff distance has been used to find the geometric 
error between a pair of 3-D mesh models in the Metro tool by 
Cignoni et al. [5]. In this approach, the mean distance between 
a pair of meshes is found by dividing the surface integral of the 
distance between the two meshes by the area of one of the sur-
faces. The computation of this integral on discrete 3-D models 

(a) (b) (c)

[FIG1] The bunny model: (a) original, (b) simplified, and (c) 
smoothed. (Used with permission from the Stanford University 
Computer Graphics Laboratory.)

SIMPLE GEOMETRIC ERROR COMPUTED 
DIRECTLY ON THE 3-D MODEL DOES NOT 

NECESSARILY REFLECT THE PERCEIVED 
VISUAL QUALITY.
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requires a sampling method for fast computation. Aspert et al. 
[7] also propose a sampling implementation of the Hausdorff 
distance in the MESH tool. 

The Hausdorff distance computes the final distance 
between two surfaces as the maximum of all pointwise dis-
tances. Rather than taking the maximum, extensions have 
been proposed to provide a better indication of the error 
across the entire surface. Instead of taking the maximum of 
the pointwise distances, the average (known as the L1 norm), 
the RMS (L2 norm), and combinations have been proposed 
[5], [6]. 

These metrics are well known and widely used; however, 
even if they can correctly correlate with human judgement 
in some simple scenarios (see the section “Subjective 
Evaluation of 3-D Polygonal Models”), they usually fail to 
reflect the perceived quality because they compute a pure 
geometric distance between a pair of meshes, ignoring the 
working principles of the human visual system. Hence, sev-
eral other metrics, using different perceptual principles, 
have been proposed to better estimate the perceived quality 
of 3-D meshes. These solutions can be categorized as rough-
ness-based, structure-based, saliency-based, and strain-ener-
gy-based metrics. Since each of these categories focuses on 
different aspects of perception, it is unlikely for one of them 
to estimate the perceived visual quality for all scenarios. In 
this case, blending metrics of several categories may be a 
possible solution. 

ROUGHNESS-BASED METRICS
Several solutions evaluate the quality of processed 3-D models 
based on their differences from the original model in their 
surface roughness (or smoothness). These solutions employ 
the observation that operations on 3-D mesh either introduce 
a kind of noise related to roughness (e.g., as with quantization 
or watermarking) or cause smoothing of the surface details 
(e.g., with LOD simplification for rendering). Roughness is an 
important perceptual property, as we cannot determine the 
effect of a small distortion if it is on a rough region of the 
model, and we can detect defects on smooth surfaces more 
easily. This perceptual attribute, called the masking effect, 
states that one visual pattern can hide the visibility of another. 

Karni and Gotsman propose such a roughness-based error 
metric to evaluate their mesh compression approach [9]. This 
metric calculates the geometric Laplacian (GL) of a vertex vi as 
follows: 

 GL 1vi 2 5 vi 2

a
j[n1i2lij

21vj

a
j[n1 i 2lij

21
,  (4)

where n 1 i 2  is the set of neighbors of vertex i, and lij is the geo-
metric distance between vertices i and j. Then the norm of the 
Laplacian difference between models M1 and M2 is combined 
with the norm of the geometric distance between the models as 
follows (v is the vertex set of M) 

 ||M1 2 M2|| 5
1

2n
1 7 v1 2 v2 7 1 7GL 1v12 2 GL 1v22 7 2 . (5)

One limitation of this metric is that the compared models 
must have the same connectivity as the RMS error approach. 

