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Now it is possible to choose sudtthat for anyy, € W the inequality Two-Channel Decentralized Integral-Action
(M/[pd + Clyol«] < dis true. This means that operatBrtrans- Controller Design
forms the spac# into itself. Similarly
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Abstract—We propose a systematic controller design method that pro-
vides integral-action in linear time-invariant two-channel decentralized
control systems. Each channel of the plant is single-input—single-output,
with any number of poles at the origin but no other poles in the insta-
bility region. An explicit parametrization of all decentralized stabilizing
controllers incorporating the integral-action requirement is provided

which means that operat@t is a contraction operator @i. Then, the for this special case of plants. The main result is a design methodology
operatorP has the unique fixed point corresponding to the functiofpat constructs simple low-order controllers in the cascaded form of

Mz = H(t, &, p). Moreover, from (37), one can conclude that th

@roportional-integral and first-order blocks.

inequality|H(t, &, u))| < pdexp(—~t/p) holds for all(¢, &, n) € Index Terms—Decentralized control, integral-action, stability.
R™ x R™ x (0, po).

(1]
(2]

(3]

[4]
(5]

(6]
(71

(8]
9]

[10]
(11]

(12]

(13]

(14]

|. INTRODUCTION
REFERENCES

D. V. Anosov, “On stability of equilibrium points of relay systems” (in We gonsi_der d_ecentralized controller design with integral-action for
Russian)Automat. Remote Contralol. 10, pp. 135-149, Feb. 1959, linear time-invariant (LTI) plants, whose unstable poles can only occur
G. Bartolini, A. Ferrara, and E. Usai, “Chattering avoidance by seconét the origin. These plant models occur in many applications and are
order sliding-mode control [EEE Trans. Automat. Confivol. 43, pp.  common in process control [7]. The decentralized controller structure
i%gzgghgggv??a Bondarev, N. Ye. Kostylyeva, and V. I. Utkin,is preferred for simplicity of implenientatioii and the iniegral-action in
“Sliding modes in systems with asymptotic state observekatomat. the controllers achieves asymptotic tracking of step-input references
Remote Controlvol. 46, pp. 679-684, May 1985. applied at each input. We apply and explicitly define the parametriza-
A. F. Filippov, Differential Equations With Discontinuous Right Handtion of all decentralized controllers and incorporate integral-action into
Side Dodrecht, The Netherlands: Kluwer, 1988. the controllers for this important class of plants, wherethe2 plant

L. M. Fridman, “Singular extension of the definition of discontinuou . . . . i
systems and stability, Diff. Equations vol. 26, pp. 1307-1312, Oct. Sransfer-function matrix may have simple or multiple poles at the origin

1990. in any or all of its entries.
L. Fridman, “An averaging approach to chatteringZEE Trans. Au- The theory of decentralized control has produced relatively few sys-
tomat. Contr, vol. 46, pp. 12601265, Aug. 2001. tematic and explicit design methods despite the wide practical demand.

L. Fridman and A. Levant, “Higher order sliding modes,” 8iiding FRTPeS ; ; ;
Mode Control in Engineeringser. Control Engineering, no. 11, J. F>The main difficulty is that the decentralized structure imposed on the

Barbot and W. Perruguetti, Eds. New York: Marcel Dekker, 2002, p'lg:re(_a pa_irameter of the set of all stabilizing cc_)ntrollers rent_jers the op-
53-102. timization problem nonconvex [10]. Alternatively, when viewed as a

K. H. Johansson, A. Rantzer, and K. J. Astrom, “Fast switches in relgroblem of making the plant stabilizable and detectable from one of
feedback systemsAutomatica vol. 35, pp. 539-552, 1999. its channels, the decentralized stabilizing controllers are constructed

P. V. Kokotovic, H. K. Khalil, and J. O'ReillySingular Perturbation . - .
Methods in Control: Analysis and DesignLondon, U.K.: Academic, relying on genericity arguments [2], [9], [12]. The decentralized con-

