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false alarm is declared when the underlying machine is fault-free (top)
and the fraction of times the rule fails to declare a fault given that the un-
derlying machine is faulty (bottom). The results shown are aggregated
over 103 runs; in each run, the machine is supplied with appropriate
random inputs for 5000 time steps.

V. CONCLUSION

In this note, we analyzed a probabilistic scheme that can detect a
fault in the state-transition mechanism of a deterministic FSM. The
novelty of this scheme is that the detector does not need to know
the inputs that are applied to the FSM or the order in which states
appear. The detecting mechanism only requires the input probability
distribution and measurements of the (empirical) frequencies with
which different states are occupied. Fault detection is achieved by
analyzing how the obtained state occupancy measurements deviate
from the stationary distribution probabilities that are expected from
a fault-free machine. In applications where the input distribution
is not precisely known, our decision mechanism would also need
to incorporate the uncertainty introduced in our knowledge of the
(fault-free and faulty) stationary distributions; an interesting question
is then to characterize how the insufficient knowledge of the input
distribution affects the requirements on the length of the observation
window. Other interesting future research directions include the study
of the applicability of these techniques as the size of the system
increases, the development of tighter bounds on the required length
for the observation window, and the adjustment of these techniques
so that they can perform fault diagnosis (detection and identification).
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Remarks on Strong Stabilization and Stable
Controller Design

Suat Gümüşsoy and Hitay Özbay

Abstract—A state space based designmethod is given to find strongly sta-
bilizing controllers for multiple-input–multiple-output plants (MIMO). A
sufficient condition is derived for the existence of suboptimal stable
controller in terms of linear matrix inequalities (LMIs) and the controller
order is twice that of the plant. A new parameterization of strongly sta-
bilizing controllers is determined using linear fractional transformations
(LFTs).

Index Terms—Linearmatrix inequality (LMI), stable controller de-
sign, strong stabilization.

I. INTRODUCTION

Strong stabilization problem is known as the design of a stable
feedback controller which stabilizes the given plant. For practical
reasons, a stable controller is desired [1], [2]. In this note, we derive
a simple and effective design method to find stable H1 controllers
for multiple-input–multiple-output (MIMO) systems.
A stable controller can be designed if and only if the plant satisfies

the parity interlacing property (PIP) [3], i.e., the plant has even number
of poles between any pair of its zeros on the extended positive real axis.
There are several design procedures for strongly stabilizing controllers
[4]–[16].
The result in this note is the generalization of the work in [11] using

linear matrix inequalities (LMIs). The procedure is quite simple, effi-
cient and easy to solve by using the LMI Toolbox of MATLAB [17].
In the next section, it is shown that if a certain LMI has a feasible solu-
tion, then it is possible to obtain a stableH1 controller whose order is
twice the order of the plant. Moreover, a parameterization of strongly
stabilizing controllers can be given in terms of linear fractional trans-
formations (LFTs).
The note is organized as follows. The main results are given in Sec-

tion II. Stable H1 controller design procedure is proposed in Sec-
tion III. Numerical examples and comparison with other methods can
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be found in Section IV and concluding remarks are made in the last
section.

Notation: The notation is fairly standard. A state–space realization
of a transfer function, G(s) = C(sI � A)�1B + D, is shown by

G(s) = [
A B

C D
] and the linear fractional transformation of G by

K is denoted by Fl(G;K) which is equivalent to G11 + G12K(I �

G22K)�1G21 where G is partitioned as G = [
G11 G12

G21 G22

]. As a

shorthand notation for LMI expressions, we will define �(A;B) :=
BTAT + AB where A;B are matrices with compatible dimensions.

II. STRONG STABILIZATION OF MIMO SYSTEMS

Consider the standard feedback system with generalized plant G,
which has state–space realization

G(s) =

A B1 B

C1 D11 D12

C D21 0

(II.1)

where A 2 Rn�n; D12 2 Rp �m ; D21 2 Rp �m and other
matrices are compatible with each other. We suppose the plant satisfies
the standard assumptions

A.1) (A;B) is stabilizable and (C;A) is detectable;
A.2) [

A � �I B

C1 D12

] has full-column rank for all Ref�g � 0;

A.3) [
A � �I B1

C D21

] has full-row rank for all Ref�g � 0;

A.4) has no eigenvalues on the imaginary axis.
Let the controller has state space realization, KG(s) =

[
AK BAK

CK 0
] where AK 2 Rn�n; BK 2 Rn�p , and

CK 2 Rm �n. Define the matrix X 2 Rn�n; X = XT > 0 as
the stabilizing solution of

A
T
X +XA�XBBTX = 0 (II.2)

(i.e., A � BBTX is stable) and the “A-matrix” of the closed-loop

system as ACL =
A BCK

BKC AK
. Note that since (A;B) is sta-

bilizable, X is unique and AX := (A � BBTX) is stable. Also, the
closed-loop stability is equivalent to whether ACL is stable or not.

