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V. CONCLUSION

The results in this note show that the concepts introduced in [6] for
solving the minimal communication problem to achieve state disam-
biguation can be adapted to solve the more general problem of “essen-
tial transitions.” This adaptation required the introduction of the prop-
erty of legality, which captures the requirements pertaining to essential
transitions. Several issues remain open for future research. The deter-
mination of well-posed sets of essential transitions in specific decen-
tralized supervisory control or fault diagnosis problems is of particular
interest. This was done in an intuitive manner in the decentralized con-
trol example in the note. Systematic procedures for generating these
sets when coobservability is violated are currently being investigated.
Also, the problem of synthesizing minimal communication maps in
multiagent problems (three or more agents) is entirely open and most
likely quite challenging.
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PID Stabilization of MIMO Plants

A. N. Giindes and A. B. Ozgiiler

Abstract—Closed-loop stabilization using proportional-integral-deriva-
tive (PID) controllers is investigated for linear multiple-input-mul-
tiple-output (MIMO) plants. General necessary conditions for existence
of PID-controllers are derived. Several plant classes that admit PID-con-
trollers are explicitly described. Plants with only one or two unstable zeros
at or “close” to the origin (alternatively, at or close to infinity) as well as
plants with only one or two unstable poles which are at or close to origin
are among these classes. Systematic PID-controller synthesis procedures
are developed for these classes of plants.

Index Terms—Integral action, proportional-integral-derivative (PID)
controllers.

I. INTRODUCTION

Proportional-integral-derivative (PID) controllers are widely used
in many control applications and preferred for their simplicity. Due
to their integral action, PID-controllers achieve asymptotic tracking of
step-input references. The topic of PID-control is treated extensively
in every classical control text, e.g., [11]. In spite of the importance
and widespread use of these low-order controllers, most PID design
approaches lack systematic procedures and rigorous closed-loop sta-
bility proofs. Rigorous synthesis methods are explored recently in, e.g.,
[8]-[10] and [13].

The simplicity of PID-controllers, which is desirable due to easy im-
plementation and from a tuning point-of-view, also presents a major
restriction: PID-controllers can control only certain classes of plants.
The problem of existence of stabilizing PID-controllers, which is prac-
tically very relevant (see [3]), is unfortunately not easy to solve. To
gain insight into the problem’s difficulty, note that the existence of a
stabilizing PID-controller for a plant G(s) is equivalent to that of a
constant stabilizing output feedback for a transformed plant. Alterna-
tively, the problem can be posed as determining existence conditions of
a stable and fixed-order controller for G(s){((s + 1)/s), which is also
a difficult problem [1], [14]. The restriction on the controller order is
a further major difficulty. Strong stabilizability of the plant is a neces-
sary condition for existence of PID-controllers, but it is not sufficient);
e.g.,G(s) = 1/(s—p)* cannot be stabilized using a PID-controller for
any p > 0, although the extended plant G(s)((s+1)/s) is stabilizable
using a stable controller (whose inverse is also stable).

The goal of this note is to find sufficient conditions on PID stabiliz-
ability, and hence, to identify plant classes that admit PID-controllers.
Furthermore, explicit construction of the PID parameters for such plant
classes is explored, leading to systematic controller synthesis proce-
dures for linear, time-invariant (LTT), multiple-input—multiple-output
(MIMO) plants of arbitrarily high order using the standard unity-feed-
back system shown in Fig. 1. The results obtained here explore condi-
tions for PID stabilizability of general MIMO unstable plants without
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Fig. 1. Unity-feedback system Sys(G, C).

any restrictions on the plant order. Even in the single-input-single-
output (SISO) case, explicit descriptions of high-order plant classes
that admit PID-controllers are not available. Computational PID-stabi-
lization methods of “efficient search” in the parameter space were re-
cently developed for SISO delay-free systems (e.g., [12]), and some of
these techniques were extended to first-order, scalar, single-delay sys-
tems [13]. Although some of the conditions on existence of PID-con-
trollers could be derived for SISO plants using root-locus arguments
or via a generalization of the Hermite—Biehler theorem [2], [6], [7],
[15], they would not extend to the MIMO case and would not lead to
explicit synthesis procedures. The results here emphasize systematic
designs with freedom in the design parameters.

Section II gives preliminary definitions and the basic necessary
conditions for stabilizability using PID-controllers. A two-step con-
struction of stabilizing controllers is used as the basis of our synthesis
method, which first constructs a proportional-derivative controller
and then adds an integral term. Section III has the main results,
where a novel use of the small gain theorem leads to identifying
plant classes that are stabilizable using PID-controllers. The plants in
Section III-A have restrictions on their blocking zeros in the region of
instability, which leaves the pole locations completely free. The plants
in Section III-B have restrictions on the unstable poles, which allows
complete freedom in the zero locations.

The following notation is used: Let €, IR, and IR+ denote complex,
real, and positive real numbers, respectively. The extended closed right-
half complex plane is i/ = {s € C|Re(s) > 0} U {oo}; Rp denotes
real proper rational functions of s; S C Ry is the stable subset with
no poles in I4; M(S) is the set of matrices with entries in S; I, is the
n x n identity matrix. The Ho-norm of M (s) € M(S) is ||M]| :=
sup a(M(s)), where & is the maximum singular value and 8/ is the

ou

s€
boundary of /. We drop (s) in transfer matrices such as G(s) wherever

this causes no confusion. We use coprime factorizations over S; i.e.,
for G € Rp?™"", G = Y™'X denotes a left-coprime-factorization
(LCF), where X,Y € M(S), detY (o0) # 0.