1986. troller parametrizations obtained previously (see, for example [5] and
A. Levant, “Robust exact differentiation via sliding mode technique,f8]) all characterize controllers at the conceptual level and do not pro-
Automaticavol. 34, pp. 379-384, 1998. vide explicit descriptions. The usual computational methods that would

H. Sira-Ramires, “Sliding regimes in general nonlinear systems: A rel- . . . .
ative degree approachiit. J. Control vol. 50, pp. 14871506, 1989, %e used to convert such conceptual designs to explicit descriptions

I. A. Shkolnikov and Y. B. Shtessel, “Tracking a class of nonminimunivould typically produce unnec_essarily high-or_der controllers_ since the
phase systems with nonlinear internal dynamics via sliding-mode costandard (robust) control designs are not tailored to special type of
trol using method of system centeAutomatica vol. 38, pp. 837-842, plants as considered here.

2002. The integral-action problem for the case of stable plants has been

V. . Utkin, Sliding Modes in Control and Optimization Berlin, Ger- . . . . . - . .
many: Springer-Verlag, 1992. considered in the decentralized setting with single-input-single-output

A.B. Vasil'eva, V. F. Butusov, and L. A. KalacheUhe Boundary Layer channels in [7], and [1], and design procedures were proposed for

Method for Singular Perturbation Problems Philadelphia, PA: SIAM, achieving reliable stability under the possible failure of controllers in

1995. [6]. For the case of unstable plants, controller designs were presented
in [3] based on choosing the free design parameter to achieve a desired
sensitivity function for a suitable diagonal or triangular model of
the plant. However, explicit decentralized integral-action controller
designs for plants with integrators are not available.

Manuscript received December 7, 2001; revised July 28, 2002. Recom-
mended by Associate Editor P. Apkarian. This work was supported by the
National Science Foundation under Grant ECS-9905729.

A. N. Gundesds with Electrical and Computer Engineering Department, Uni-
versity of California, Davis, CA 95616 USA (e-mail: gundes@ece.ucdavis.edu).

A. B. Ozgiiler is with Electrical and Electronics Engineering Department,
Bilkent University, Bilkent, TR-06533 Ankara, Turkey (e-mail: ozguler@
ee.bilkent.edu.tr).

Digital Object Identifier 10.1109/TAC.2002.805671

0018-9286/02$17.00 © 2002 IEEE



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 12, DECEMBER 2002 2085

Decentralized designs such as the reliable controller design
described in [6] developed for stable plants obviously cannot be
applied to plants with poles at the origin. Since only some of the L
entries of the plant transfer-function matrix may have poles at the , C
origin or these poles may appear with different multiplicities, the T2 €2, D

Y2 Y2 p Y2
integrators in the unstable plant cannot be extracted and incorporated _.?_:_. C, ) .
]

into the controller, i.e., the planP cannot simply be expressed as e )
P = (1/s)P with P stable, and a controller of the for(i/s)C
cannot be designed for the resulting staBléollowing the methods in
[6]. Note thatP = (1/s)P would result in impropeP except wherP
is strictly-proper, but more importantly, would generally meamas
transmission-zeros at the origin and cannot be (internally) stabiliz88dCn € Rp** represent the transfer-functions of the plant and the
by (1/s)C'. Furthermore, reliable design as described in [6] assum@gcentralized controller, partitioned as

controllers may fail arbitrarily; the integrators of the channel with the P {Pu Pis ]

Fig. 1. The two-channel decentralized syst&(P, Cp).

failure would not be compensated by feedback and hence, reliable Py Po Cp = diag[Ch, C2]. 1)

stabilization is not attempted in this case of unstable plants. Therefore, . )
an entirely different methodology is developed here for this importalt 1S assumed thatS(P, Cp) is a well-posed system (i.e., all
class of plants with poles at the origin. closed-loop transfer-functions are proper), and fhandC» have no

