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Optimization of a Flow Shop System of
Initially Controllable Machines

Kagan Gokbayrak, Member, IEEE, and Omer Selvi

Abstract—We consider an optimization problem for deterministic flow
shop systems of traditional machines with service costs penalizing small
service times. A regular completion-time cost is also included so as to com-
plete jobs as early as possible. The service times are assumed to be initially
controllable, i.e., they are set at the startup time. Assuming convexity of the
cost functions, we formulate a convex optimization problem after lineariza-
tion of the max constraints. The numeric solution of this problem demands
a large memory limiting the solvable system sizes. In order to relieve the
memory bottleneck, some waiting characteristics of jobs served in fixed-ser-
vice-time flow shop systems are exploited to result in a simpler equivalent
convex optimization problem. These characteristics and the benefit of CNC
machines are demonstrated in a numerical example. We also show that the
simplifications result in significant improvements in solvable system sizes
and solution times.

Index Terms—Convex optimization, discrete event dynamic systems,
manufacturing.

I. INTRODUCTION

We consider deterministic serial manufacturing systems formed of
traditional (manually-controlled) machines processing identical jobs
arriving at given times. The queues of the machines are unlimited in
size and operate under the nonpreemptive first-in-first-out (FIFO) disci-
pline. As opposed to the computer numerical control (CNC) machines
considered in [1], these machines are manually controlled by human
operators. During mass production, a company cannot afford human
interventions to modify the service times because the setup times are
idle times for the machines, and these manual modifications are prone
to errors. Therefore, the service times at these traditional machines are
initially controllable, i.e., they are set at the startup time, and are ap-
plied to all jobs processed at these machines.

The cost function we consider consists of service costs at machines
and regular completion-time costs of jobs. Motivated by the extended
Taylor’s tool-wear equation (in [2]), we assume that faster services in-
crease wear and tear on the tools due to increased temperatures, and
may raise the need for extra supervision, increasing service costs. The
losses of the product quality due to faster services are also lumped into
these service costs. Slower services, on the other hand, may delay the
completion times increasing the completion-time costs. We acknowl-
edge this trade-off, and set the objective of this study as to determine
the cost-minimizing service times.

The idea of treating scheduling problems for deterministic queues
as optimal control problems on discrete event dynamic systems first
appeared in [3] where job release times to a single machine system
were controlled to minimize the discrepancy between job completion
times and desired due dates. Following this work, service time control
problems for CNC manufacturing systems, where the service times can
be adjusted between processes, were considered. Pepyne and Cassan-
dras, in [4], formulated an optimal control problem for a single machine
system with the objective of completing jobs as fast as possible with the
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least amount of control effort. In [5], they extended their results to jobs
with completion due dates penalizing both earliness and tardiness. The
optimal solution uniqueness for this case was shown in [6]. Exploiting
the structural properties of the optimal sample path for the single ma-
chine problem, Wardi et al., in [7], developed a backward-in-time so-
lution algorithm while Cho et al., in [8], developed a forward-in-time
solution algorithm, which was later improved by Zhang and Cassan-
dras in [9]. In a related work, Moon and Wardi, in [10], considered a
single machine problem where the completed jobs wait in a finite size
output buffer until their due dates. They presented an efficient solution
algorithm for this system with blocking.

Service time control problems for two machine systems were solved
by Cassandras et al., in [11], using the Bezier approximation method.
Gokbayrak and Cassandras, in [12], and Gokbayrak and Selvi, in [13],
identified optimal sample path characteristics for these problems. Fi-
nally, in [1], Gokbayrak and Selvi considered multimachine flow shop
systems with regular costs on completion times and decreasing costs on
service times. It was shown that, on the optimal sample path, jobs do not
wait between machines, a property which allowed for simple convex
programming formulations. Under strict convexity assumptions, a for-
ward-in-time solution algorithm was also developed.

In this techical note, we consider the system in [1] with the modi-
fication that the CNC machines are replaced by traditional non-CNC
machines where the service times are set only once, and cannot be
altered between processes. Even though this seems to be simple
modification, since the no-waiting property no longer holds, the
analysis is changed completely. We first apply the standard method of
linearization on the max constraints to derive a convex optimization
problem. Not having the no-waiting property, we can not simplify this
problem, so we search for an alternative formulation. For this purpose,
we present some waiting characteristics of jobs served in the flow
shop systems with fixed service times, independent of the optimization
problem. Then, we incorporate these characteristics in the optimization
problem to derive a simpler equivalent convex optimization problem.

The rest of the techical note is organized as follows: In Section II,
we apply the linearization method to formulate a convex optimiza-
tion problem. Section III presents some waiting characteristics of jobs
served in fixed-service-time flow shop systems regardless of the objec-
tive function. Employing these characteristics, in Section IV, a simpler
equivalent convex optimization problem is derived. Section V presents
a numerical example to illustrate the waiting characteristics under op-
timal service times and the effect of flexibility in adjusting service times
between processes on the optimal cost. In this section, we also compare
the solution times and the solvable system sizes for the two convex
optimization problem formulations. Finally, Section VI concludes the
techical note.

II. PROBLEM FORMULATION

We consider a sequence of � identical jobs, denoted by ����
�
���,

arriving at an � -machine flow shop system at known times � � �� �
�� � � � � � �� . Machines process one job at a time on a FIFO non-
preemptive basis (i.e., a job in service can not be interrupted until its
service completion). The buffers in front of the machines are assumed
to be of infinite sizes.