II. PID STABILIZATION CONDITIONS

Consider the LTI MIMO unity-feedback system Sys(G, C') shown
in Fig. 1, where G € Rp? ™" " is the plant’s transfer function and C' €
Ry X" is the controller’s transfer function. Assume that Sys(G, C )
is well posed, G and C' have no unstable hidden modes, and G €
Ry *™ s full (normal) row rank. We consider a realizable form of
proper PID-controllers given in (1), where K, K;, Ky € IR"™" Xny
are the proportional, integral, derivative constants, respectively, and
7 € Ry [3]

K; Kgs
s s+ 1

Cpia = Kp + (@))]
For implementation, a (typically fast) pole is added to the derivative
term so that C)iq in (1) is proper. The integral action in C,iq is present
when K; # 0. The subsets of PID-controllers obtained by setting one
or two of the three constants equal to zero are denoted as follows: (1)
becomes a PI-controller Cp; when Iy = 0, an ID-controller C;4 when
K, = 0, a PD-controller C,4 when K; = 0, a P-controller C}, when
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K; = I; = 0, an I-controller C; when K, = Kq = 0, and a
D-controller Cy when K, = K; = 0.
Definition 1:
1) Sys(G, C) is said to be stable iff the transfer function from (7, v)
to (y,w) is stable.
2) C'is said to stabilize G iff C is proper and Sys(G, C) is stable.
3) G € ngxn “ is said to admit a PID-controller iff there exists
C = Chiq as in (1) such that Sys(G, Cpia) is stable.
We say that G is stabilizable by a PID-controller and Cl,iq is a stabi-
lizing PID-controller. A

Let G =Y ' X beany LCFand C' = N.D_ ' be any RCF; for G €
Rp’ ", X, Y € M(S), detY(oc) # 0, and for C € Rp ™",
N, D. € M(S), det D.(o0) # 0. Then, C stabilizes G if and only
if M := YD. + XN. € M(S) is unimodular [4], [14]. We now
examine necessary conditions for PID stabilizability. Note here that,
since a general PID-controller contains a pole at the origin and is hence
unstable, the result given in part 2) of Lemma 1 is not obvious.

Lemma 1: (Necessary Conditions for Existence of PID): Let G €
Rp? """, Let rankG(s) = n,,.

1) If G admits a PID-controller such that the integral constant K&; €

IR"»*™¥ is nonzero, then G has no transmission zeros at s = ()
and rank K; = n,,.
2) If G admits a PID-controller, then G is strongly stabilizable. A

Although several PID-controller synthesis methods exist for stable
plants, which obviously admit PID-controllers, Proposition 1 gives a
method applicable to MIMO plants.

Proposition 1: (PID-Controller Synthesis for Stable Plants): Let
H € S"v*"and rankH (5) = n, < n,. If the integral term is to
be nonzero, also let rank H (0) = n,, and let H'(0) be a right inverse
of H(0). For any of the P, I, or D terms in C),ia to be nonzero, choose
the corresponding A,, Ay, and A; = 1; to make any of these terms
zero, choose the corresponding A,, Ag, and A; = 0. Choose any
K'p, K, e R™" " 1 ¢ IR+ . Choose any v € IR satisfying

: Ky H(s)H (0)—1
v<||H(s) <Aplx’p+Ad td? >+Ai () 7(0) @
Ts+1 s
Let K = 7K, Kg = vK 4, and K; = vH(0)"; then
1 y. - ‘}H 0 ! ) A/’I;'ds
is a PID-controller that stabilizes H . A

Lemma 2 states that if a stabilizing C),, C;, and C'y exist for the plant
G, then it is possible to find suitable choices for the remaining constants
and extend to stabilizing PI, ID, PD, and PID-controllers.

Lemma 2: Let G € Rp?™"*.

1) Two-step controller synthesis [14, Th. 5.3.10]: Suppose that C|
stabilizes G and C), stabilizes H := G(I + C,G)~* € M(S).
Then, C' = C,; + C}, also stabilizes G.

2) PID-controllers constructed from subsets: If G admits a subset of
a PID-controller where at least one of the three constants /', K4,
and K; is nonzero, then G admits a PID-controller such that any
two or all three of the three constants are nonzero. The integral
constant A’; is nonzero only if G has no transmission zeros at
s = 0.

3) Two-step PID-controller synthesis: Let G have no transmission-
zeros at s = (. Suppose that there exists a PD-controller Cpy
stabilizing G'. Then, Cpia = Cpa+ K /s also stabilizes G, where
Cin = K;/s is any I-controller that stabilizes H,q := G(I +
OpdG)fl. In particular, C, = K;/s can be chosen as

Ki _ vHpa(0)' _ 7 [G(0) + K]

S5 5 s

“
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for any v € IRy satisfying

—1
0<v<

H Hyu(s)H,q(0)" — I‘ )

5

A
Condition (5) on the scaling factor v used in K;/s proposed in
Lemma 2 can also be expressed as

—1

G(s) [Hpa(0)' = Cpa] =1

< |[(T+GCpa)
B L [G)GT0) =T Hyu(s)Ka||
= I+GC,0) - - ©)

III. PLANT CLASSES THAT ADMIT PID-CONTROLLERS

We investigate specific unstable plant classes that admit PID-con-
trollers and propose synthesis methods. By Lemma 1, plants that admit
PID-controllers are necessarily strongly stabilizable. Section III-A
deals with various plants satisfying the parity-interlacing property,
with restrictions on the unstable region blocking zeros but no re-
strictions on the location of the poles. By contrast, the {/-poles are
restricted in Section III-B in order to allow complete freedom in the
zero locations.