; i i ; 2x2
The main results here are the explicit parametrization of ei?l'dden modes corresponding to eigenvaludé.iihe plant? € R,
decentralized controllers with integral-action (Theorem 1), and the

may have poles at = 0 but it does not have any othéf-poles. Let
. . ) v > () be an arbitrary but fixed real number and defifiec S as
completely systematic design procedure that defines all controller

transfer-functions explicitly (Theorem 2). The significance and 7=_" )

strength of the proposed design method can be explained as follows. s+a
1) The set of all controllers (Theorem 1) is described based on t&nce the only/-poles are as = 0, the plantP has a left-coprime
“semi-free” parameters. 2) A subclass of controllers is characteriz&gtorization (LCF)P = D~' N of the form
with one parameter completely free (Theorem 2). 3) In each of its gm=1 0 1°'rN N

. 11 V12
two channels, the “nominal controller” (Theorem 2) has no unstable P= { D Z‘”‘l} [ N N }

. . . . . 21 4¥21 1V22
poles other than at = 0, which it contains by design to satisfy
the integral-action requirement. The location of the stable polégierem > 1, w > 1 are integersN, D € M(S), D is in lower-
is completely arbitrary. 4) The nominal controller in each of th&iangular Hermite-form [11].
two channels is in the form of one proportional-integral (P1) block A decentralized controlleCpr = diag[C, (] is said to be an
cascaded with first-order blocks (lead or lag controllers). The numbgfegral-action controlleriff C'n stabilizesP and D.(0) = 0 for
of these cascaded blocks depends on the number of integrators in@f¥ right-coprime factorization (RCR)n = N.D7' [11], [7]. Let
plant. 5) The nominal controller is a low-order controller, with ordef'> = NuD:l“:: diag[Ny 3 Noldiag[ Dy ", Dy '], Dj(oc) # 0, ble
independent of the number of stable plant poles. 6) The parametrigdy RCF oveS of C'p = diag[Cl, C2]. ThereforeC' = NeD.
tion of all decentralized controllergithout integral-action derived 'S @n integral-action controller if and only . = ZD. forque
from Theorem 1 leads to stable controllers so the proposed deséaﬁ:: dlﬂ.g[Dll» D] € M.(S). This ImpllesCD = NC(ZDS) _is-a
achieves strong stabilization. ecentrallzgd mtegrellll-allctlon controller f_BlI’If andonly if N.D_ " is
The design method is illustrated by an example, where the plant is th ecentralized stabilizing controller &t~ "P.

linearized model of a sugar mill process [3], [4]. Two of the entries of

@)

emma 1: An integral-action controller exists fa? = D™' N if

. . ; -~ and only if N(0) is nonsingular. A
the2 x 2 transfer-function matrix each have a simple pole at the origin. yifN(0) 9 . . .
By Lemma 1, a necessary condition due to the integral-action re-

APl controller is designed for the first channel and a Pl cascaded Wgnirement is thatank N (0) — 2. The decentralized integral-action

one Iea(_j bl-ock is desigrr:ed for the seclzond cr_la;:nﬁl.lf | f controller Cp = diag|Ch. Cs], C; = N,(ZD;)~", stabilizes the
Notation: Letl/ be the extended closed right-half plane (for ConblantP if and only if T in (4) is unimodular

tinuous-time systems) or the complement of the open unit-disk (for

discrete-time systems). The sets of real numbers, proper rational func- T :=ZDdiag[D:, D2] + Ndiag[Ni, No]
tions with real coefficients, proper rational functions with no unstable Z"Dy + Ny N, Nis Ny
poles are denoted HR, R,,, S. The set of matrices with all entries in - . } .
S is denoted byM (8S); M is called stable iffdf € M(S); a square ZD21 D1+ NoyN1v Z%D2 + N2a N

M E:’}"(S) is unimodular iff A/ e M(S);m € SisaunitinS  1he controller design problem here is to determing N; € S such

iff m " € S. A diagonal matrix whose entries afé and V. is de- 417 in (4) is unimodular. The following lemma is used to construct
noted bydiag[ N, N:]. ForM € M(S), the norml| - || is defined as  gjmple explicit solutions foi?;, N, € S and these solutions are used
|M]| = sup,eq 7(M(s)), wherer denotes the maximum singularin parametrizing all decentralized integral-action controllersfor