Wu et al. [10], for driving their simplification algorithm, 
examine the dihedral angles of the adjacent faces, consider-
ing that a rough surface should have greater dihedral 
angles. Roughness variation has also been used for quality 
assessment of watermarked meshes; Gelasca et al. [11] and 
Corsini et al. [12] measure roughness strength by taking the 
difference between a mesh and its smoothed version. After 
computing roughness values for the original and water-
marked models, the roughness-based difference is calculat-
ed as follows: 

 R 1M, M w2 5 logaR 1M 2 2 R 1M w 2
R 1M 2 1 kb 2 log 1k 2 ,  (6)

where R 1M 2  is the roughness of the original mesh, R 1M w2  is 
the roughness of the watermarked mesh, and k is a constant 
to stabilize the numerical results. These roughness-based per-
ceptual metrics [11], [12] have shown to correlate very well 
with human judgement, particularly in the context of water-
marking distortions. 

Lavoué proposes a local roughness measure that is able to 
efficiently differentiate between the different kinds of 
regions in a mesh: rough parts, smooth regions, and “edge” 
features, which define border areas between regions [13] (see 
Figure 3). The proposed measure is based on a curvature 
analysis of local windows of the mesh and is independent of 
its connectivity. This measure does not estimate any distance 
but provides a local roughness estimation that can be used 
to hide artifacts and could be useful for the design of future 
quality metrics. 

STRUCTURAL DISTORTION-BASED METRICS
Structural distortion-based metrics consider the assumption 
that the human visual system is good at extracting the 

D (B, A)

D (A, B )

{A

{B

[FIG2] The Hausdorff distance between two surfaces. 
The two-sided Hausdorff distance is H (A, B) 5 max(D(A,B), 
D (B, A)) [6].
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 structural information of a 
scene in addition to local prop-
erties. Lavoué et al. [14] propose 
mesh structural distortion mea-
sure (MSDM), based on the 
work of Wang et al. [15], dedi-
cated to 2-D images. Instead of extracting the structural infor-
mation using luminance in 2-D images, this metric uses 
curvature analysis of the mesh geometry. In this work, a local 
MSDM (LMSDM) on two local windows x and y of the two 
meshes is calculated as 

 LMSDM 1x, y 2 5 Aa 3 L 1x, y 2 a
 1 b 3 C 1x, y2 a 1 g 3 S 1x,y2 a 2 1

a, (7)

with a, b, and g selected as 0.4, 0.4, and 0.2, respectively, by 
the authors and with curvature comparison L, contrast com-
parison C, and structure comparison S computed as 

 L 1x, y2 5
7mx2my 7

max 1mx,my2 ,

 C 1x, y2 5
7sx2sy 7

max 1sx,sy2 , and

 S 1x, y2 5
7sx sy2sxy 7

sx,sy

, (8)

where mx, sx, and sxy are respectively the mean, standard 
deviation, and covariance of the curvature on local windows 
x and y. Then the MSDM is calculated as follows: 

 MSDM 1X, Y 2 5 a 1
nwa

nw

i51
LMSDM 1xi, yi 2 ab 1

a
 

[  30, 12 ,  (9)

where X and Y  are the compared meshes, xi and yi are the 
corresponding local windows of the meshes, and nw is the 
number of local windows. The value a is selected as three by 
the authors, for (7) and (9) [14]. This metric has proven to 
correlate very well with human judgement even in difficult 
scenarios. The authors propose an improved version of this 
method in [16]. 

SALIENCY-BASED METRICS
The metrics described above provide a guar-
antee of the maximum geometric distance 
rather than estimating the perceived distance 
between the models. 

In this group of metrics, the idea is to 
give more importance to parts of the meshes 
that gather more human attention. This 
type of metric is generally used for mesh 
simplification such that salient parts of a 
mesh are preserved in the simplification, as 
suggested by Howlett et al. [17] and Lee et 
al. [18]. The salient parts of meshes are 
determined by utilizing an eye-tracker in 
Howlett et al.’s work, whereas Lee et al.’s 

method is more convenient as it 
computes saliency of a mesh 
automatically, based on its sur-
face curvature. 

Similar to the roughness-
based and structural distortion-

based metrics, saliency uses the perceptual limitation of the 
human visual system, and its further use for mesh quality 
assessment is a research area of great interest. 