The unstable plant classes considered in this section are all square
(ny = n.) and full-rank, ie., G satisfies G € Rp*”*"?, (normal)
rankG(s) = ny.

1) For unstable plants with no zeros in ¢/ including infinity (G~ €

S"v*"v) there exist P, I, D, (hence, PD, PI, and PID) controllers.
2) For unstable plants with one or two blocking zeros in{/ (including
s = 0, o0) satisfying certain norm bounds, there exist PD-con-
trollers; when neither one of the zeros is at s = 0, there exist
PID-controllers.

3) For unstable plants with one or two poles in ¢/ (including s =
0) satisfying certain norm bounds, there exist PD and PID-con-
trollers.

A. Unstable Plants With Restrictions on the U-Zeros

Unstable plants without blocking zeros in the unstable region I/ (in-
cluding infinity), which are obviously strongly stabilizable, admit PID-
controllers. Plants that have (one or two) real-axis blocking zeros in I/
also admit PID-controllers under certain sufficient conditions on these
Zeros.

1) Unstable Plants With No U-Zeros: Let G € Rp?™"? have no
transmission-zeros in ¢/ (including infinity); hence, G satisfies the nec-
essary condition in part 1) of Lemma 1 for existence of PID-controllers
with nonzero K;. Therefore, G hasanLCFG = Y ' X = (G 1)1,
where det G(oo)™" # 0. Proposition 2 shows that G admits P, I, PI,
ID, and PID-controllers.

Proposition 2: Choose K,, K4 € R"**"v, 7 € IRy such that
det[G(o0) ™' + K, + 77" K4] # 0 (I, and/or K; may be zero). Let
Wy := G *(s)+ K, + (K45/(ts + 1)). Then

. 0[G(o) '+ Kp+ 7 K] Kys
Coia = Kp + s Ts+1 @
stabilizes G for any § € IR satisfying
6> || [W,,,, (Gloo) '+ K+ 7 'K - I] H . ®
A

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 52, NO. 8, AUGUST 2007

2) Unstable Plants With Positive Real Zeros Including Zero and In-
finity: Let G have no transmission zeros in {{ other than { € {1,2}
(one or two) real-axis blocking zeros (at s = z; € IR, z; > 0,
J € {1, {}); G may have any number of transmission zeros in the stable
region. The condition in 1) of Lemma 1 for existence of PID-controllers
with nonzero K; is satisfied only when z; # 0. The poles of G are
completely arbitrary, except that we assume G has no poles at s = 0 if
there is a zero close to the origin.

We consider two cases where the real-axis zeros at z; > 0 are either
“small,” including z; = 0, or “large,” including infinity.

Case 1): Letz; € R, z; > 0,z < zj41; witha; € Ry, j €
{1, ¢}, let

4 ¢ 4 4
= [Jui=[[as+1) 2= =][s=2)- ©
J=1 =1 7=1 J=1

Let G havean LCFG = Y ' X = ((2/y)G 1) ' ((«/y)]).Let G
have no poles at s = 0. Under these assumptions in Proposition 3,
G admits PD-controllers if upper bounds are imposed on the zeros; if
{ = 1, G also admits P-controllers; G admits PI and PID-controllers
only if z; # 0.If { = 1, some plants (e.g., G = (s — 2z)/(s — p),
z,p > 0) do not admit D- and I-controllers. If £ = 2, some plants
(e.g. G = ((s — z1)(s — 22))/(s* = p), 21, 22, > 0) do not admit
P, D, and I-controllers.

Proposition 3: Let G have no poles at s = 0. Let £ € {1,2}. With
z,yasin(9),letY = (x/y)G~' € M(S), where z; € R, z; > 0.
Let Y(0)™" = 27 'G(5)|s=0.If £ = 1, choose any kq > 0,71 € R.
Define €'y := 1 + (kas/(m1s + 1)) and define

d, =ClaG H(s)Y(0) T -1 (10)
If0 < 2 < ||®/s]|", then for any a € TR satisfying (11), the
PD-controller C'; in (12) stabilizes G

o <||®1/s]|7" = =, (11)
Cy =Ky + Tfidfl == }m ChY(0)
(s +a)” [1 + nidj J Y(0). (12)
If ¢ = 2, choose any k2, € IR, . Define
By = (kos+ 1) G ()Y (0) ' = 1. (13)

If 2(z1 + 22) < ||®2/s|| ", then for any o, 3 € Ry satisfying (14),
letn :=2(z14+22)+a+3,p:=af+az+ 82,7 = 77/)71,
Kpo = p~'Y(0), and K2 = p~' (k2 — 7)Y (0); the PD-controller
C5 in (15) stabilizes G

a+8<||Ba/s|| " —2(21422), (14)
. Kps p H(kas+1) .,
= _I&p2+72.5’+1 - Tos+1 Y (0)
kzs+1 Y(0). (15)

- (2(z1422)+a+3) staf+aze+ 32

If z¢ #0,1et Cpqg = Crasin (12) or (15) for { = 1 or { = 2, respec-
tively. Choose any v € IR satisfying (5). Then, a PID-controller that
stabilizes G is given by

v [GTH0) + Kpe]

Cpria =Ce + ) [ (16)

s

Equation (16) becomes Cpig = Ci + ((21 + o) tavy/s)G~(0) for
{=1and Cpia = C2 + (pt(p+ z1;2)v/s)G71(()) for{ =2. A
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Case 2): With z; € IR, 0 <
Jj € {10}, let

4 ¢
=1l =[G+ #
7=1 7=1

Let Ghavean LCFG =Y 'X = ((#/§)G~")""((#/§)I). Propo-
sition 4 shows that, with lower bounds on the zeros, plants in this class
admit PD and PID-controllers; if { = 1, they also admit P- and PI-con-
trollers. If £ = 1, some plants (e.g., @ = 1/(s — p), p > 0) do not
admit D- and I-controllers. If ¢ = 2, some plants (e.g., G = 1/(s>—p),
p > 0) do not admit P-, D-, and I-controllers.