Lemma 2.1: Assume that the plant (II.1) satisfies the assumptions
A.1)–A.4). There exists a stable stabilizing controller,KG 2 RH

1 if
there existsXK 2 Rn�n; XK = XT

K > 0, and Z 2 Rn�p for some

K > 0 satisfying the LMIs

�(XK; A) + �(Z;C) < 0 (II.3)
�(XK; AX) + �(Z;C) �Z �XB

�ZT �
KI 0

�BTX 0 �
KI

< 0 (II.4)

whereX is the stabilizing solution of (II.2) andAX is as defined previ-
ously. Moreover, under the previous condition, a stable controller can

be given as KG(s) =
AX +X�1K ZC �X�1K Z

�BTX 0
and this con-

troller satisfies kKGk1 < 
K .
Proof: By using similarity transformation, one can show that

ACL is stable if and only if AX and AZ := A + X�1K ZC is stable.
Since X is a stabilizing solution, AX is stable. If we rewrite the LMI
(II.3) as

A+X
�1

K ZC
T
XK +XK A +X

�1

K ZC < 0

it can be seen that AZ is stable sinceXK > 0. The second LMI (II.4)
comes from KYP lemma and guarantees that kKGk1 < 
K .
Remark 1: If the design only requires the stability of closed loop

system, it is enough to satisfy the LMI (II.3), (1; 1) block of (II.4), i.e.,

A
T
XXK +XKAX + C

T
Z
T + ZC < 0 (II.5)

and the controller has same structure as before.
Remark 2: Lemma (2.1) is generalization of [11, Th. 2.1]. If the

algebraic riccati equation (ARE) (7) in [11] has a stabilizing solution,
Y = Y T � 0, then there exists a stable controller in the form,

[
AX � 


2

KY C
TC 
2KY C

T

�BTX 0
]. This structure is the special case of

the LMIs (II.3) and (II.4) when XK = (
KY )
�1 and Z = �
KC

T .
Note that our formulation does not assume special structure onZ . Also
in [11], the stability of AZ is guaranteed by the same riccati equation,
we satisfy the stability condition of AZ with another LMI (II.3) which
is less restrictive. Therefore, the Lemma (2.1) is less conservative as
will be demonstrated in examples.
Corollary 2.1: Assume that the sufficient condition (II.3) and (II.5)

holds. Then, all controllers in the set

KG;ss := K = Fl K
0

G;ss; Q : Q 2 RH1; kQk1 < 
Q

are strongly stabilizing where

K
0

G;ss(s) =

AX +X�1K ZC �X�1K Z B

�BTX 0 I

�C I 0

(II.6)

and 
Q = (kC(sI � (AX +X�1K ZC))�1Bk1)�1.
Proof: The result is direct consequence of parameterization of all

stabilizing controllers [19].

III. STABLEH1 CONTROLLER DESIGN FOR MIMO SYSTEMS

The standardH1 problem is to find a stabilizing controllerK such
that kFl(P;K)k1 � 
 where 
 > 0 is the closed loop performance
level and P is the generalized plant. It is well known that if two ARE’s
have unique positive semidefinite solutions and the spectral radius con-
dition is satisfied, then standard H1 problem is solvable. All sub-
optimal H1 controllers can be parameterized as K = Fl(M1; Q)
where the central controller is in the form

M1(s) =

Ac Bc1 Bc2

Cc1 Dc11 Dc12

Cc2 Dc21 0

and Q is free parameter satisfying Q 2 RH1 and kQk1 � 
. For
derivation and calculation ofM1, see [18] and [19].
If we considerM1 as plant and 
 = 
K , by using Lemma (2.1), we

can find a strictly proper stable KM stabilizing M1 and resulting
stable H1 controller, C
 = Fl(M1; KM ) where kKM k1 <