STRAIN-ENERGY-BASED METRICS
Bian et al. [19] propose a solution based on the strain energy 
on the mesh as a result of elastic deformation. Mesh models 
are assumed to be elastic objects; as shells composed of tri-
angular faces of negligible thickness. The assumption is that 
triangle faces do not bend, and each triangle is deformed 
along its plane by ignoring any rigid body motion. 

The perceptual distance between the two versions of the 
input model is defined as the weighted average strain energy 
(ASE) over all triangles of the mesh, normalized by the total 
area of the triangular faces 

 SFEM 1A, B 2 5
1
Sa

wi Wi, (10)

where wi are weights for which several strategies are tested in 
[19] and Wi is the strain energy computed for triangle i. 

This model correlates well with human opinion from the 
subjective experiment conducted by the authors. 

ATTRIBUTE-BASED METRICS
Many 3-D mesh models contain per-vertex attributes in addi-
tion to the vertex position, such as color, normal, and texture 
coordinates. Also, in sharp creases of the models, there may 
be multiple normals per-vertex, or there may be several color 
values on the boundaries, causing discontinuities in the 
attributes. 

As described by Luebke et al. [6], correspondence 
between vertices on two surfaces is important but is a 

(a) (b) (c) (d)

[FIG3] Roughness map of a 3-D model. (a) Original model, roughness map; (b) rough 
regions shown with warmer colors; (c) noise on rough regions; and (d) noise on 
smooth regions [8].

EMERGING AS A NEWLY POPULAR 
FORM OF MEDIA, 3-D MODELS ARE 

USUALLY IN THE FORM OF 
3-D POLYGONAL MESHES.
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 difficult issue for meshes with different connectivities; it is 
difficult to compare attribute values from the original sur-
face and a simplified version in a continuous function. 
Luebke describes an alternative to Hausdorff, called the 
bijection method. This requires correspondence between 
vertices in a 2-D parametric domain, such as a texture map. 
This distance is called a parametric distance. Roy et al. [20] 
propose a metric called attribute deviation metric, that can 
be used to compare two meshes according to their geomet-
ric and appearance attributes (or any other per-vertex attri-
butes). The local deviation of attributes between each point 
of a mesh and the surface of the reference mesh is calculat-
ed using parametric distances. 

Pan et al. propose a different approach for quality assess-
ment, calculating the quality of a 3-D model according to its 
wireframe and texture resolutions (11) [21] 

 Q 1 g, t2 5
1

1
m 1 1M 2 m 2 t 1 Q 1

m 2
1

m 1 1M 2 m 2 tR 112g 2 c. (11)

Here, m and M are the minimum and maximum bounds of 
quality, g and t are graphical and texture components 
scaled into a 3021 4  interval, and c is a constant. All coeffi-
cients are determined by curve fitting on subjective evalua-
tion data. This metric provides a very good estimation of 
human judgement as demonstrated in the authors’ subjec-
tive experiment. 

VIEWPOINT-DEPENDENT QUALITY 
ASSESSMENT
Viewpoint-dependent quality assessment metrics estimate 
the perceptual quality of a 3-D model as it is shown on 
the screen; therefore, these metrics are image based. 
Viewpoint-dependent metrics can be classified as nonper-
ceptual metrics and perceptually based metrics. The visual 
system does not matter for nonperceptual approaches; they 
compute the difference between two images pixel by pixel. 
Perceptually based metrics rely on the mechanisms of the 
human visual system and attempt to predict the probability 
that the human observer will be able to notice differences 
between images. 

NONPERCEPTUAL METRICS
Lindstrom and Turk calculate the RMS image error for mesh 
simplification [22]. In their work, the meshes are rendered 
from multiple viewpoints and the quality of the resulting 
luminance images are measured in terms of their differences 
from the original image as follows: 

 dRMS 1Y 0, Y12 5Å 1
mna

m

i51
a

n

j51
Qyij

0 2 yij
1R2

,  (12)

where Y0 and Y1 are m by n luminance images. The RMS met-
ric is not a good metric for image quality assessment and is 
seldom used because it is highly affected by a shift or scale, 
and it does not have a perceptual aspect. 