Proposition 4: Let { € {1,2}. With #, § as in (17); let Y =
(#/9)G™" € M(S), where z; € R, 0 < 2; < oo, and a; € IR,
aj >0, € {1,£}. LetY(s0) ! = & 1§G(5)]s=oo. If £ = 1, choose
any kp, 71 € IR4. Define Cy = (mis+ kp)/(m1s+ 1) and define

z; < ocanda; € R, a; > 0,

4 4
=[]# =] -5/ an

7=1 Jj=1

1

=

U, = C7 G (5)Y (00) ™! — s (18)

If || T, ]| < z1 < oo, then for any a € IR satisfying (19), the PD-con-
troller C'y in (20) stabilizes G

a > (1= || Wf|/z0) " [, (19)
. Kgis « A s
=K D = LY
Ci le+T1.<;—|—1 1+0¢/:1C1 (00)
« (1—kp)mis] .
= |k + ——2 " | V().
L+a/z |7 + T1s+1 (00) (20)
If { = 2, choose any k2 € IR4. Define
Wy = (s 4 ko) ' 2G " (5)Y (00) 7! — sl Q1)

If 2(1/21 4+ 1/22) < ||¥2]| ", then for any «, 3 € Ry satisfying
(22),letn := af + afzo+ B/z1,p = a4+ 3+ 2(1/z1 + 1/ 22),
o =np ", Kpo = p  kaY (00),and Kgo = p~ ' (1 = 7ok2)Y (00);
the PD-controller C5 in (23) stabilizes G

_ 1 1
ot 3 <[] 1-2(7+7) (22)
1 Zo
S Kis  p '(s+ka) .,
CQ_IXZ)2+TQ.‘J’+1— Tos+1 l(oo)
stk V(o).  (23)

(ap+2+2)s42(L+L)+a+s

If z¢ # 0,let Cpy = Cy asin (20) or (23) for £ = 1 or £ = 2, respec-
tively. Choose any v € IR satisfying (5). Then, a PID-controller that
stabilizes G is given by (16), where K¢ is as in (20) or (23). A

Remark 1:

1) In Proposition 3, when { = 1, choosing ks = 0 gives a P-con-
troller C,, = (21 + @) 7'Y(0) in (12); if 21 # 0, then (16) be-
comes a PI-controller Cp; = (z1+a) ™' (=21 +(av/5))G~'(0).
When { = 2,let « = 3 = 0; (% in (15) becomes a PI-controller
Cpi = 0.52122(21 + 22) Lk + (1/5))G71(0).

2) By Proposition 3 (and by the dual Proposition 4), any unstable
plant with (up to) two blocking zeros at z; = zo = 0 (or
z1 = zz = o0) and any number of zeros in the stable region
can be stabilized using PID-controllers since the norm bounds
21 < @1 /(|7  or2(zi+22) < [[B2/s(| 7 (or1/z < [T
or 2(1/zy + 1/22) < ||¥2|| ", respectively) are obviously sat-
isfied.

3) For some insight on the norm bounds of Proposition 3, we observe
that when G has only one I{/-zero z1 (£ = 1), the bound 0 <
21 < ||®1/5||7" is satisfied only if z; is closer to the origin than
the smallest positive real pole pmin because G~ (pmin) = 0 im-
plies (by the H . -norm definition) that ||®1 /s|| > 1/pmin;hence,
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21 < Pmin as claimed. Similarly, the norm bound z; > ||¥4]| in
Proposition 4 is satisfied only if z; is farther to the right of the
largest positive real pole pmax because G~ ' (Pmax) = 0 implies
1 > ”\Ijl” 2 Pumax.

4) Consider, for example, the simple scalar plant G = (s — z1)(s —
22)(s 4+ 10) /(s> — 81)(s — 7), which has two {/-zeros z1, za >
0. Following Proposition 3, for an arbitrary choice k2 > 0, say
ko = 0.09,if 2(z1 + z2) < 3.0043, then PD- and PID-controllers
exist. A different k2 choice would result in a different norm bound
2(z1 + z2) < [|®2/s] 7" A
3) Unstable Plants With Complex Zeros: Let GG have no transmis-
sion-zeros in U/ other than a complex-conjugate pair of blocking zeros
at z; = Z» € U; but G may have any number of transmission zeros in
the stable region. The poles of GG are completely arbitrary except that
we assume G has no poles at s = 0 if there is a jw-axis zero close to
the origin. We consider two cases where the complex-conjugate zeros

are either “small,” including zero, or “large,” including infinity. Let

2
yi=(s+9° z=][s—z)=5-2fs+4 (24
j=1

where 21 = Zo € U, f,g € Ry, f > 0,and f < g. Write G
as G = Y'X = ((z/y)G™Y)"*((x/y)I). The condition in 1) of
Lemma 1 for existence of PID-controllers with nonzero K; is satisfied
since g # 0, i.e., G has no transmission zeros at s = 0 € /. Part 1) of
Proposition 5 shows that with sufficient conditions that impose upper
bounds on the zeros, plants that have no poles at s = 0 admit PI-, ID-,
and PID-controllers. Some plants (e.g., G = (s +¢%)/(s*—=p),p > 0)
do not admit P- and D-controllers. Part 2) of Proposition 5 shows that
with sufficient conditions that impose lower bounds on the zeros, plants
in this class admit PID-controllers.
Proposition 5:
1) Let G have no poles at s = 0. With x,y as in (24); let Y =
(x/y)G~" € M(S).Chooseany k, > 0,ky > 0,and 7 > 0 (k,
and k4 both are not zero). Define C' := k,, + (1/5)+ (kas/(75 +
1)) and