(4)

value andl/ denotes the boundary &f. For simplicity, the variable Lemma 2: Let G € S"*”. For any intege > 1, there existsy €

is dropped and rational functions such/a) are denoted by. S§?*" suchthatZ?I + X is unimodular if and only ifankG(0) = 7.
Our discussion here is constrained to continuous-time systems al-

though the results apply also to discrete-time systems with appropriate IIl. DESIGN

modifications. . . .
In this section, we propose design methods for two-channel

decentralized integral-action controllers. The necessary condition

rankN(0) = 2, i.e., P has no transmission-zerossat= (0, implies
Consider the LTI, multiple-input—-multiple-output, two-channel det N1 Vo2 — N12N»1)(0) # 0. In (3), the diagonal entryV1; may or

centralized feedback systeb( P, C'n) shown in Fig. 1:P € Rﬁ” may not be identically zero or zero at= 0. If Ny1 # 0, then itis

Il. ANALYSIS
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expressed ad’11 = Z"G; for someG: € S, G1(0) # 0, where i) If 3 =n, constructX’l €S satlsfylng (6) asin (14) fof = 1.

n > 0 is an integer corresponding to the number of zero®/of at DeflneA\l =X, Mt D, = M asin (6).

s = 0;if N11(0) # 0, thenGy = Nii. With N1, D, defined as (5) whert = m or as (6) wher = n, with
Theorem 1 gives a complete parametrization of all two-channel d&; is constructed as in (14) fgr = 1, defineG» as (7). Construct

centralized integral-action controllers fét, stated as two cases de-X, ¢ S satisfying (8) as in (15) foj = 2.

pending on the number of zeros &%, ats = 0. If N1, = 0, then Step 2):Choose any; € R;defineH; := f;5+G,(0)"".Choose

define3 := m andGi = 0. If N11 # 0, then letN1; =: Z"Gh1 for  h;; € R satisfying (12)

someG; € Q G1(0) # 0. Defines := min{n, m},qn :=m —j

andg. := w + 3. Define Ny, D, € S as follows. 0<hjy < |]s™(GjH; - 1| 12)
) If 8 =m,ie,if Ny =0orifm < n,let If g; > 1,forv = 2, ..., q;, chooseh,;, € IR satisfying (13): let
q;j s » 43 J ¢}
- - - ~ X, M; € S beasin(14) and (15
Ni=0Q1 D= (1 _ 7 )GlQl) (5) gy My (14) (15) 1
v—1 =1
for some@, € S such that@Q.(0) # 0, andQi(cc0) # 0<hj, < |[s <1 + G‘,H‘j% H (s+ h,,»,;))
Gl(oo)il. s o
i) If 3 =mn <m,letX; €S be suchthab/; in (6) is a unit and (13)
let N1, D; be as in (6) (s+ hyi)
- - , S Lyq
M :=Z"+G/ X, Ni=X/M"" D =M"" (6 Xi=3 Fa il H (s+a) (14)
With N1, D, defined as (5) whert = m or as (6) wher = n, H; :=f;js+G;(0 )_1 M, := 7% + G;X,. (15)

defineG, € S . . .
eliner € o as Theorem 2 (Decentralized Integral-Action Controller Desigri)et

Go 1= Z° Ny — Nio(ZDay Dy + Noy Ny). (7) the assumptions of Theorem 1 hold. A class of decentralized integral-

) ) ) ) action controllers{Cn = diag[C/, C»]} is obtained as follows: if
LetX, € S besuchthabl; in(8)isaunit;left” € Sbedefined 3 — 1, designC, as

as (9) and let unimodular matricés, U, € S?*? be defined

\ ) D . . D~ Lo\
as in (10) C, = (s t ) N,D7' = @ QO (1 - Z(“_'“)GlQl)
My :=Z" 4+ G2 X, (8) ~ . A ~ _S16)
o (m=n) v where@ € S is such thaty (0) # 0, andQ (>0) # Gi(oc)
Y i=Nip(ZDnGr - Z Na1) ©) B = n, designC; asin (17) forj = 1. In both cases, desigfi; as in
a7)forj = 2:
Uy = D i —(gtn)(’f +29Q)(1-G,;Q)™"
— 70 =Gy + Y Dy Xo M)