Another quality metric for comparing image quality 
against a reference image consists in calculating the peak sig-
nal-to-noise ratio (PSNR). Using the RMS error shown in (12), 
the PSNR for an image with a highest possible intensity value 
Imax can be calculated by 

 PSNR 5 20log10a Imax

dRMS
b. (13)

Although PSNR is also widely used for natural images, it is 
shown to be a poor indicator of image quality [23]. However, 
according to a report of the Video Quality Experts Group 
(VQEG), many more complicated image quality metrics are not 
significantly better than PSNR [24]. The reasons for this are dis-
cussed in a study of Wang et al. [25]. 

PERCEPTUALLY BASED METRICS
Many 2-D metrics incorporate the mechanisms of the human 
visual system. These metrics generally use the following per-
ceptual concepts: contrast sensitivity function (CSF), which 
indicates the relation between the visible spatial frequency and 
different contrast values; and masking, which describes the 
reduction in the visual sensitivity of a signal upon the exis-
tence of another signal. 

A popular metric in this category is Daly’s VDP [3]. This 
metric takes two images as inputs, one of which is evaluated 
relative to the other; and the output is an image of the percep-
tual differences between the two images (see Figure 4). The 

value of each pixel on the output image 
indicates the detection probability of the 
difference. The VDP is shown to be a 
good indicator of perceptually important 
areas in 3-D graphics scenes by the psy-
chophysical experiment of Longhurst 
and Chalmers [26]. 

Another well-known metric is the 
Sarnoff visual discrimination model 
(VDM) [27] by Lubin. This metric also 
predicts the detection probability of 
the differences between a reference 
image and the evaluated image, as in 
VDP. The Sarnoff VDM model works on 

[FIG4] (a) Original image, (b) simplified image, and (c) VDP output. (Used with permission 
from the Stanford University Computer Graphics Laboratory.)

(a) (b) (c)
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spatial domain whereas VDP 
works in the frequency domain; 
VDM works faster but requires 
more memory. Li et al. [28] 
compare the two metrics and 
find that each model has advan-
tageous properties. 

Bolin and Meyer modify the 
Sarnoff VDM model and propose a simpler and faster metric, 
which incorporates color properties into their 3-D global illu-
mination calculations [29]. This metric is preferred for its 
efficiency. In their subjective experiment with differently 
simplified 3-D models, Watson et al. [30] show that this met-
ric is an effective predictor of fidelity. 

Ramasubramanian et al. [31] propose a perceptually based 
metric that defines a threshold map in which the minimum 
detectable difference values are stored for each pixel. This met-
ric handles luminance and spatial processing separately, which 
provides efficiency since it enables precomputing of the spatial 
features. 

Ramanarayanan et al. [32] introduce a novel concept, the 
visual equivalence predictor (VEP), which claims that two 
images are visually equivalent if they give the same impression 
even though they have visually different parts. This concept 
makes more sense for computer-generated imagery in which 
slightly different illumination techniques lead to different 
images when analyzed pixelwise although the two images have 
similar fidelity and information. This model takes 3-D geome-
try, material, and illumination properties into account for the 
equivalency computations. The VEP concept aims to overcome 
the limitations of the VDP model, which only considers the 
earliest levels of visual coding, and is therefore too conserva-
tive with respect to the kinds of approximations that can be 
applied in the rendering process. 

Visual masking, which describes the reduction in visual 
sensitivity of a signal upon the existence of another signal, 
has been used for view-dependent quality assessment of 3-D 
models. Ferwerda et al. [33] investigate the masking effect 
for computer graphics and extend the VDP model to include 
color. In their study, a computational model of the masking 
effect of the used textures on the artifacts of the 3-D meshes 
is developed. This masking effect is predicted on the varying 
contrast, spatial frequency, and orientation features of the 
texture pattern and on the polygonal tessellation of the 
model surface. 