= :c _G(s)G(0) - I.
® z(0)sC (£)G(0) =1

(25)

IF2(f +9) < ||®/s]| . then a PID-controller that stabilizes ¢
is given by (1/2(f + ¢))Cz(0)G(0)™ ', i.e.,
1 1
Coid = s | kp+ = +
T2 +g) < "s
2) LetY (s0) ! = 27 'yG(5)|s=c0. Choose any x(s) := s*+kys+
ks, k2, k3 € R4. Define

kds
Ts+1

> 2(0)G(0) ™" (26)

U= "G (5)Y (0) = I 27
If g2 /2(f + g) > ||s¥|], then for any o € R4 satisfying
o f
0<a<|su -2 F9) (28)
let p := ag® +2(f + g),and let 7 = ag/p, K, = (k2 —

kar/p)Y(50), K, = (ka/p)Y(55), and K = (1— kot +
ka1?/p)Y (oc); a PID-controller that stabilizes G is given by
5‘2 + k'_ys + k3

X «-
pid = 2 Y(xo) =
Crid sw (o0) ps(ts+1)

Y (c0). (29)

A

B. Unstable Plants With Restrictions on the U-Poles

The restrictions on the unstable poles are completely dual to the re-
strictions on the {{-zeros in Section III-A. We show that plants that
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have (one or two) /-poles admit PID-controllers under certain suffi-
cient conditions.

Let G € Rp?*"¥, rankG = n,, and let G have no transmission-
zeros at s = 0. Let G have any number of poles in the stable region.
Other than ¢ € {1,2} (one or two) I{-poles at p; € U and p> € U, let
G have no poles in the unstable region /. If { = 1,p1 € R, py > 0.1If
{ =2, p1,p2 € U may be real or complex. The poles at p; or p> may
appear in some or all entries of G. Witha; € R4, j € {1,(}, let

¢ ¢ ¢ ¢

¥ ::Hyj:H(ajs—l—l) n = n; = H s—pj;). (30)
j=1 j=1 j=1 j=1

Let G have an LCF G = Y™'X = ((n/y)) " ((n/y)G),

where rankX (p;) = ranknG(s)|s=p, ny, J € {1t}

Furthermore, since G has no transmission zeros at s = O,

rankX (0) = ranknG(s)|s=0o = n,. We consider the following
two cases of real and complex-conjugate pairs of poles.

Case 1) The unstable poles are real, i.e., p; € R,p; > 0,j €
{1.¢}. Part 1) of Proposition 6 shows that under certain
assumptions, plants in this class admit PD- and PID-con-
trollers; if ¢ = 1, they also admit P- and PI-controllers. If
at least one p; = 0, then G does not admit D-controllers
since the plant pole at s = ) would then cancel the zero in
Cy.1f ¢ = 1, some plants (e.g., G = (1/s(s+e¢))e > 0)do
not admit I-controllers. For p > 0, some plants (e.g., G =
(s—z)/(s—p),z,p > 0)donot admit D- and I-controllers.
If £ = 2, some plants (e.g., G = 1/(s — p1)(s — p2),
p1 > 0, p2 > 0) do not admit P- and I-controllers.

Case 2) The two poles are a complex-conjugate pair, i.e., p1 = pa,
n=2s"—(p14+p)s+pipe=s—2fs+g° f >0,
g > 0,and f < g.In this case, X (0) = ¢°G(0). Part 2) of
Proposition 6 shows that under certain assumptions, plants
in this class admit D-, PD-, ID-, and PID-controllers. Some
plants (e.g., G = 1/(s* + ¢*), g > 0) do not admit P- or
I-controllers.

Proposition 6: Let { € {1,2}.
X = (n/y)G € M(S), where p; € U. Let rankX(p;) =
ranknG(s)|s=p, = ny, j = {1L,{}. Let X(0) = nG(s)|s=0 be
nonsingular, where G~'(0) = X (0)~'(-1)* Hﬁ‘:l p;.

Case 1) Letp; € R,p; > 0,5 € {1,£}.If { = 1, choose any
Fy € R"v*"v 1y > 0.Define Cy := [+ (Fys/(r15+1))
and define

With n,y as in (30), let

[y :=nG(s)CLX(0)™" — (3l)
If0 < py < ||T1/s|| ", then for any o € R satisfying

(32), the PD-controller C'; in (33) stabilizes G

0<W<||F1/ I~ - (32)
Cr =Ky + - "fl (p1+a) <I+ Tf; 1 :1) X~ 33

If { = 2, choose any 7> > (). Define
[2:= (s +1)"'nG(s)X(0)" = 1I. (34)

If 2(p1 + p2) < ||T2/s]| ", then for any a, 3 € R U {0}
satisfying (35), the PD-controller C5 in (36) stabilizes G,
where n := 2(p1 + p2) + a + 3, p := af + aps + Bp1,
Kpy = pX(0) 1, and Kgo = (9 — pm2)X(0) 1
0<a+a<|T2/s]”"

2(p1+p2) (35)
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Kas _ (ns+p) _
Co=Ep+ " Tos+1 /25+1‘X(0)
2 v+ 3) s+af+aps+3 _
_@etp)tath) stodtapatim o1 g
Tos+1

Choose any v € R+ satisfying (5). Then, a PID-controller
that stabilizes G is given by (16), where C,q = C¢ and
K¢ are as in (33) or (36) for { = 1 or { = 2, respectively;
(16) becomes Cpig = C + (va/5) X (0)™ ! for £ = 1, and
Chia = Ca + (y(prp2 + p) /)X (0) " for { = 2.

