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Global Stabilization Via Local Stabilizing Actions

A. Bülent Özgüler

Abstract—Stabilization of a linear, time-invariant system via stabiliza-
tion of its main diagonal subsytems is the underlying problem in all diag-
onal dominance techniques for decentralized control. In these techniques
as well as all Nyquist-based techniques, sufficient conditions are obtained
under the assumption that the collection of the unstable poles of all diag-
onal subsystems is the same as the unstable poles of the overall system. We
show that this assumption is by itself enough to construct a solution to the
problem at least in cases where the diagonal subsystems have disjoint poles.

Index Terms—Decentralized control, diagonal dominance, intercon-
nected systems, stabilization.

I. INTRODUCTION

Consider an N -channel p�m multivariable system in transfer ma-
trix representation

Z(s) =

Z11(s) � � � Z1N (s)
...

...
ZN1(s) � � � ZNN (s)

(1)

where Zij(s) is pi � mj for i; j 2 N := f1; . . . ; Ng with
p =

i
pi;m =

j
mj . A main problem in decentralized control

is to determine whether the p � m system can be stabilized by
local controllers Zci(s); i 2 N, each of size mi � pi and each
stabilizing its own main diagonal subsystem represented by Zii(s).
Alternatively, the problem is finding a decentralized controller
Zc = diagfZc1; Zc2; . . . ; ZcNg simultaneously stabilizing Z and
its diagonal part Zd := diagfZ11; Z22; . . . ; ZNNg, [5]. This is a
fundamental problem of decentralized action since it seeks an answer
to the question “When do local solutions result in a similar global
solution?”

The problem can be traced to the work of Rosenbrock [6], where
well-known single-input–single-output (SISO) frequency domain de-
sign techniques are extended to multiloop systems satisfying certain
“diagonal dominance” or “weak interaction” properties. A review of
the existing results on the problem can be found in [2, Ch. 4]. In [15]
and [3], related problems are studied. In [9], the problem forN = 2 has
been posed as one of reliable stabilization of a feedforward intercon-
nected system. In [10], a multichannel generalization of the problem
has been posed as a decentralized concurrent stabilization problem and
it has been established that the problem is equivalent to decentralized
strong stabilization of a transformed plant resulting from an application
of an initial decentralized controller to Z . The so called “decentralized
blocking zeros” are in turn central to the solution of the decentralized
strong stabilization problem, [10].

Let P denote the set of (proper) transfer functions and let
G(s) 2 P

p�m be a transfer matrix. A number s0 in the extended
closed right half complex plane is called an unstable blocking zero of
G(s) if G(s0) = 0. Similarly, s0 is called an unstable decentralized
blocking zero of Z if for some permutation fi1; . . . ; iNg of N the
following holds: Zi i (s0) = 0; k = 1; . . . ; N; l = 1; . . . ; k. A main
result of [10] and [8] on decentralized strong stabilization problem is
that Z admits a stable decentralized stabilizing controller if and only
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if there are an even number of poles of Z between evey pair of real
unstable decentralized blocking zeros of Z . The constructive part of
the proof of this result requires the assumptions

Z is strongly connected, [1], and 8i; j 2 N; i 6= j

rank Zij � 2 or rank Zji � 2: (2)

The problem of simultaneously stabilizing Z and Zd is equivalent to
decentralized strong stabilization of some initially compensated system
�Z(Zc0), where Zc0 = diagfZc01; . . . ; Zc0Ng is a stabilizing con-
troller forZd. While the decentralized blocking zeros of �Z(Zc0) can be
explicitly described independent of the initial controller Zc0, its poles
depend on the choice of Zc0. This result of [10] is thus not as trans-
parent as one would desire. Nevertheless, there are three important spe-
cial cases, where the condition for solvability can be stated purely on
the original plant [8]. The difference plant Zo� := Z � Zd plays a
major role in all these cases. This is natural to expect since our problem
is one of simultaneous stabilization using a special structure controller
and since, by [12, Lemma 5.4.20], some parity interlacing property of
the difference plant is the main solvability condition for simultaneous
stabilization of two plants.

i) In case the difference plant Zo� is stable, under any diagonally
stabilizing initial controllerZc0, the plant �Z(Zc0) can be shown
to be decentrally strong stabilizable. What makes the problem
nontrivial is thus the unstable poles of the difference plant.

ii) Suppose that the diagonal subplants Zii are all stable. The
problem has a solution if and only if Zo� is strong decentral-
ized stabilizable, i.e., there are an even number of its poles
between each pair of its real unstable decentralized blocking
zeros.

iii) Suppose a minimal realization of Z is stabilizable and de-
tectable from every channel i = 1; . . . ; N . If N is odd,
then Z and Zd can always be simultaneously stabilized by
a decentralized controller. If N is even, then Z and Zd can
be simultaneously stabilized if and only if there are an even
number of real poles ofZ , counted with multiplicities, between
each pair of real unstable decentralized blocking zeros of Zo� .