Three image-quality metrics based on perceptual color dif-
ferences are proposed by Albin et al. [34]. These similar metrics 
find the difference between two images in the LLAB (a modified 
version of CIELAB) color space. The authors state that these 
metrics are not complete but only initial attempts at a perceptu-
al quality metric. While the first metric is based on a pixel-by-
pixel difference of the images, the second metric gives a single 
distance value using a Monte-Carlo approach, and the last one is 
a subdivision-based metric, which gives a rougher difference 
image compared to the first metric in a shorter time. 

SUBJECTIVE EVALUATION OF 
3-D POLYGONAL MODELS
While automatic metrics are 
commonly used to predict per-
ceptual quality, relatively few 
researchers have attempted to 
measure and predict the visual 
fidelity of 3-D models through 

subjective experiments. These experiments could be directly 
used to predict the perceptual quality of 3-D models as well as 
to validate the outcomes of automatic metrics described in the 
previous sections. Generally, the term “quality” is used to judge 
how two images (one of them original, the other modified) are 
“similar” to each other. 

EXPERIMENTAL MEASURES
Watson et al. study experimental fidelity measures for 3-D 
graphical models [30] and define three of them: 

1) naming time, which measures the time from the appear-
ance of an object until the observer names it 
2) rating, where observers assign a number within a range 
and meaning determined by the experimenter 
3) forced choice preferences, where observers are shown two 
or more stimuli, and they choose the stimulus with more of 
the experimenter-defined quality. 

The results of this work show that automatic measures of fideli-
ty (e.g., Bolin’s [29], Metro [5], mean squared error (MSE) 
approaches) are successful at predicting experimental ratings, 
less successful at predicting preferences, and largely unsuccess-
ful at predicting naming times. On the other hand, when the 
task is based on comparing different models, ranking is stated to 
be better than rating the models because the given ratings do 
not necessarily reflect the perceptual distance between the com-
pared models [35], [36]. The experimental measures used in 
several user studies can be found in Table 1. 

EXPERIMENTAL DESIGN
The parameters used in an experiment are of great importance 
because they can bias the results significantly, especially for 
computer-generated stimuli, where almost everything can be 
controlled. Effective parameters controlled in several quality 
assessment studies are shown in Table 2 and listed as follows: 

 ■ Lighting: The position and type of light source is a cru-
cial element, with a major effect on the viewing conditions. 
Rogowitz et al. [35] show that models lit from the front 
result in different subjective scores compared to the same 
models lit from above. The human visual system has a 
prior that light is stationary and comes from a left-above 
orientation [37]. 

 ■ Background: The background may affect the perceived 
quality by changing the visibility of the boundaries of the 
model. While a uniform black background is used in several 
user studies [30], [38], Corsini et al. [12] choose a nonuni-
form background that fades from blue to white so as not to 
overestimate the contours. 

THE PARAMETERS 
USED IN AN EXPERIMENT ARE 

OF GREAT IMPORTANCE BECAUSE 
THEY CAN BIAS THE RESULTS 

SIGNIFICANTLY, ESPECIALLY FOR 
COMPUTER-GENERATED STIMULI.
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 ■ Materials and shading: Today, almost all 3-D models 
used in applications have material properties (e.g., texture, 
normals) and associated complex programmable shaders. 
On the other hand, most of the subjective evaluations for 
verifying perceptual metrics do not take material proper-
ties into account; they use only diffuse and smooth-shaded 
models, mostly to prevent highlight effects [12]. Textures 
have only been used in the context of substituting geome-
try with texture [21], [38]. On the other hand, as described 
above, material properties such as textures introduce the 
masking effect and hide visual artifacts. Researchers often 
use models without textures or complex material proper-
ties to better control the number of variables influencing 
the outputs. 

