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On the Design of AQM Supporting TCP Flows Using
Robust Control Theory

Pierre-François Quet and Hitay Özbay

Abstract—Recently it has been shown that the active queue manage-
ment schemes implemented in the routers of communication networks sup-
porting transmission control protocol (TCP) flows can be modeled as a
feedback control system. Based on a delay differential equations model of
TCPs congestion-avoidance mode different control schemes have been pro-
posed. Here a robust controller is designed based on the known techniques
for control of systems with time delays.

Index Terms—Active queue management (AQM), communication net-
works, control of uncertain systems with time delays, control.

I. INTRODUCTION

Recently several mathematical models of active queue management
(AQM) schemes supporting transmission control protocol (TCP) flows
in communication networks have been proposed [1]–[3]. From these
models a control theory-based approach can be used to analyze or to de-
sign AQM schemes. The authors of [2] have derived a delay differential
equations model of TCPs congestion avoidance mode and further sim-
plified this model focusing the design of a proportional–integral con-
troller on the low-frequency dynamics, considering the high-frequency
dynamics as parasitic. Their controller could guarantee some robust-
ness with respect to the network parameters uncertainties. However,
if the uncertainties to be tolerated for stability are “relatively” large,
the system’s response becomes sluggish. Motivated by their work, we
design in this note an H1 controller for their original linear system,
without neglecting high-frequency dynamics, that ensures robust sta-
bility and good performance for a wider range of network parameters
uncertainties. As in [2], we assume that the AQM mechanism brings
the system to the neighborhood of an equilibrium (operating point), so
that we take the same linear model. Large deviations from this oper-
ating point (e.g., in the form of TCP time-out and slow-start phases,
buffer overflow, empty queue) are ignored.

Other control theoretic based design of AQM include [4]–[6] while
the importance of considering time delays is pointed out in [7]–[9] and a
general overview of Internet congestion control literature can be found
in [10].

II. MATHEMATICAL MODEL OF AN AQM SCHEME SUPPORTING TCP
FLOWS

We consider in this note the network configuration consisting of a
single router receivingN TCP flows, we assume that the AQM scheme
implemented at the router marks packets using explicit congestion no-
tification (ECN) [11] to inform the TCP sources of impending con-
gestion. In the following, we ignore the TCP slow start and time out
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Fig. 1. AQM implementation.

mechanisms, thus providing a model and analysis during the conges-
tion avoidance mode only. In TCP, the congestion window size (W (t))
is increased by one every round trip time if no congestion is detected,
and is halved upon a congestion detection. This additive-increase mul-
tiplicative-decrease behavior of TCP has been modeled in [1] by the
following difference equation (case of one TCP flow interacting with
a single router):

dW (t) =
dt

R(t)
�
W (t)

2
dN(t) (1)

withR(t) = q(t)=C+Tp where Tp is the propagation delay, q(t) is the
queue length at the router,C is the router’s transmission capacity, thus,
q(t)=C is the queuing delay and R(t) is the round trip time delay, and
dN(t) is the number of marks the flow suffers. In a network topology
of N homogeneous TCP sources and one router, a model relating the
average value of these variables and the router’s queue dynamics be-
comes [2]

_W (t) =
1

R(t)
�
W (t)

2

W (t�R(t))

R(t�R(t))
p(t�R(t)) (2)

_q(t) =
N(t)

R(t)
W (t)� C

+

(3)

where p(t) is the probability of packet mark due to the AQM mecha-
nism at the router. Here we use the notation [x]+ = x if x � 0, and
[x]+ = 0 if x < 0.