Note, with regard to iii), that, by definition, stabilizability and de-
tectability from any one of the channels, say channel-1, would actually
be sufficient to stabilize the overall system by a local stabilizing con-
troller applied there. The diagonal subsystems of the resulting closed
loop system would be also all stable. This would not however consti-
tute a solution to our problem which assumes that the local controllers
at channels 2; . . . ; N are “blind” to what goes on in channel-1. The
local actions at channels 2; . . . ; N to stabilize the respective subsys-
tems would hence, in general, destroy the stabilizing action taken by
the local controller at channel-1.

We investigate, in the next section, another case for which the decen-
tralized simultaneous stabilization of Z and Zd is made possible by an
assumption on Zo� . The main result, Theorem 2, can be obtained by
investigating the decentralized strong stabilizability of �Z(Zc0). How-
ever, we will give a direct proof, thereby eliminating the connectivity
assumptions (2). We also focus on the case N = 2 and state and prove
the results for the two-channel case only for notational clarity. All re-
sults of the next section, Lemma 1, and Theorems 1 and 2, are valid in
the N -channel case, but details have to be worked out.

II. DIAGONAL DOMINANCE METHODS

All Nyquist array based (block) diagonal dominance methods to de-
centralized control, [14], and many of the “interaction measure” [2]
techniques are based on the following assumption.
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(A)Z and Zd = diagfZ11; . . . ; ZNNg have the same number of
unstable poles with multiplicities.

The assumption clearly concerns the difference plant Zo� and one
expects that simultaneous stabilization problem will be easier to solve
under such an assumption. However, the relevance of A to decentral-
ized stabilization needs clarification. For instance, [11], it is neither
implied by nor implies the lack of unstable decentralized fixed modes:
Consider Z = [Zij ]; i; j = 1; 2 with Z11 = (1)=(s � 1); Z12 =
1; Z21 = (s)=((s� 1)2); Z22 = (1)=(s� 1). Assumption A is sat-
isfied for Z since both Z and diagfZ11; Z22g have a double pole at
s = 1. However, Z has an unstable decentralized fixed mode at s = 1.
Also, a plant can be devoid of unstable decentralized fixed modes while
A fails. Let Z11 = Z12 = Z22 = (1)=(s+ 1); Z21 = (1)=(s). The
2� 2 plant Z = [Zij ] has no unstable decentralized fixed modes and
A fails.

We clarify, in Theorem 1, the connection betweenA and unstable de-
centralized fixed modes in an important special case. We first need the
following result in which S denotes the set of stable transfer functions.
Lemma 1: IfA holds and if the unstable poles of the diagonal sub-

systems Z11 and Z22 are disjoint, then the overall transfer matrix Z
has the bicoprime representation Z =

P11C1

P22C2

(D1D22C22C1)
�1[D1R11 D2R22] (3)

for some nonsingular matrices Di; Ci;Dii; Cii and matrices
Pii; Rii; i = 1; 2 over S satisfying D1D22 = D2D11; C22C1 =
C11C2 and such that the following fractions are coprime:

P11C
�1

22 ; D
�1

11 R22; P22C
�1

11 ; D
�1

22 R11: (4)

Proof: Consider an arbitrary bicoprime fractional representation
Z = [P 0

1 P 0

2]
0Q�1[R1 R2], where ‘prime’ denotes “transpose,”

over S in which, say, Q is r � r. Let Ci = gcrf fPi; Qg and write
Pi = PiiCi; Q = �QiCi for i = 1; 2. Also let Di = gclf f �Qi; Rig
and write �Qi = DiQi;Ri = DiRii for i = 1; 2. Here, “gcr(l)f”
denotes “greatest common right (left) factor” so that the matrices
( �Qi; Pii) are right coprime and (Qi;Rii) are left coprime over
S, see [4]. Since we started out with a bicoprime representation,
(D1;D2) is left coprime, (C2; C1) are right coprime, and we
write D�1