_H]'hj’l i (S—i—hjl‘) (9—1—(\) _
Ny :| T s 1;[) (s+ ) + M;Q4(1 = G; Q]) (17
z1 — 20V N X My whereQ:, Q> € S; Q, € S is also such that

Wi=1+Y (X + Z2Q:) My "M 18
A-[Z_l Xzili[z_l ( 2 QQ) 2 1 Q1 ( )

~Go 2%

U, =

(10) s aunit. The controllef; is properifand only it (~0) # G;(oc) "
forj =1, 2. A
Theorem 1 (All Decentralized Integral-Action Controllersjet ~ Comments 1:
Pec R,ﬁ“, P = D7'N be an LCF as (3), anchnkN(0) = 2. 1) Pl and first-order cascade structure of the controllett C; in
Let Uy, U, € &2*% be defined as in (10). Then, all decentral- (17) obtained by settin@; = 0 be called the “nominal controller”

ized integral-action controller§p = diag|C;, C.] are given by Cjo shown in (19)
C; = N;(ZD;)""asin (11) below foj = 1, 2, whereR;;, R, € S
are such thalV in (11) is a unit Clo = (s+a) X, = Hfhﬂ H (s’ + hﬂ (19)

5
[D; N;j]=[Rj; R,;JU; W :=Ri1Ry—Z®YRRy. (11)
_ _ _ This controller has important properties justifying the significance
The controllersC’; are proper if and only ifR;;, R; further satisfy and strength of the proposed design. Fet 1, 2, C, is designed

Di(oe) = (DiRit = (Gi + Y D1 Xo My ") R1)(o0) # 0, Da(o0) = to have a pole at = 0 to satisfy the integral-action requirement;
(D2Ryz = GoRo)(o0) #0. A C;, has no other unstable poles and it bgs— 1) poles ats = —a,
In Theorem 2, a careful choice of the parametRgg, R; gives a wherea is completely free. Ifn < m, wheng; = 1, Cj, is

particularly simple subclass of decentralized controllers based on the simply a PI controller. In general};, is in the form of one PI
cascaded form of simple Pl and first-order blocks. The “conditionally plock H;%;,/s = fihji+G;(0) " hj1 /s, cascaded withg; — 1)
free” parameters of Theorem 1 are now replaced by a completely free first-order blocks(s + %;;)/(s + «),i = 2, ..., ¢;, designed as
parameter, and a conditionally fre&),. The construction in the  needed when; > 1. The initial PI block can be designed as a
proof of Lemma 2 is crucial in this design. Under the same assump- pure integral controlle€,; (0)~" k1 /s by choosingf; = 0. Each

tions as in Theorem 1, the procedure is based on the following steps  subsequent first-order block is minimum-phase, with a pole-at

Step 1) ~ —«a and a zero at-h;;; these may be interpreted as lead or lag
i) If 3 = m, choose an>Q1 € S such thatQ (0) # 0, controllers depending om and’;; [they would likely all be lead
and Q1 (oc) # Gi(oc)”'. Define Ny = Qi, D = controllers sincé j; satisfying (13) are typically small andcan be

(1—Z""™G Q1) as in (5). chosen arbitrarily large at the beginning of the design procedure].
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The order of’;, isq1 = m —n, which does not exceed the number Example 1 (Control of a Sugar Mill):We apply the design in The-
of unstable poles of the plant in channel-one; the ordef'pfs orem 2 to the linearized model of a sugar mill process [3], [4]. The
g2 = m + 3, which does not exceed the total number of unstabtevo-input—two-output plant and an LCE = D~'N as (3) are

poles of the plant in channel-one and channel-two (these unstable

poles are all at = 0 here). This low-order controller design where =95 5° — 0.0055 — 0.005

the controller order is independent of the number of stable poles _ | 25541 s(s+1)