 ■ Animation and interaction: To evaluate a 3-D model in a 
fair way, observers should be able to see the models from 
different viewpoints. This can be achieved by animating the 
object or viewpoint as in [21], [35], as well as giving free 
viewpoint control to the user as in [8], [12], and [36]. 
Furthermore, animations affect the perception of the mod-
els such that, in the study of Rogowitz and Rushmeier [35], 
artifacts caused by simplification are less visible when the 
objects are rotating rather than standing still. The sensitiv-
ity of the human visual system is dependent on retinal 
velocity; the eye’s tracking ability is limited to 80 °/s [39], 
which should be taken into account when an experiment 
includes animation. 

 ■ Type of objects: There are several concerns to keep in 
mind when selecting objects for a subjective experiment. 
Watson et al. [30] state that evaluation results are different 
for animal models and man-made artifacts. Further, using 
abstract objects helps avoid semantic interpretation [38]. 
Also, the complexity and roughness of the models are impor-
tant. In a very complex object, simplifications may not be vis-
ible and the roughness of a mesh may mask artifacts. 

 ■ Masking: The object’s geometry, roughness, texture, and 
applied noise or watermarking can mask each other. Lavoue 
et al. [13] examine the masking effect of noise and roughness; 
Pan et al. [21] and Rushmeier et al. [38] examine the mask-
ing effect of textures on geometry. The masking effect should 
be considered while designing an experiment. 

 ■ Extent: The extent, i.e., the display area of the rendered 
model in pixels, should be large enough to reflect the details 
of the model. Showing too many items simultaneously may 
decrease the visibility of the models. The display extents used 
in several user studies can be found in Table 2. 

 ■ Levels: When an operation (simplification, watermarking, 
etc.) on meshes is to be tested, the number of the comparison 
cases and the strengths of the applied operations for each 
case should be adjusted carefully. Too few levels (compared 
cases) may not sufficiently reflect the tested operation, 
whereas a large number of levels may not be feasible, as they 
would require too many subjects. For simplification case, 
there are studies using three [30], [35] to seven [36] levels 
(including the originals) of simplification. [T
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 ■ Stimuli order: In comparison-based experiments, stimuli 
can be shown to the user simultaneously (e.g., side by side) 
or in succession (e.g., first the reference, then the tested 
models). When they are shown in succession, enabling users 
to turn back to the reference model as in the experiment of 
Rogowitz and Rushmeier [35], allows for a more detailed 
comparison. Also, the order and the position of the stimuli 
should be selected in a way that minimizes the effect of exter-
nal variables such as observer movements and room’s ambi-
ent light. 

 ■ Duration: The duration of which the tested models are 
shown to the subjects may also affect the results of evaluation.

STANDARDS FOR SUBJECTIVE EVALUATION
Although no specific recommendation for subjective evaluation 
of 3-D models exists currently, a number of standards, which 
define the conditions for subjective experiments for other mul-
timedia content (e.g., image and video), could be adapted and 
used. A well-known standard is the ITU-R BT.500 
Recommendation [40], which defines the methodology for the 
subjective evaluation of image quality. Different experiment 
methods, such as double-stimulus continuous quality-scale 
(DSCQS) and simultaneous double stimulus for continuous 
evaluation (SDSCE) are recommended and grading scales and 
how to present test materials are outlined. Several of these 
methods, which may be useful for quality assessment of 3-D 
meshes, are briefly explained below. 

 ■ The DSCQS method is recommended for measuring the 
relative q uality of a system against a reference. It has a con-
tinuous grade scale that is partitioned into five divisions of  
equal length, labeled bad, poor, fair, good, and excellent. 
Subjects can mark the scale in a continuous manner and 
then the grades are mapped to a zero to 100 inte rval. The ref-
erence and test material are shown twice in succession. 