The linearization of (2) and (3) about the operating point is carried
out in [2] and the perturbed variables about the operating point satisfy

_�W (t) = �
N

R2

0
C
(�W (t) + �W (t�R0))

�
1

R2

0
C
(�q(t)� �q(t�R0))�

R0C
2

2N2
�p(t�R0) (4)

_�q(t) =
N

R0

�W (t)�
1

R0

�q(t) (5)

where the operating point is defined by the solution (R0;W0; p0) of
the following set of equations:

R0 =
q0
C

+ Tp (6)

W0 =
R0C

N
(7)

p0 =
2

W 2

0

(8)

for a desired equilibrium queue level q0. Then,W (t) = W0+ �W (t),
and similarly for R(t); p(t); q(t). Clearly, implementation of the con-
troller depends on q0, see Fig. 1. In the random early detection (RED)
algorithm, q0 is adjusted by setting appropriate parameters to satisfy

p0 = LRED(q0 �minth) (9)

where LRED and minth are the AQM-RED parameters (LRED is the
ratio of a small change in packet mark probability to a small change in
queue length, and minth is the minimum queue length beyond which
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packet marking is applied linearly), see [1], [2]. Thus, (6)–(9) define the
operating point that is adjusted by the RED parameters. Then, around
the operating point, RED can be seen as a linear proportional controller
with gain LRED.

Here, we consider the same linear plant derived in [2]. Note that for
the linearization the time-varying nature of the roundtrip time delay in
the terms “t � R(t)” is ignored and these terms are approximated by
“t � R0.” However, the queue length still depends on the round-trip
time in the dynamical equation (3).

From (4) and (5) we derive the transfer function from �p to �q

�q(s)

�p(s)
= �

NW 3
0

2

A(s)e�R s

1 + A(s)R0se�R s
(10)

where

A(s) =
1

W0(R0s)2 + (W0 + 1)R0s+ 2
:

Considering a negative feedback control systemwith the AQMbeing
the controller, the system to be controlled is given by

P (s) =
NW 3

0

2

A(s)e�R s

1 +A(s)R0se�R s
(11)

=
NW 3

0

2

e�R s

R C

N
R2
0s

2 + R C

N
+ 1 R0s+ 2 +R0se�R s

:

(12)

Lemma 2.1: The plant P defined in (11) is stable for all positive
values of R0; C , and N .

Proof: The poles of the transfer function A are in the left-half
part of the complex plane for all values of the parameters W0 and R0

positives, thus A is always stable. We also have

A(s)R0se
�R s

s=j!

=
R0!

(2�W0R2
0!

2)
2
+ (W0 + 1)2(R0!)2

< 1

for all positive values of the parameters W0 and R0. So according to
the Nyquist stability test the transfer function

1

1 +A(s)R0se�R s

is stable for all positiveW0 andR0. We can thus conclude that the plant
P defined in (11) is stable for all positive values of R0; C , and N .

In the following, we design an AQM scheme based on H1 control
techniques that improves the system’s transient while stabilizing the
plant, and ensures robustness with respect to uncertainties in the values
of the system’s parameters.

III. MODELING OF THE PARAMETRIC UNCERTAINTIES OF THE PLANT

Note that P in (11) can be written as

P (s) = P2(s)
P1(s)

1 + P1(s)
(13)

with

P1(s) = A(s)R0se
�R s (14)

and

P2(s) =
NW 3

0

2R0s
: (15)

We assume that the parameters have known nominal values
Nn; R0n; Cn;W0n = (R0nCn=Nn) and that we have the following
bounds for their uncertainty:

jN �Nnj � �N+

jR0 �R0nj � �R+
0

jC � Cnj � �C+:

Assuming that (R0n ��R+
0 ); (Cn��C+); (Nn ��N+) are pos-

itives, we also have

jW0 �W0nj � �W+
0

where

�W+
0 = max

(R +�R )(C +�C )

(N ��N )
�W0n

W0n �
(R ��R )(C ��C )

(N +�N )

:

The plant P can be written as

P (s) = Pn(s)(1 + �P (s)) (16)

where Pn(s) is the nominal plant (P (s) defined from the nominal
values of the parameters N;R0; C) and �P (s) is the multiplicative
plant uncertainty. We would like to design a controller for the nominal
plant Pn(s) that would also stabilize the actual plant P (s) that would
be obtained by the same linearization process around the actual equi-
librium point. In the following our goal is to find a bound W2(s) for
the multiplicative plant uncertainty�P (s). For clarity of presentation
we omit in the following the argument of the transfer functions (i.e.,
we just write P instead of P (s)). Note that

P1n +�P1
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P1nP2n
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so
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1
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+
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(1 + P1n)

+
�P1
P1n

�P2
P2n

(1 + P1n) : (17)

It can be shown that a boundW2 of the multiplicative plant uncertainty,
i.e., W2 that satisfies

j�P (s)js=j! � jW2(s)js=j! 8! 2 + (18)

is (see details of the derivation in the Appendix)

W2(s) = a+ bs+ cs2 (19)

with a; b, and c defined in (38)–(40).