1
D2 = D22D

�1

11
; C2C

�1

1
= C�1

11
C22 for right coprime

(D22;D11) and for left coprime (C11; C22) over S. It follows that

det Ci ' detCii;detDi ' det Dii; i = 1; 2 (5)

where, for a; b 2 S; a ' b means that a and b are associates, i.e.,
they are equal upto multiplication by a unit of S. Noting that Q =
D1Q1C1 = D2Q2C2, we can then write

C22Q
�1

1 D22 = C11Q
�1

2 D11: (6)

Now, the diagonal subsytem transfer matrices are Zii = PiiQ
�1

i Rii

and are in bicoprime fractional representation for i = 1; 2. By hypoth-
esis, they have disjoint poles for i = 1 and i = 2 so that detQ1 and
detQ2 are coprime in S, which implies that both sides in (6) must be
matrices over S. In other words, we can write

Qi = D̂jĈj ; Djj = D̂jUj ; Cjj = VjĈj (7)

for suitable matrices over S and for i; j = 1; 2; i 6= j such that
V1U1 = V2U2. We now show that Uj and Vj are actually unimodular
matirices as a consequence of hypothesis A. In fact, by A, we have
detQ ' detQ1 detQ2, which gives detQi ' detCjdetDj =
for i; j = 1; 2 and i 6= j. But then, using (5) and (7), det Ĉj det D̂j '
det Ĉj det D̂j detUj detVj , which gives detUj detVj ' 1, i.e.,
Uj ; Vj are indeed unimodular matrices for j = 1; 2. Hence, by (7),
Qi = Djj(VjUj)

�1Cjj ; i; j = 1; 2; i 6= j. We can now redefine

Dii $ Dii(ViUi)
�1 for i = 1; 2 so that still D�1

1
D2 = D22D

�1

11
by

V1U1 = V2U2 and Qi = DjjCjj for i 6= j.
Supposing (3) exists, let us express Z11 and Z22 in left and right

coprime fractional representations. Let

D�1

11 R22 = ~R2
~D�1

1 ; D�1

22 R11 = ~R1
~D�1

2

P11C
�1

22 = ~C�1

2
~P1; P22C

�1

11 = ~C�1

1
~P2 (8)

for left coprime matrices ( ~Ci; ~Pj) and right coprime matrices
( ~Rj ; ~Di); i 6= j. Also, let

~P1D
�1

22 = D̂�1

2 P̂1; ~P2D
�1

11 = D̂�1

1 P̂2

C�1

22
~R1 = R̂1Ĉ

�1

2 ; C�1

11
~R2 = R̂2Ĉ

�1

1 (9)

where, for i 6= j; (D̂i; P̂j) are left coprime and (R̂i; Ĉj) are right
coprime. It follows, by various coprimeness conditions, that for i; j =
1; 2; i 6= j

Zii = (D̂j
~Cj)

�1P̂iRii = PiiR̂i( ~DjĈj)
�1 (10)

are right and left coprime fractions over S, respectively.
Theorem 1: IfA holds and if unstable poles of the diagonal subsys-

tems are disjoint, then Z has no unstable decentralized fixed modes.
Proof: By Lemma 1, a bicoprime fraction (3), where

Q = D1D22C22C21 is say r � r, exists. By [1] and by [4, Ch.
7] Z is free of unstable decentralized fixed modes if and only if the
matrices

D1D22C11C2 D2R22

P11C1 0
;
D2D11C22C1 D1R11

P22C2 0
(11)

are complete over S, i.e., their first r invariant factors are units of S.
Using coprimeness of (4) and (8), it follows that the first matrix is com-
plete if and only if