 ■ The SDSCE method is recommended for measuring the 
fidelity between two impaired video sequences. The stimuli 
are shown side by side and t he grading is continuous. 

 ■ The ITU-R BT.500 standard also includes recommenda-
tions related to the evaluation of the experiments, such as 
how to eliminate the outlier data.
A related standard, the ITU-T P.910 recommendation [41], 

describes subjective assessment methods for evaluating the 
one-way overall quality for multimedia applications. This 
recommendation addresses test methods and experiment 
design, including comparison methods; and evaluation pro-
cedures, including viewing conditions and the characteristics 
of the source sequences, such as duration, kind of content, 
number of sequences, etc. Subjective evaluation of 3-D 
graphical models as a form of media can benefit from these 
recommendations. 

PERFORMANCE EVALUATION
This section is an attempt to provide a performance comparison 
between the viewpoint-independent and viewpoint-dependent 
metrics. As an indicator of performance, we restrict to the [T
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 correlation with human judg-
ment (Mean opinion scores com-
ing from the rating of distorted 
models) captured via the subjec-
tive experiments presented in the 
section “Subjective Evaluation of 
3-D Polygonal Models.” 

The task of comparison is dif-
ficult because most of the met-
rics have been evaluated by a subjective database associated 
with their own protocols, which sometimes leads to contradic-
tory results. For instance, Rogowitz et al. [35] state that image 
quality metrics are not adequate for measuring the quality of 
3-D graphical models because lighting and animation affect the 
results; on the other hand, based on their experiment with 
models of varying LODs, Cleju and Saupe [42] claim that 
image-based metrics are better than metrics working on 
3-D geometry. 

Table 3 presents the performance evaluation for most of 
the existing metrics according to the difficulty of the data-
base; indeed if the stimuli come from the same source of 
distortion (such as a uniform noise addition) even a simple 
metric will correlate. On the other hand, if the stimuli come 
from different types of distortions applied on very different 
3-D models, then it becomes much more difficult to corre-
late with human judgement. These data from Table 3 come 
from many different sources; for example, in the simplifica-
tion column, we have synthesized results from Cleju and 
Saupe [42], Watson et al. [30], and Lavoué [16] using a data-
base from Silva et al. [36]. Most of these results also come 
from the recent study of Lavoué and Corsini [8], who made a 
quantitative comparison of several 3-D perceptual metrics 
according to several subjective databases. The rating ranges 
from “–” for a poor correlation to “11” for an excellent one. 
To indicate that no data is available, “?” is used, and “N/A” 
stands for “not applicable.” 

Several conclusions can be drawn from this table: most 
metrics are still not applicable for evaluating simplification 
because they are not able to compare meshes that do not 

share the same connectivity [9], 
[14], [19] or the same sampling 
density [11], [12]. 

For simple scenarios (a sin-
gle mesh processing method or 
a single model), even simple 
metrics (e.g., Hausdorff) are 
able to correlate well with 
human judgment. However, for 

more complex scenarios, the roughness-based and structural 
approaches [11], [12], [14], [16] largely perform better than 
these simple approaches. 

Two-dimensional metrics seem to perform very well for 
evaluating simplification, but these metrics have never been 
tested on other scenarios. Actually, a quantitative perfor-
mance comparison of these image-based metrics against 
recent 3-D perceptually based ones [11], [12], [14], [16] is 
still missing. This would be a very interesting task involving 
any parameters: Which 2-D metrics would perform best? 
How would one choose the 2-D views of the 3-D models to 
feed these metrics and how would one combine the scores 
coming from different views into a single one for the whole 
3-D model? 

DISCUSSION AND CONCLUSION
Three-dimensional graphical models are emerging as a newly 
popular form of media, and the importance of quality assess-
ment of these models is only expected to grow. We have sur-
veyed different metrics and approaches for evaluating the 
visual quality of 3-D polygonal models; however, there are 
several issues to consider in the future. 