Case 2) Letp = o € C,n = 5% — (p1 4+ p2)s + pip2 =
s =2fs+ g% f > 0,9 > 0,and f < g. Choose any
7o € Ry. Define T as in (34). If f + 2g < [|T2/s|| %,
then for any 8 € IRy satisfying (37), the PD-controller in
(38) stabilizes G, where I, = (3 — f)gX(0) ', K4 =
[+ f+29— (8- PolX(0)"

0<p3 <|ITo/sl™" = (f +29) (37)
. g Ii'ds
Cpa =Ky + To5 + 1
(B4 f+29)s+ (8= fg] GO)™"
5 (38)
s+ 1 g2
Choose any v € IR satisfying (6). With H,,(0)"" = g(+

g — f)X(0)™*, a PID-controller that stabilizes G is given
by
vWB+g-f) GO)
Chia = Cpa + . g (39)
A
Remarks 2:

1) In part 2) of Proposition 6, if 2(f + g) < ||T'v/s||™"', then
choosing 3 = f in (37), Cpq in (38) becomes a D-controller
Cy= (Kys/(mes + 1)) = 2(f + 9)G(0) *s/g*(r25 + 1) and
(38) becomes an ID-controller C;q = Cq + (vG(0)™"/5).

2) By Proposition 6, any plant with (up to) two poles at p1 = p2 = 0
and any number of poles in the stable region, with no restrictions
on the location of the zeros, can be stabilized using PID-con-
trollers since the norm bounds p1 < ||y /s|| "% or 2(p1 + p2) <
IT2/s]| ™" are obviously satisfied.

3) The norm bounds of Proposition 6 can be interpreted as follows:
When G has only one I/-pole p1 ({ = 1), the bound 0 < p1 <
IT1/s|| 7" is satisfied only if p; is closer to the origin than the
smallest positive real blocking zero zmin since G(zmin) = 0 im-
plies that ||’y /s]| > 1/zmin.

4) The time constant 7 in the derivative term K4s/(7s+ 1) is com-
pletely free in most of the propositions (Propositions 1 and 2; one
unstable blocking-zero case of Propositions 3 and 4; Proposition
5; both real and complex unstable pole cases of Proposition 6).A

IV. CONCLUSION

In this note, we showed the existence of stabilizing PID-controllers
for several LTI MIMO plant classes. We proposed systematic PID-con-
troller synthesis procedures that guarantee robust closed-loop stability.
We achieved stabilizing PID-controller designs with freedom in the de-
sign parameters that can be used towards satisfaction of performance
criteria. Some of these results were recently extended to delay differen-
tial systems in [5]. Other future goals of this study include identifying
other classes of PID stabilizable plants and incorporation of perfor-
mance issues into design.
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APPENDIX
PROOFS

Proof of Lemma 1:

1) Writing Cpia = NeDZ' = [(Kp + (Kas/(1s + 1)))(s/(s +
)+ /(s + [T/ (5 + )]~ = [(5/ (s + ) CprallsT/ (5 +
e)]_1 (foranye € Ry)andG =Y 'X, M. =YD.+ XN.
unimodular implies rankM.(0) = n, = rankX (0)K;; hence,
rankX (0) = n, (equivalently, G has no transmission zeros at
s = 0), and rank K; = n,.

2) For all z; > 0, det Dc(z;) = det(z;/(z + e))I > 0. Now
M. unimodular implies det M. (z;) = det Y (z;) det D.(z;) has
the same sign for all z; € If such that X (z;) = 0; equivalently,
det Y'(z;) has the same sign at all blocking zeros of G; hence, G
is strongly stabilizable [14].

Proof of Proposition 1: Write Cpia = N.D. ', with D, = (1 -
(v/(s + v)AHI and N. = CpiaD. (D = I if the integral term is
absent). Then, Cpiq in (3) stabilizes H since Mpyiqa := D+ HN. =
D.+HCpiaDe=IT+~[H(A,Kp+Ag(Kas/(Ts+1)))D+(s/(s+
NA;((H(s)H(0)! — I)/s)] is unimodular.

Proof of Lemma 2:

1) It follows from [14, Th. 5.3.10].

2) Suppose Cy = Cp or Cy = Cqor Cy = C;is a P,
or D-, or I-controller stabilizing G; equivalently, H =
GUI + C,G)™' € M(S). The rank of H is equal to
rankG = n,. When Cy = C, or Cy = (Y4, if G has no
transmission zeros at s = 0, i.e., rankX (0) ny, then
rankH (0) = rank(Y + XC,) 1 (0)X(0) = rankX (0)= n,.
By Proposition 1, there exists a P-, D-, I-, PI-, ID-, and PID-con-
troller C}, for H € M(S). When C, = C;, by Proposition
1, there exists a P-, D-, or PD-controller C}, for H. By 1),
C = Cy + C, stabilizes G and is a PI-, PD-, ID-, or PID-con-
troller.