IV. H1 OPTIMIZATION PROBLEM

We design the controller to minimize the following H1 cost func-
tion:

inf
W1(1 + Pn(s)C(s))

�1

W2Pn(s)C(s)(1+ Pn(s)C(s))
�1

1

=: 
opt (20)
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where the infimum is taken over allC stabilizingPn, andW1(s) = 1=s
for good tracking of step-like reference inputs (desired queue size).
Applying the formulas given in [12] and [13], the optimal solution to
(20) is found as (a similar derivation can be found in [14])

Copt(s) =
2


cNnW 3
0n

� W0nR
2
0ns

2 + (W0n + 1)R0ns+ 2 +R0nse
�R s

s2

� 1

1 + a c 


s
+ F (s)

(21)

where F is a finite impulse response filter defined as

f(t) =

(b2 + a2 � a2c2

2) cos t




+
 c2 + a2b2 � 1



sin t



; for t < R0n

0; otherwise

(22)

with

a2 =
1

c



2 � a2

x
(23)
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c2
2
+ 2

p
x� 
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c2
2x
(24)

c2 =
p
x (25)

where x is the unique positive root of

x3 +
b2 � 2ac� a2
2

c2
2
x2 � (
2 � a2)[(2ac� b2)
2 + c2]

c4
4
x

� (
2 � a2)2

c4
4
= 0 (26)

and 
 is determined as the largest root of

1� 


c
e�R s s

(s+ a2)(s2 + b2s+ c2) s=

= 0: (27)

V. IMPLEMENTATION ISSUES

The packets are marked with probability p(t) computed by theH1
controller (21) according to the block diagram shown in Fig. 1 where
q0 is the desired steady-state queue length and

p0 =
2N2

n

q

C
+ Tpn

2

C2
n

(28)

is calculated from (6)–(8).

VI. SIMULATIONS

The simulations are carried out using simulink, the nonlinear
model defined by (2) and (3) representing the dynamics of N TCP
flows loading a router. The router implements the AQM scheme
defined by (21). The following scenario is considered.

• Nominal values known to the controller:Nn = 50 TCP sessions,
Cn = 300 packets/s, Tp = 0:2 s, so R0n = 0:533 s andW0n =
3:2 packets (we assume here a fluid model and, thus, we do not
consider packetization issues).

• Real values of the plant: N = 40 TCP sessions, C = 250
packets/s, Tp = 0:3 s, so R0 = 0:7 s and W0 = 4:375 packets.

• The following controller design parameters are considered:
�N+ = 10;�R+

0 = 0:1;�C+ = 50, which implies
�W+

0 = 2:3417.

Fig. 2. Comparison between and PI controllers.

Fig. 3. Comparison between , PI controllers and RED.

For comparison we also simulate the PI AQM scheme proposed in [2].
The parameters of the PI controller are computed as suggested by the
authors of [2] using the aforementioned known nominal values. We can
see in Fig. 2 that the H1 controller performs significantly better than
the PI controller for this set of parameters.

In Figs. 3 and 4, we analyze the robustness of the two schemes
with respect to variations in the network parameters. The outgoing link
capacity C is a normally distributed random signal with mean 250
packets/s and variance 50 added to a pulse of period 60 s, amplitude
60 packets/s. The number of TCP flows N is a normally distributed
random signal with mean 45 and variance 30 added to a pulse of pe-
riod 20 s and amplitude 10. The propagation delay Tp is a normally
distributed random signal with mean 0.8 s and variance 0.05 s added
to a pulse of period 20 s and amplitude 0.2 s. The controllers have the
following value known to them: C = 300 packets/s, N = 50; Tp =
0:7 s and the desired queue length is q0 = 100 packets. In addition
the H1 controller uses the following design parameters: �N+ =
10;�R+

0 = 0:1, and �C+ = 50. RED [15] has the following pa-
rameters: pmax = 0:1;minth = 80;maxth = 150, (these determine
the AQM-RED controller gain asLRED = (pmax)=(maxth�minth))
and queue averaging weight = 0:0001. It can be seen that both the
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Fig. 4. Values of , and corresponding to Fig. 3.