of the plant has obvious advantages over full-order observer based - 1 —0.0023

controller designs. Lo5s + 1 s

Properties of the proposed controller clasghe controllers”; in _ s 071

(17), expressed &8; = Cjo + ((s+a)/s)(Z9 + G; X;)Q;(1— _|s+a

G;Q;)~*, are biproper for any choice of the stable paraméxgr T _s 1

becauseX is biproper by design. I = m < =, C; in (16) -0 s

is strictly-proper if and only ifQ, € S is strictly-proper. Due to —9s s~ — 0.005s — 0.005
the integral-action requiremen€,; have poles a5 = 0 for any | (23s+1)(s+a) (s+a)(s+1) 1)
Q € §; C; can be restricted to have no other unstable poles if and 165/50 —23/50s

only if Q; € S is such tha{l — G;Q;) is a unit; it is sufficient 255+ 1 (s+1)

to take||Q;|| < ||G;]|”". In the case that = m < n, C) in (16)

has no unstable poles other tharsat O ifand only if Q; € S wheremm =2, w=1,n=1,G; = (-5/(255s+ 1)), G1(0) = —5.
is such thatfl — Z"~™) G, Q,) is a unit; it is sufficient to take Since3 = n < m, we designC; as in (17). Choosing = 3, f; =
Q1] < 1G] —4.5, Hy = —(4.5540.2), condition (12) is satisfied forary;; € IR
Freedom in the design parametefhe choice of the design suchthad < ki1 < 1/]5(f14-5)|; we choosé:1 = 0.38. Sincey: =
parameterQ. € S for C: in (17) is completely arbitrary 1, by (5), (14).N1 = X\ M; ' = s~ hi Hi(1+ s~ 'Girhi Hy) ™',
[where C- is proper if and only ifQz(c0) # Ga(oo)™'l. Di= My ' = (s+a)s (14+s 'GihuHi)~ ' andGy = ZNyp —
This freedom may be used to satisfy other design objective¥i2(Z D21 D1 + Na1Ni), G2(0) = —0.0033/a = —0.00066. We
The choice of the design parametgi € S for C; in (17) is choosef; = —10, H, = —10(s+1/0.0066);then0 < hs; < 0.0637
restricted so that¥’ is a unit [whereC; is proper if and only if satisfies (12). Withho; = 0.04,0 < ho» < 0.04 satisfies (13); we
Qi(oc) # Gi{o0)™']. While Q1 = 0 obviously makes¥ a choosehs» = 0.039. By (17)

unit, another sufficient condition is to choo§a € S such that

Q1] < |V (X2 + Z92Qq) My MY~ _ —0.38(4.55 4 0.2) (4.55 +0.2)
: . . 2 . Ci=——— "2+ 11-038G,——=
Design without integral action in the controller$he integral-ac- 5 5

tion in the controllers is due to th& term in the denominators Q1 (1-GiQ) !

of C;. It is obvious that the parametrization of all decentralized

controllerswithoutintegral-action can be obtained from Theorem1  ~ _ —0.4(s 4 1/0.0066)(s + 0.039) n < 504G,
simply by removing theZz =" term from the controllers. We outline s(s+5) 5+

the parametrization and design for this case. The decentralized ) .
controller Cpy = diag[Ch, C2], C; = N,;D;', stabilizes the s 1/()'(12)6_61_)(55)+()'()39)
plant P if and only if T := Ddiag[D1, Ds] + Ndiag[N1, Vo] Hle
is unimodular. Since dropping the integral-action requiremeWhereQ2 c
from the controllers reduces the number of integrators by ong
in Theorems 1 and 2, substitute by (m — 1), w by (w — 1),
and re-defineGo = ZBATQQ - ‘7\712(D21D1 =+ Nlel),
Y = Nia(DunGy — ZM~1="Ny)). Then all decentralized

> Qa2(1 — G2Q2) "

S is completely free, and); € S is such that (18) is
unit. For@Q1 = 0, the nominal controlle€’;, is in the PI form; for

@2 = 0, Cy, is the cascade of a Pl and one first-order block, which is
a lead controller since > h22. The controller<”;, C are proper for