3) By 1), if Cpq stabilizes G, then Cq + Cjj, also stabilizes G. By
Proposition 1, choosing I;p = K4 = 0, an I-controller that stabi-
lizes H,q is given by (3), where v > 0 satisfies (2), equivalently,
).

Proof of Proposition 2: By assumption, I},, K4, and 7 are such

that W’I;il(oc) exists. By (8), Cpia stabilizes G since Mpia := (s/(s+
6)G +(5/(546))Cria= (5 (5+8)) Wi+ (8] (s+8)) Wpa(s0)=

[T+ (1/(s+ 6))s(Wya(s)W, ;" (o0) = I)]Wpa(oc) is unimodular.
Proof of Proposition 3: If { = 1, define yo = (s +

Oé) and AW[1 = 1YC1 + Y = [(J}1 /1/1)[ —|: Y'CTI]CH =

[(21/ya)I+((z1 +  @)/ya) 0 YY(0)"/CDl(ya/y1)Ci=

(I + ((z1 + a)/yo) (1YY (0)71/C1) = Dl(ya/y1)Cr= [I +
((z1 + @)s/ya) (@1 /)] (Yo /y1 )C1. If £ = 2, let yo := (s +a+ 21),
yg = (s+3+22),and yoys —x = ns+p. Define My := XCro+Y =
[(2/yays) I+(yp(r25+1) [yays(kas+1)YY (0) " |(yays/y)Co=
[T+ ((15+p)/yays) (yYY(0) ™" /(kas+ 1)) = D](yays/y)Co =
[I 4+ ((ns + p)s/yays)(P2/5)](yays/y). Since C¢ is unimodular
and ®,(0) = 0 implies ®,/s € M(S), (11) and (14) imply I,
is unimodular for { = 1,2; hence, Cy in (12) or (15) stabilizes G.
Therefore, H,y := M, 'X = G(I + C:G)""' € M(S), where
Hyu(0) 1 = G7H0) + Kpe, Kp1 = —z1(21 + o) *G71(0), and
K,» = ziz2p”'G™'(0). The conclusion follows from part 3) of
Lemma 2.

Proof of Proposition 4: 1If { = 1, define y, =
M, =XCi4+Y = [o(('m/l/])f—l—YaC'*l]a_]CH: [a(Z1 [ya) ]+
(1 + a/20)/ya)(G1/C1)YY (o0 ll(ya/m) 'Gro= I+
(1 4+ a/21)/ya) (G /CYY (00) — sD(ya/t1)a" C1=
I+ ((1 + a/z1)/ya) ¥ ](Ja/J1)a A
(1 + (o + (1/z1))s8), yg = (1 + (B + (1/22))s), and
Yayp — & = (ns + p)e Define M, := XC, + Y =

(s + «) and
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[(2/yays) I+ (Gp(T254+1) [yays(s+k2))YY (50) " (yays/9)Co=
I+ ((5+0)8/Yays) (GYY (00) 1/ (5+E2)) = sD(yays/§)Co =
I+ ((s+p)/yays)(T2/$)](yays/§)Ca. Since C; is unimodular
and ¥e(oo) = HL a;I implies ¥, € M(S), (19) and (22) imply
My is unlmodular for ¢ = 1,2; hence, Cy in (20) or (23) stabilizes
G. Therefore, de = M;'X = GI + C:G)™" € M(S), where

H,a(0)™' = GH(0) + Ix'pg, Ky = (1+a/z) tak,Y(so)
and K2 = p kY (c0) 1. The conclusion follows from part 3) of
Lemma 2.

F+9)CY(0)(s/(s+

Proof of Proposition 5: With N, = (¢°/2(
/(s + ) CuiallsT/ (5 +

¢)) unimodular, write Cp,iq = N.D7' =(
e)]™", where the following hold.

1) Define Mpia := [XN. + YD.] = [X + YC;}]N..
Then, Cpia in (26) stabilizes G since ||(2(f + g)s 2})/( +

D@/ < N2 + )(@/s)ll < 1 implies Mya =
KUMP+WT+GMCWNMWF—[T+@U+
D5/(s + (/A sONY O = DINo= 1+ (2(F +
9)s* /(s + g)*)(®/5)] N, is unimodular.

2) Definev := ((ag+1)s+g)(s+g).Then,v—2 = sw = s[ags+
ag® +2(f+9)] = s(ags+p) and |[w/v|| < p/g*. Then, Cpig in
(29) stabilizes G since ||(w/v)s¥|| < (p/9)||s¥|| < 1 implies
Myia = [X+VCLAIN, = [(e/0)T+(y/0)Y Cidl(v/y)N. =

[(1 = (sw/o)T + (sw/v)(y/x)YY (00) | (v/y)Ne = [I +
(w/v)s¥](v/y)N,. is unimodular.

Proof of Proposition 6:

DIf ¢ = 1, define yo := (s + «) and M7 = XC; +
Vo= ((91/y)XCr + (m/ya)D(ya/y1)= [T + ((p1 +
) /ya) (XX = Dlya/y)= [ + (1 +
@)s/ya)(L1/)(ya/y1) I £ = 2,let yo = (s + o + p1),
ys = (s 4+ 3 4+ p2), and yayg — * = ns + p. Define