D22C11 D22
~R2

~P1C11 0
(12)

is complete. This is because the first matrix in (11) and (12) can
be shown to have the same invariant factors over S. By hypothesis,
(detD22;detC11) are coprime since their unstable zeros belong to
poles of different diagonal subsystems. By [4, Cor. (2.8)], the matrices
(D22; C11) are skew prime over S, i.e., there are matrices D̂22; Ĉ11

such that D22C11 = Ĉ11D̂22 with (C11; D̂22) right and (D22; Ĉ11)
left coprime over S. Now, (9) implies that (12) is complete if and

only if [
I D̂22R̂2

P̂1Ĉ11 0
] is complete. But, this matrix is obviously

complete over S as its first r invariant factors are unity. By similar
arguments, the second matrix in (11) is also complete and the result
follows.
Remark 1: When A holds and the diagonal subsystems have

common unstable poles, the unstable decentralized fixed modes seem
to arise from the common diagonal subsytem poles and (central)
unstable zeros. It is easy to see this, using the results in [5], for the
special case when Z is 2� 2. Let Z = [(nij)=(mij)] = M�1N ,
where (mij ; nij); i; j = 1; 2 are coprime elements in S and (M;N)
are 2� 2 left coprime matrices over S. Then, the common unstable
zeros of fm11;m22;detNg are precisely the unstable decentralized
fixed modes of Z . �

Since, plants free of unstable decentralized fixed modes can be sta-
bilized by a decentralized controller, [13], Theorem 1 gives that plants
satisfying assumption A and having disjoint unstable poles in the di-
agonal admit decentralized stabilizing controllers. We show now that,
for such plants, we can do much better.
Theorem 2: SupposeA holds and the diagonal subsystems Z11 and

Z22 have their unstable poles disjoint. Then, there exists a decentralized
controller simultaneously stabilizing Zd and Z .
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Proof: By Lemma 1, we have the fraction (3). We now establish
that there exist controllers Zci := LiK

�1
i and matrices ~Li, for i =

1; 2, satisfying the following conditions simultaneously:

~CjKiD̂j + ~Pi
~Ri

~Li = I

i; j = 1; 2; i 6= j (13)

U := I � ~P1 ~R2
~L2

~P2 ~R1
~L1 is unimodular; and (14)

Li := ~Dj
~LiD̂

�1
j ; i; j = 1; 2; i 6= j: (15)

are matrices over S. We can then rewrite (13) as

D̂j
~CjKi + P̂iRiiLi = I; i 6= j: (16)

by (15) so that Zci is a stabilizing controller for Zii for i = 1; 2.
Moreover, the closed-loop denominator matrix attained by Zci, i.e.,

Q11 =

D1D22C22C1 D1R11L1 D2R22L2

�P11C1 K1 0

�P22C2 0 K2

satisfies, diagfI; ~C2; ~C1gQ11diagfI; D̂2; D̂1g =

D1D22 0 0

� ~P1 I 0

� ~P2 0 I

I ~R1
~L1

~R2
~L2

0 I ~P1 ~R2
~L2

0 ~P2 ~R1
~L1 I

�

with � := diagfC22C1; I; Ig, where (8), (9), and (13) are em-
ployed. Since det(D1D22) = det D̂1 det D̂2 and det(C22C1) =
det ~C1 det ~C2, it follows that det Q11 is equal to the determinant of
the middle matrix, or

det Q11 = det (I � ~P1 ~R2
~L2

~P2 ~R1
~L1) (17)

which is a unit by (14). Therefore, diag fZc1; Zc2g stabilizes the diag-
onal part Zd as well as the overall system Z .

We now prove the italicized statement above to complete the proof.
Let controllers in right coprime fraction L0iK

�1
0i satisfy

D̂j
~CjK0i + P̂iRiiL0i = I; i; j = 1; 2; i 6= j: (18)

Such controllers exist since, by (10), (D̂j
~Cj ; P̂iRii) are left coprime

for i; j = 1; 2; i 6= j. Let di := det D̂i ' det Di and ci :=
det ~Ci ' det Ci for i = 1; 2 and note that (c2d2; D̂1

~C1) is left co-
prime. We can hence choose L02 such that c2d2 divides it, i.e., L02 =
c2d2H02 for some matrix H02 over S. By (18), ~Li0 := ~D�1i Li0D̂i is
a matrix over S and satisfies

~CjK0iD̂j + ~Pi
~Ri

~L0i = I; i; j = 1; 2; i 6= j: (19)

Consider, for arbitrary Xi over S and for i; j = 1; 2; i 6= j,

Ki = K0i � PiR̂iXi
~Li = ~L0i + ĈjXiD̂j (20)

which clearly still satisfy (19), i.e., ~CjKiD̂j + ~Pi
~Ri

~Li = I; i; j =
1; 2; i 6= j. Also note that, if X2 = c2d2Y2 for some Y2, then ~L2 =
c2d2 ~H2 for some H2 over S. It can be directly verified that the condi-
tion (15) is also satisfied for any X1 and Y2. We now choose Y2 and
X1 to ensure that ~LiK