. ; all Q1 € 8, Q- € S because?;, j = 1, 2, are strictly-proper. The
controllers are thgl_nled from (11). In,:l'_h(?no_r?)m 2@”:_"1"' — L. designparameters fi1, i1, Q1, for, hot, ka2, Q- (inthat order) can
designCy = NiDy = Qi(l - 72 o G1Qu)™, with e chosen within their respective constraints to change the closed-loop
Q1 €8,Q1(0) #0,Qi(cc) # Gi(oe)™ . I § = n, designC't yrangfer-functions achieved using this design. A

as in (20) forj = 1. In both cases, desigt as in (20)

) 1 IV. CONCLUSION
Cy =(X; +Z9Q;)(1 - G;Q;) _ o _
a We presented a systematic method to explicitly design decentral-
_ Hihi 11 (s+hji) | M;Q;(1-G,Q;)~" (20) ized controllers with integral-action for two-channel plants that have
(s+a) 15 (s+a) 4 integrators of any multiplicity in one or more entries of thex 2
transfer-function matrix. The design achieves closed-loop stability and
where, forj = 1,2,Q; € S, Q;(x) # Gj(x)~',Q, € § robustasymptotic tracking of step-input references. The nominal con-
also satisfiesV in (18) is a unit. Since the ters + a)/s is now troller of the proposed class for each of the two channels has a pole at
removed from the controllers, the nominal decentralized controller= 0 but no other unstable poles. It is designed as a low-order con-
C,, = X; is stable, withy; poles ats = —«. This design is in troller in the form of one Pl block cascaded with stable minimum-phase
the form ofg, cascaded stable first-order blocks. The initial bloclirst-order blocks. Unlike most standard full-order observer-based con-
H;h;1/(s+ «) has a zero at = —G,(0)™"/f; [negative if we troller designs, the controller order is independent of the number of
choosef; with the same sign a8, (0)']. Itis followed by(q,—1)  stable plant poles. This low-order property and the simple explicit def-
minimum-phase blockés + hj;)/(s + «),i = 2, ..., q;, each inition of the controllers without any computation makes this a very
with a pole ats = —« and a zero at-%;;. These blocks may be desirable straightforward design procedure.
interpreted as lead or lag controllers. The nominal controllers inIn some cases the plant may have stable poles that could be consid-
this design are strongly stabilizing; they can even be made units éxed undesirable. In Example 1, the plant pole at —0.04 appears as
choosingf; appropriately. A apole in the closed-loop system as well since the instability region
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is the extended closed right-half-plane. If the stability region is re-d

fined to exclude such poles in order to achieve better performancentiegers.

TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 12, DECEMBER 2002

&herefore, there exist¥ such thatZ?l + G X is unimodular for any
A

may be possible to modify the design method and extend it to includeProof of Theorem 1:The equivalent parametrizations of all decen-

plants with unstable poles in addition to those at the origin.
Other tractable extensions of the results presented here include

case of decentralized systems with more than two channels and ninditor and finding all decentralized controllers {&# D)~

tiple inputs and outputs in each channel.

APPENDIX

Proof of Lemma 1:1f N(0) is nonsingular, thedDZ) 'N is

tralized controllers given in [8], [5] can be applied to the plantin (3) by
itteduding the controller’s poles at= 0 in the augmented plantdenom-

' N. Using
the procedure in [8], all decentralized controlléts = diag[C1, C5]

for (ZD)~'N are given byC; = N,; D', whereD;, N; are as in
(11) forj = 1, 2, with R;;, R, satisfying (11). The unimodularity
of U; € M(S) in (10) are due talet U; = 1 by (5) or (6) and
det Uy = 1 by (8). UsingU;, the matrixB is in the Smith form

an LCF of 7' P. By standard results on decentralized fixed- mode§ ,
= U, BUY = diag[l Z22Y] [11
[12], [9], it follows thats = 0 is not a decentralized fixed-mode ing] 1
of (DZ)"'N. Hence, decentralized stabilizing controllers exist for det D Z™ "Nag — ZDoy Ny
(DZ)~'N. The necessity follows from (4); if the decentralized inte- b= Z"'Ny, det N

gral-action controllelC, stabilizes the planP, thenT unimodular

impliesrank7'(0) = rank(NN.)(0) = 2 = rank N (0). A
Proof of Lemma 2:If Z7 + GX = M is uni-
modular, then rank M(O) = rankG(0)X(0) = r <

min {rankG(0), rank X (0)} < r. Conversely, ifrankG(0) = r,
then X can be constructed as follows. L610)* ¢ IR**" denote
(any) right-inverse of7(0) € IR"*”. Choose any’ € IR"*"; define
H := Fs+ G(0)"*. Chooséi; € R and defineM, as in (22)