My = XCo4Y = ((y/yayp) X Cot(n/yays) ) (yays/y) =
[+ ((ns+p)/yays) (yX X(0) 1/ (r25+1)) = DI(yays/y)=
(I + (s + p)s/yays)(T2/s)|(yays/y). Since T'e(0) = 0
implies 'y /s € M(S), (32) and (35) imply M, is unimodular
for £ = 1,2; hence, C; in (33) or (36) stabilizes . There-
fore, H,y = M, 'X = G + C:G)™" € M(S), where
H,q(0)™' = G 10) + K,¢ and G H0) = 2X(0)" ' =
H§:1 (—1)7p;. The conclusion follows from part 3) of Lemma 2.
2) Definev := (s+g)(s+8+g— f);by assumption, g— f > 0. Let
wi=v—n= (84 +2¢)s+ (3~ f)g. Then, [|sw /o]l < (7+
f+2g), where ((p1 +p2)/2)+2/p1p2 = f+2¢.1f (37) holds,
since [[(sw/v)(T2/s)]| < (B + f + 29)|IT2/s]| < 1 implies
Mpa ==Y +XCpa = (n/y)lI +GCpa]= (v/y)[I+ (w/v)l]
is unimodular, Cppg = (w/(725+1))X (0)~" in (38) stabilizes G.
Then, Hyq := M) X = G(I+CpaG)™" € M(S)and K, /s =
YH,4(0)™" /s stabilizes H,4, where Hpq(0)™' = G™'(0)+ K.
By part 3) of Lemma 2, Cpiq = Cpa + K /s in (39) stabilizes G.
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Optimal H, Filtering in Networked Control Systems
With Multiple Packet Dropout

Mehrdad Sahebsara, Tongwen Chen, and Sirish L. Shah

Abstract—This note studies the problem of optimal . filtering in net-
worked control systems (NCSs) with multiple packet dropout. A new for-
mulation is employed to model the multiple packet dropout case, where
the random dropout rate is transformed into a stochastic parameter in the
system’s representation. By generalization of the 7. -norm definition, new
relations for the stochastic 7H »-norm of a linear discrete-time stochastic pa-
rameter system represented in the state-space form are derived. The sto-
chastic H,-norm of the estimation error is used as a criterion for filter
design in the NCS framework. A set of linear matrix inequalities (LMIs)
is given to solve the corresponding filter design problem. A simulation ex-
ample supports the theory.

Index Terms—TH »-norm, networked control system (NCS), optimal fil-
tering, packet dropout, stochastic systems.

I. INTRODUCTION

Many modern control methods employing the state feedback
strategy use state—space formulation. State feedback is applicable
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under the implicit assumption that all state variables are measurable.
However, in practice, some state variables may not be directly acces-
sible or the corresponding sensing devices may be unavailable or very
expensive. In such cases, state filters or state estimators are used to
give an estimate of the unavailable states.

Networked control systems (NCSs) have gained attention during last
few years (e.g., see [7], [8], [12], [14], [19], and references therein).
Compared to using the conventional point-to-point system connection,
using an NCS has advantages like easy installation and reduced setup,
wiring, and maintenance costs. In an NCS, data travel through the
communication channels from the sensors to the controller and from
the controller to the actuators. Data packet dropout, a kind of uncer-
tainty that may happen due to node failures or network congestion,
is a common problem in networked systems. The dropouts happen
randomly. Because of random dropout, classical estimation and con-
trol methods cannot be used directly. Dropouts can degrade system
performance and increase the difficulty of filtering and estimation.

Even though most research conducted on NCSs considers random
delay, the closely related random packet dropout has not been well
studied and only in last few years has been the focus of some research
studies. In fact, systems with packet dropout, uncertain observation, or
missing measurements have been studied for a long time (e.g., see [5],
[6], [11], [13], [17], [18], and references therein). All of these studies
consider the case with uncertainty only in one link and it is not straight-
forward to extend it to an NCS framework where uncertainty is present
both from the sensors to the controller and from the controller to the
actuators. Also, in most studies (e.g., see [11], [17], and [18]), the main
derivations are given for the case when previous dropout information
is given. To the best of our knowledge, no work has been conducted re-
garding filtering in NCS with multiple packet dropouts, but the problem
of stabilization and control has been studied recently in packet dropout
systems (e.g., see [9], [10], [20], and references therein). In some of
these studies, only sensor data dropouts are studied [9], [20]. While [9]
considers adaptive genetic algorithms and simulated annealing algo-
rithms, guaranteed cost control, and the state feedback controller, other
references consider switched systems and Markov chains to solve the
problem. The main problem in working with Markov chains is the un-
known Markov states. Identifying the number of states of the Markov
chain and their transient probability by using hidden Markov models
are other issues in the research on NCSs.

The problem of optimal H> filtering has been tackled in determin-
istic cases (see, e.g., [4] and [15]). The problem of stochastic packet
dropout has also been studied in sensor delay system [16], but, to the
best of our knowledge, optimal > filtering has not been studied in
NCSs with multiple packet dropout.

In this note, we consider the problem of optimal H» filtering in an
NCS with multiple packet dropout. A new formulation is proposed to
formulate the NCS with multiple random packet dropout. By gener-
alization of the H5-norm definition, new relations for the stochastic
‘Ha-norm of a linear discrete-time stochastic parameter system repre-
sented in the state—space form are derived. The new derivations enable
us to consider estimation and filtering of the NCS as a generalization
of the classical case. To solve the filtering problem, the filter gains are
designed so that the H2-norm of the estimation error is minimized. As
dropout rates are stochastic, the problem formulation leads to a system
with stochastic parameters. Thus, the stochastic H2-norm (72, -norm)
of the estimation error is considered as a measure to minimize. With
both deterministic and stochastic inputs present in the NCS framework,
aweighted H2-normis defined and used. The filtering problem is trans-
formed into a convex optimization problem through a set of linear ma-
trix inequalities (LMIs) that can be solved by using existing numerical
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