�1
i satisfy the condition (14). Let us first note

that Y2 can be fixed so as to make

M := I � ~P1 ~R2
~L2

~P2 ~R1
~L01 (21)

nonsingular. In fact, let y be such that Y2 := yĈ�12
~L02D̂

�1
2 is over

S and at some real number �; y(�) = 1. (Choose, for instance,
� to be any real number that is neither a zero of d2 nor c2 and
define y(s) = (c2(s)d2(s))=(c2(�)d2(�).) Now, we can write
M = I � (1 � y) ~P1 ~R2

~L20
~P2 ~R1

~L01 which satisfies M(�) = I
so that M is nonsingular. With Y2, and hence X2, so fixed we
next choose X1 such that U = M � ~P1 ~R2

~L2
~P2 ~R1Ĉ2X1D̂2 =

I � ~P1 ~R2
~H2

~P2 ~R1c2 ~L01d2� ~P1 ~R2
~H2

~P2 ~R1c2Ĉ2d2X1D̂2 is
unimodular, where the last expression is by ~L2 = c2d2 ~H2.
Let T := D̂2

~P1 ~R2
~H2

~P2 ~R1c2; G := T Ĉ2d2. We consider
Û := D̂2UD̂

�1
2 , which is Û = I � T ~L01 adj D̂2 � GX1.

Clearly, U is unimodular if and only if Û is. Referring to [12,
Cor. 5.3.6 and Th. 4.4.2], we need only show that at the unstable
zeros of the smallest invariant factor of G, i.e., at the unstable zeros of
sif(G);det (I�T ~L01 adj D̂2) has constant sign. For any square non-
singular matrix B and any rectangular A, it is easy to see that sif(AB)
divides det B sif(A). Thus, sif(G)dividesc2d2 sif(T ). Now, if any
complex number s0 in the right half plane is either a zero of c2 or a
zero of sif(T ), then det [I �T (s0)~L01(s0)adjD̂2(s0)] = det I = 1.
Also, if s0 is an unstable zero of d2, then

det[I � T (s0)~L01(s0) adj D̂2(s0)]

= detfI � [adj D̂2(s0)]T (s0)~L01(s0)g = 1

since d2 divides (adj D̂2)T . Therefore, at all unstable zeros of
c2d2 sif(T ), and of sif(G); det (I � T ~L01 adj D̂2) has constant sign
so that Û and U can be made unimodular by a suitable X1.
Remark 2: If A holds but Z11 and Z22 have common unstable

poles, then one can show, in the 2� 2 case of Remark 1, that Zd

and Z can be simultaneously stabilized if and only if there are an
even number of unstable zeros of n11n22 det N between every
pair of real unstable zeros of gcffm11;m22g. This condition cor-
responds to (gcffm11;m22g; n11n22 det N) being coprime and
having the parity interlacing property. In the multivariable case,
one may thus expect that Zd and Z can be simultaneously stabi-
lized if and only if there are an even number of elements of the set
fs : Z11(s) = 0 or Z22(s) = 0 or Z(s) = 0g between every pair of
common real, unstable diagonal subsytem poles. As a consequence,
if det N is identically zero, then the lack of unstable common poles
of Z11 and Z22 becomes a necessary condition for solution of the
problem. �

The construction in Theorem 2 of local stabilizing controllers
achieving global stability can be summarized as follows.

i) Obtain the fractional representation (3) forZ following the pro-
cedure of Lemma 1.

ii) Determine initial stabilizing local controllers L0iK
�1
0i satis-

fying (18). Make sure that c2d2 divides L02.
iii) Determine Y2 such that M of (21) is nonsingular. Let X2 :=

c2d2Y2.
iv) DetermineX1 such that Û is unimodular using [12, Cor. 5.3.6].
v) ComputeLiK

�1
i according to (20) and (15), whereX1 andX2

are substituted from ii) and iii).