0<h <|s"(GH—-1D)|"

s Hh]

=: ZI + GX
+ hi +

Ajll =

s+ h "5 (22)

then, for anyh; satisfying (22)M; = I+ (s+h1) " ‘shi[s ' (GH —
I)] € M(S)isunimodular. Iy = 1,thenX = (s+a)~'(s+h)X =
(s+ a) *Hhy andM = (s + o) (s + h1)M,. If ¢ > 1, then
construct a unlmoduIaMz similarly, substituting@ X M ! for G in
(22), where{ GX M, 1)(0) = I. Choosér, € IR satlsfylng (23)

ni-
1 ||71

then M, := (s + ha) 'sI + GXM; 'ha(s + h2)~" is unimod-
ular for anyh» satisfying (23). Therefore, the produkf, M = (s +

0<hs <||s (GXM " -
(I+s "GHhi)~

=[5

(23)

ha) ™' (s + h1)~'s*I + GX is also unimodular. If = 2, thenX =
(S+Ll)72(8+h2)(s+}~t1){( = (s+ct)721':fltl(s+ltg)and_M = (s+
@) 2(s+ha)(s+h1) Mo My = Z*T+GX . Continue similarly ify >

2,ie,forv =3, ..., ¢, constructa unimoduqulu similarly, substi-
tuting GX T[;=}" M, for G in (22), wherg( GX [[;Z, M;')(0) =
I.Forv =3, ..., q, choose, € IR satisfying (24) and definé{,

similarly as in (22)

<I +GH - H (s + hi)
M

then M, (s + ho)7'sI + GXTIZ) M 'ho(s + ho)™!

is unimodular for anyh, satisfying (24). Therefore, the product
1=y Me—iy = II-, (s + ki) 'I + GX is also unimodular.
Finally, forv = ¢, X € §”*" and the unimodulat/ € S"*" are

v—1 -1

GX|[ Mt -1

=1

0<h, <

—1
}11

(24)

ﬁ(5+h) thﬁ(.5'+lu)
- i=1 - =2
T (s+a) (s + a)1
lf[(g+hi) q—1

M= 11 M- = 21 + GX.

=0

e #)

Forj = 1,2, X; € S satisfying (6), (8) exist sincé&,;(0) # 0:
Whengs = m, we choosd);(0) # 0; thendet N(0) # 0 implies
GQ(O) = —leiVQlQl(O) ;ﬁ 0. When,ﬁ =n<m, Gl(O) ;ﬁ 0, and

G2(0) = det N(0)G1(0)"* # 0 by assumption. By Lemma 2, there
existsX; € S such thatM; in (15) is a unit. The controller§’; are
proper if and only ifD;(oc) # 0. Wheng = m, this is equivalent to
Q1(00) # Gy(oc) ™t A

Proof of Theorem 2:The proposed controllers are obtained

from Theorem 1 by choosingR;;, R;, j = 1,2 as fol-
lows. If 3 = wm, chooseR;; = 1, Ry = 0, Rex = 1,
Ry = (M;*; thenW = 1is a unit. If 3 = n, choose

Ry = 1—Yﬁ1)(2_7\4’271621,1?1 =Q1D\,Rys=1,Ry = QM5 1,

then W = 1 + Y(Xy 4+ Z2Q.)M;'M7'Q, = Wis a
unit due to the choice o)1 € §. With this R”, R;, we have
N; = (X; = Z*Q,;)M; ', D; = (1 - G;Q;)M;". It was shown

in the proof of Theorem 1 thacG (0) # 0,5 = 1, 2. It follows
that M is a unit for X; in (14) constructed accordlng ®tep 2)by
applying the proof of Lemma 2 t6';, j = 1, 2 (whereGj, is scalar,
ie,p=r=1). A
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