K . If sufficient conditions (II.3) and (II.4) are satisfied, then KM

can be written as

KM (s) =
Ac �Bc2B

T
c2Xc +X�1KcZcCc2 �X�1KcZc

�BTc2Xc 0

and by similarity transformation, we can obtain the state space realiza-
tion of C
 as

C
(s) =
AC BC

CC Dc11
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Fig. 1. Comparison for plant .

where Xc is the stabilizing solution of

A
T
c Xc +XcAc �XcBc2B

T
c2Xc = 0

as in (II.2) and XKc; Zc are the solution of (II.3) and (II.4), respec-
tively, and

AC =
Ac �Bc2B

T
c2Xc �Bc2B

T
c2Xc

0 Ac +X�1KcZcCc2

BC =
Bc1

�Bc1 �X�1KcZcDc21

CC = [Cc1 �Dc12B
T
c2Xc �Dc12B

T
c2Xc ] :

Note thatC
 is stable stabilizing controller such that kFl(P; C
)k1 <


.

IV. NUMERICAL EXAMPLES AND COMPARISONS

A. Strong Stabilization

The numerical example is chosen from [11]. In order to see the per-
formance of our method, we calculated the minimum 
K satisfying the
sufficient conditions in Lemma (2.1) for the following plants:

G1(s) =

(s+5)(s�1)(s�5)
(s+2+j)(s+2�j)(s��)(s�20)

(s+1)(s�1)(s�5)
(s+2+j)(s+2�j)(s��)(s�20)

G2(s) =

(s+1)(s�2�j�)(s�2+j�)
(s+2+j)(s+2�j)(s�1)(s�5)
(s+5)(s�2�j�)(s�2+j�)

(s+2+j)(s+2�j)(s�1)(s�5)

:

For various� values, theminimum 
K is found. Figs. 1 and 2 illustrates
the conservatism of [11] mentioned in Remark 2 (where �min is the
minimum value of the free parameter 
K corresponding to the method
of [11]).

B. Stable H1 Controllers

We applied our method to stable H1 controller design. As a
common benchmark example, the following system is taken from
[15]:

P =

A B1 B2

C1 D11 D12

C2 D21 0

(IV.7)

where

A =
�2 1:7321

1:7321 0

[B1 B2] =
0:1 �0:1 1

�0:5 0:5 0

C1

C2
=

0:2 �1

0 0
10 11:5470

D11 D12

D21 0
=

0 0 0

0 0 1
0:7071 0:7071 0

:

z1 =
0:03s7 + 0:008s6 + 0:19s5 + 0:037s4 + 0:36s3 + 0:05s2 + 0:18s+ 0:015

s8 + 0:161s7 + 6s6 + 0:582s5 + 9:984s4 + 0:407s3 + 3:9822s2
(w1 + u)

z2 = �u

y = w2 +
0:0064s5 + 0:0024s4 + 0:071s3 + s2 + 0:1045s+ 1

s8 + 0:161s7 + 6s6 + 0:582s5 + 9:984s4 + 0:407s3 + 3:9822s2
(w1 + u) (IV.8)
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Fig. 2. Comparison for plant .

The optimal 
 value for standard H1 problem is 
opt = 1:2929.
Using the synthesis in [15], a stableH1 controller is found at 
min =
1:36994. When our method applied, we reached stableH1 controller
for 
K;min = 1:36957. Although it seems slight improvement, our
method is much more simpler with help of LMI problem formulation.
Apart from standard problem solution (finding M1), the algorithm
in [15] finds the stable H1 controller by solving an additional H1

problem.
Another common benchmark example (see [12] and its references)

is to find a stableH1 controller for the generalized plant described by
(IV.8), as shown at the bottom of the previous page.

In [10], it is noted that for this problem, the sufficient condition in
[7] is not satisfied for even large values of 
 and the method is not ap-
plicable. As we can see from Table I, the performance of our method is
better than the method in [10] except the last case. For all cases, the re-
sult of [12] is superior from all other methods. However, the controller
order in [12] is 24 which is greater than our controller order, 16. To
address this problem, in [12] a controller order reduction is performed,
that results in lower order (e.g., tenth-order for the case � = 0:1) stable
controllers without significant loss of performance. Furthermore, the
method in [12] involves solution of an additional H1 problem which
is complicated compared to our simple LMI formulation. If the algo-
rithm in [12] fails, selection of a new parameterQ is suggested which is
an ad-hoc procedure. Although the performance of the controller sug-
gested in the present note is slightly worse, it is numerically stable and
easily formulated.