It is possible to assess the visual quality of 3-D models 
through subjective user tests or automatic measures of 
quality through view-dependent or view-independent met-
rics. Regarding the perceived quality directly, subjective 
evaluation has an advantage over metrics; however, apply-
ing user tests is not practical or costly for all applications. 
In certain applications, such as LOD rendering, quality 
also has significance for run time; therefore, there is 
always a need for better automatic metrics for 3-D polygo-
nal models. 

Objective metrics are categorized as viewpoint-indepen-
dent metrics and viewpoint-dependent metrics. Most view-
point-dependent metrics work on the image space instead 
of working on the 3-D geometry of the models. Although 
there are important research findings on this issue, we 
cannot clearly say that one group of metrics is superior to 
the other. 

The nature of the models also affects the perceived 
quality. An important finding of Watson et al. [30] is that 
automatic measures predict the experimental ratings 
worse for animals (objects with smooth shapes) than man-
made artifacts. Also, using familiar objects or abstract 
objects may change the results due to the semantic inter-
pretations of the objects [38]. Furthermore, the usage of 

[TABLE 3] PERFORMANCES OF EXISTING METRICS.
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2-D METRICS [15], [29] 11 ? ? ? ? 

THE USAGE OF TEXTURES, 
WHICH IS PRESENT IN ALMOST 

ALL CURRENT 3-D MODELS, HAS A 
GREAT IMPACT ON PERCEIVED 

QUALITY SINCE THEY CAN MASK 
ARTIFACTS ON THE MODELS.
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textures, which is present in 
almost all current 3-D mod-
els, has a great impact on per-
ceived quality since they can 
mask artifacts on the models 
[21],  [38].  Animation also 
affects the perceived quality of 
3-D graphical models [43], 
[44]. Taking the above  factors 
into consideration, there is a need for more-comprehen-
sive quality metrics that consider these different channels 
of the 3-D model. 

Humans’ visual system characteristics are considered in 
many of the metrics to better reflect the perceived quality. 
The adaptation ability of the visual system, the masking 
effect, and the contrast sensitivity function are the mostly 
used concepts. In addition to these visibility-related models, 
attention-oriented metrics, which deal with predicting the 
highest-attended locations of 3-D models, have the potential 
for further development. Although attention and saliency 
concepts are studied for 3-D models and used in several appli-
cations such as mesh simplification [17], [18], [45], there is a 
need for further work on developing attention-based quality 
metrics. 

This article has also surveyed various subjective evaluation 
approaches for 3-D model quality assessment. The experiment 
design has a significant effect on the perceived quality because 
design decisions, such as the location of light sources, free 
interaction with the model, or the extent of the model on 
screen, bias the results. Even if the existing subjective studies 
seem to have produced relevant results with no error or bias in 
the protocols, there is a critical need for a real standard for test-
ing 3-D graphical models. 

Finally, we list some online platforms, tools, and reposi-
tories related to 3-D model quality assessment. These are 
generally specialized for a specific application area. For 
mesh compression, the MPEG 3-D Graphics (3DG) group 
has initiated an activity on scalable complexity mesh com-
pression to merge the theoretical models and the content 
used in real applications. The group uses an online platform 
[46] to be able to deal with 3-D graphics objects with various 
characteristics. For mesh simplification, there are several 
available tools including QSlim [47] and MeshLab [48]. 
Another important application area is watermarking as stat-
ed by recent studies [11], [12], [14]. Wang et al. [49] have 
recently presented a benchmarking system for evaluating 
the 3-D mesh watermarking methods. Several repositories 
and tools, including PolyMeCo [50] and AIM@SHAPE [51], 
are constructed to ease the validation process of quality 
assessment metrics by providing tools and common compar-
ison sets. There are also various free, general-purpose tools 
that provide 3-D model comparison (e.g., using geometric 
distance) such as Metro [5], MESH [7], and MeshDev [20]. 
These platforms and repositories can serve as a tool for 
future research in this field. 
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