PI and theH1 controllers perform better than RED as the initial over-
shoot is reduced, and the system oscillates less under parameter vari-
ations. The wide oscillations of RED can cause the queue to become
empty, thus decreasing the utilization of the outgoing link.

VII. CONCLUDING REMARKS

We developed in this note a robust AQM control scheme supporting
ECN and TCP flows. The simulation experiments based on a non-
linear fluid flow model, that includes delays, show that the proposed
AQM scheme performs better than RED and the proportional-integral
scheme by obtaining faster transients and less oscillatory responses,
which translates into higher link utilization, low packet loss rate and
small queue fluctuations. A challenging extension of this work would
be to consider networks having multiple links and sources, but such
an extension is not trivial due to the interaction between the control
schemes of each router.

APPENDIX

From (17), we see that we can bound the multiplicative plant uncer-
tainty in the following way:

j�P (s)js=j!
<

1

1� upper bound onjP1n +�P1js=j!

� �P1
P1n s=j!

+
�P2
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: (29)
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=
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and, consequently, the transfer function (30) do not exhibit any reso-
nance phenomenon and
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Fig. 5. Case� 0.

Fig. 6. Case� 0.

Similarly, we have

j(W0n +�W0)(R0n +�R0)
2s2

+(W0n +�W0 + 1)(R0n +�R0)s+ 2js=j! � 2:

The discriminant of the second order polynomial in s formed by the
denominator of the transfer function P1(s) is

� = (W0 + 1)2R2
0 � 8W0R

2
0

= R2
0(W

2
0 � 6W0 + 1):

A sketch of the bode plot of P1 is shown in Figs. 5, and 6. For the case
of � < 0 corresponding to Fig. 5 an upper bound for the magnitude
of P1(s) evaluated on the imaginary axis is jP1(!m)j where !m =
(1=R0) (2=W0). For the case of � > 0 corresponding to Fig. 6 an
upper bound for the magnitude of P1(s) evaluated on the imaginary
axis is jP1(!m)j where !m is the geometric mean between the roots
of the second-order polynomial in s formed by the denominator of the
transfer function P1(s), which is also !m = (1=R0) (2=W0). Thus,
we have

jP1n +�P1js=j! < max
�W ;�R

R0n +�R0

2
� !m

< max
�W

1

2

2

W0n +�W0

:

Assuming W0n + �W0 > 1, we have

jP1n +�P1js=j! <

p
2

2
: (31)

We also have the first equation shown at the bottom of the previous
page, as well as (32), also shown at the bottom of the previous page,
and a bound of the magnitude of�P2(s) on the imaginary axis is

j�P2(s)js=j! < Z2
s

s=j!

with

Z2 =
Nn 3W 2

0n�W
+
0 + 3W0n(�W

+
0 )

2 + (�W+
0 )

3

2R0n 1� �R

R

+
�N+(W0n +�W+

0 )
3 +NnW

3
0n

�R

R

2R0n 1� �R

R

so we have

�P2
P2n s=j!

<
2R0nZ2
NnW 3

0n

: (33)

We also have

j1 + P1njs=j! � 1

+
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W0nR2
0ns

2 + (W0n + 1)R0ns+ 2
s=j

� 1 +
1
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� 3

2
(34)

if we assume W0n > 1.
With (31)–(34), (29) can be written as
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0n e3
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4
0ne3:

Note that we have

~W2(!) < jW2(s)js=j! (36)

with

W2(s) = a+ bs+ cs2 (37)
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where

a = a3 +
p

b3 (38)

c =
p

d3 (39)

b = max 2a3
p

d3 + 2ac+ c3;
a3c3p

b3
+ 2ac+ c3 : (40)
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