The following example is taken from [13]. Design a stableH1 con-
troller for the plant

P (s) =
s2 + 0:1s+ 0:1

(s� 0:1)(s� 1)(s2 + 2s+ 3)
:

For the mixed sensitivity minimization problem the weights are taken
to be as in [13]. A comparison of the methods [10], [13], and [14]
and our method can be seen in Table II. There is a compromise be-
tween the methods. The performance of the method in [13] is worse

TABLE I
STABLE CONTROLLER DESIGN FOR (IV.8)

TABLE II
STABLE CONTROLLER DESIGN FOR EXAMPLE IN [13]

than our method, but the order of our controller has twice order of the
controller in [13]. Although the method in [14] gives better results than
our method, the order of the controller in [14] is considerably higher
than our controller order. However, this example clearly shows that our
method is superior than [10].
As a remark, the method also gives very good results for single-

input–single-output (SISO) systems. The following SISO example is
taken from [11]:

P (s) =
(s+ 5)(s� 1)(s� 5)

(s+ 2 + j)(s+ 2� j)(s� 20)(s� 30)

W1(s) =
1

s+ 1
W2(s) = 0:2
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the optimal H1 problem is defined as


opt = inf
K stabilizing P

W1(1 + PK)�1

W2K(1 + PK)�1
1

and the optimal performance for the given data is 
opt = 34:24. A
stable H1 controller can be found for 
 = 42:51 using the method
of [11], whereas our method, which can be seen as a generalization
of [11], gives a stable controller with 
 = 35:29. In numerical sim-
ulations, we observed that when 
 approaches to the minimum value
satisfying sufficient conditions, the solutions of algebraic riccati equa-
tions of [11] become numerically ill-posed. However, the LMI-based
solution proposed here does not have such a problem. Same example
is considered in [20] and stable H1 controller found for 
 = 34:44.
The method in [20] is a two-stage algorithm with combination of ge-
netic algorithm and quasi-Newton algorithm and gives slightly better
performance than our method. The method finds stableH1 controllers
with a selection of low-order controller for free parameterQ. Since the
example considered in the note is for SISO case, it may be difficult to
achieve good performance with low-order controller for MIMO case.
Due to nonlinear optimization problem structure, the solution of the
method may converge to local minima and in general, genetic algo-
rithms give solution for longer time.

V. CONCLUDING REMARKS

In this note, sufficient conditions for strong stabilization of MIMO
systems are obtained and applied to stable H1 controller design. Our
conditions are based on linear matrix inequalities which can be easily
solved by the LMI Toolbox of MATLAB. The method is very effi-
cient from numerical point of view as demonstrated with examples.
The benchmark examples show that the proposed method is a signif-
icant improvement over the existing techniques available in the liter-
ature. The exceptions to this claim are the methods of [12], [14], and
[20]. In [12], the controller design is based on ad-hoc search method,
and both [13] and [14] result in higher order controllers than the one de-
signed by our method. In [20], selection of low-order controller for Q
gives good results for SISO structure of Q. However, in MIMO struc-
ture, Q may not result in good performance.
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The Well-Posedness and Stability of a Beam Equation With
Conjugate Variables Assigned at the Same Boundary Point

Bao-Zhu Guo and Jun-Min Wang

Abstract—A Euler–Bernoulli beam equation subject to a special
boundary feedback is considered. The well-posedness problem of the
system proposed by G. Chen is studied. This problem is in sharp con-
trast to the general principle in applied mathematics that the conjugate
variables cannot be assigned simultaneously at the same boundary point.
We use the Riesz basis approach in our investigation. It is shown that the
system is well-posed in the usual energy state space and that the state
trajectories approach the zero eigenspace of the system as time goes to
infinity. The relaxation of the applied mathematics principle gives more
freedom in the design of boundary control for suppression of vibrations of
flexible structures.

Index Terms—Boundary control, Euler–Bernoulli beam, -semigroup,
Riesz basis, stability.

I. INTRODUCTION

It has been known (see, e.g., [1] and [6]) that the following
Euler–Bernoulli beam subject to the boundary shear force feedback
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