The following simple example illustrates this procedure.
Example: Consider

Z =
1

2(s�1)
� 1

2s
1

2(s�1)
1
2s

=
s

s+1
� s

s+1

� 1
s+1

2s�1
s+1

�1
0 � 1

s+1
1

s+1
1

s+1

in which

P1 = [1 0] P2 = [0 1] R1 = 0
1

s+ 1

0

R2 = �
1

s+ 1

1

s+ 1

0

and Q is the denominator matrix shown previously.
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i) We obtain (3) by C1 = C2 = C11 = C22 = I2 and by

D1 =
s

s+1
0

0 1
D22 =

1 �1

� 1
s+1

2s�1
s+1

R11 =
0
1

s+1

; D2 =
1 0

�1 s�1
s+1

D11 =
s

s+1
� s

s+1

1 1
R22 =

� 1
s+1

0
:

It can be checked that D1D22 = D2D11; Q = D1D22C22C1

and (3) is obtained. Let us alo identify left and right coprime
fractions for Z11 and Z22. We have D�122 R11 = ~R1

~D�12 , and
D�111 R22 = ~R2

~D�11 , where

~R1 =
1

2(s+1)
1

2(s+1)

~D2 =
s� 1

s+ 1

~R2 =
� 1

2(s+1)
1

2(s+1)

~D1 =
s

s+ 1
:

Also, Pii = ~Pi = Pi; i = 1; 2 andCii = ~Ci = Ci = I; i =
1; 2. Moreover, ~P1D

�1
22 = D̂�12 P̂1 and ~P2D

�1
11 = D̂�11 P̂2,

where D̂1 = s=(s + 1)

D̂2 =
s� 1

s+ 1
P̂1 =

2s� 1

2(s+ 1)

1

2
P̂2 = �

1

2

s

2(s+ 1)
:

ii) Initial stabilizing controllers for

Z11 = (D̂2
~C2)

�1P̂1 R11 =
s� 1

s+ 1

�1
1

2(s+ 1)

Z22 = (D̂1
~C1)

�1 P̂2R22 =
s

s+ 1

�1
1

2(s+ 1)

are easily computed (in this simple case by inspection) as
L0iK

�1
0i ; i = 1; 2 with K01 = 1; ~L01 = L01 = 4;K02 =

(s + 3)=(s + 1); ~L02 = L02 = �2(s � 1)=(s + 1), where
c2d2 = (s� 1)=(s+ 1) is a factor of L02.

iii) Here, on letting X2 = (s � 1)=(s + 1)Y2, we have M =
1+(1)=((s+1)2)[�2(s�1)=(s+1)+(s(s�1))=((s+1)2)Y2]
nonsingular for the choice Y2 = 0. Thus, U = 1 � (s �
1)=(2(s+ 1)3)(4 + (s� 1)=(s+ 1)X1).

iv) Note that when evaluated at the two unstable blocking zeros s =
1 and s =1 of the coefficient ofX1; 1�(2(s�1))=((s+1)3)
is equal to 1. Restricting X1 to be of first order, it can be com-
puted, using e.g., root-locus, that U is unimodular for X1 =
0:286(s+5)=(s+0:1)with its zeros at f�3:0699;�0:1719�
0:7416i;�0:3432� 0:6666ig.

v) Fixing X1 as in iv) and X2 = 0, we obtain that

Zc =
4(s+1)(s+0:1)+0:286(s�1)(s+5)

(s+1)(s+0:1)�0:143(s+5)
0

0 �2 s�1
s+3

=
4:286s +5:544s�1:030

s +0:957s�0:615
0

0 �2 s�1
s+3

simultaneously stabilizes Zd and Z .
Note that the construction of Theorem 2 is not necessarily efficient,

i.e., it may involve more computations or yield higher order conrollers
than necessary in some cases. In fact, for our example in which diag-
onal subsystems are scalar, the second controller need not contain the
unstable zero at s = 1 and it is easy to check that diagf4; 2g is another
solution to the problem. �

III. CONCLUSION

We have shown that the assumptionA is a crucial one for stabilizing
a system by stabilizing its main diagonal subsystems and somewhat
trivializes the existence of a solution: A by itself ensures a solution
to exist and no extra conditions such as diagonal dominance need be

imposed. This has been established in Theorem 2 for the case in which
the unstable poles of the diagonal subsytems are disjoint. In the general
case, when diagonal subsystems have some common unstable poles, a
similar result is expected. If Z is 2� 2, for instance, one can show that
it is possible to simultaneously stabilize Zd and Z if and only if there
are an even number of zeros of Z11Z22Z between every pair of real,
unstable, and common diagonal subsystem poles. Extension of this re-
sult to multivariable case is currently under investigation. In closing,
we should mention that when stabilization is not the only concern and
other design specifications are present, the diagonal dominance prop-
erty is very useful as illustrated in [7].
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