We define a temporal state ���� that keeps the departure time infor-
mation of job �� from machine �. The relations between the temporal
states are defined by the Lindley’s Equation (see in [14])

���� � ����������� ������� � �� (1)

���� � ��� ���� � �� (2)

for 	 � 	� 
 
 
 � � and � � 	� 
 
 
 �� , where the service time at ma-
chine � � �	� 
 
 
 ��� is denoted by �� . Note that, unlike the system
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considered in [1] where the service times could differ from one job to
another, the same service time �� is applied to all jobs at machine �.

The discrete-event optimal control problem under consideration is

� � ���
� ��

���������

� �

�

���

������ �

�

���

�������� (3)

subject to (1) and (2) for � � 		 
 
 
 	 
 and � � 		 
 
 
 	� . In this
formulation, �� denotes the total service cost over all jobs at machine
�, and �� denotes the completion-time cost for job ��. The minimum
service time required at machine �, a physical constraint, is denoted by

� .

The following assumptions are necessary to make the problem some-
what more tractable while preserving the originality of the problem.

Assumption 1: �����, for � � 		 
 
 
 	� , is monotonically de-
creasing and convex.

Assumption 2: �����, for � � 		 
 
 
 	 
 , is monotonically increasing
and convex.

Assumption 1 is motivated by the extended Taylor’s tool-wear equa-
tion. Supporting this assumption, the work of Kayan and Akturk in
[15], also showed that the service cost of a turning operation, one of the
three principle machining operations along with milling and drilling,
can be expressed as a nonlinear decreasing convex function of its ser-
vice time in its operating range. The monotonicity of �� in Assumption
2 is needed for Theorems 1 and 2 that follow, while the convexity of
�� is needed for obtaining a convex optimization problem. Note the
trade-off due to these standing assumptions that longer services will
decrease the service costs while increasing the departure times and the
completion-time costs.

A standard method for solving � is to replace (1) with two linear
inequalities and to employ (2) for the first job. Since, by Assumptions
1 and 2, both costs are convex, we arrive at the following convex opti-
mization problem:

�� � ���
� ��

���������

���������

�� �

�

���

������ �

�

���

�������� (4)

subject to

���� � �� � �� (5)

���� � �� �

�

	��

�	 (6)

���� � �� � �� (7)

���� ������� � �� (8)

���� ������� � �� (9)

���� ������� � �� (10)

�� �
� (11)

�� �
� (12)

for all � � �	 
 
 
 	 
 and � � �	 
 
 
 	� . There are �
�	�� variables,
� equality and ��
 � 	�� inequality constraints in this formulation
excluding the � boundary value constraints on the service times.

The optimal solution for problem � can be determined by solving
the convex optimization problem �� . A similar formulation was further
simplified in [1] by employing the no-waiting property for flow shop
systems where the service times can be adjusted between processes.
Not having this property, we search for an alternative means of sim-
plification. In the next section, we present some waiting characteristics
of jobs served in the flow shop systems with fixed service times. Ex-

ploiting these characteristics, we derive a simpler equivalent convex
optimization problem.

III. WAITING CHARACTERISTICS IN FIXED SERVICE

TIME FLOW SHOP SYSTEMS

In fixed service time flow shop systems, each machine � performs
some service of duration �� . Based on these service times, we define
the following:

Definition 1: Machine � is a local bottleneck if its service
time exceeds the service times of all upstream machines, i.e.,
�
 � �
���������
�� �� where �� is defined to be zero.

Since the first machine is a local bottleneck, there is at least one local
bottleneck in each flow shop system.

Definition 2: Machines ��	 
 
 
 	 �� form a flushing portion if
1) Machine � is a local bottleneck, i.e., �
 � �
���������
�� ��
2) There are no local bottlenecks in machines �� � 		 
 
 
 	 ��, i.e.,

�
 � �
���
�������� ��
3) If � � � , then machine �� � 	� is a local bottleneck, i.e., �
 �

����.
Each local bottleneck starts a flushing portion, and the last flushing

portion is ended by machine � .
The following lemma establishes that jobs may wait at only the local

bottlenecks.
Lemma 1: No-waiting is observed in a flushing portion after its local

bottleneck machine.
Proof: (By induction) Let us consider a flushing portion formed

of machines ��	 
 
 
 	 ��. Since the first job does not wait at any ma-
chine, we have the basis for the induction. Next, let us assume that job
���� does not wait at machines �� � 		 
 
 
 	 �� and hence, from (1),
it satisfies

�������� � �����
 �

���

��
��

�� (13)

for all � � �	 
 
 
 	 � � 	. From (1), on the other hand, we have

���
 � �����
 � �
� (14)

Being in the flushing portion started by the local bottleneck machine
�, machine ���	� satisfies �
 � �
�� by definition hence, from (13)
and (14), we get

���
 � �����
��

i.e., job �� does not wait at machine ��� 	�.
Next, in addition to (13), let us assume that job �� does not wait at

machines ��� 		 
 
 
 	 �� where � � �, i.e.,

���	 � �����	�� (15)

holds for all � � �	 
 
 
 	 � � 	. From (1) and (15), we can write

���� � ���
 �

�

��
��

�� � �����
 �

�

��


��� (16)

Since �
 � ���� by definition, from (13) and (16), we have

���� � �������� (17)

indicating that job �� does not wait at machine ���	�, therefore con-
cluding the induction proof.
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The next lemma suggests that, given the waiting status of a job at a
local bottleneck machine, we may deduce its waiting status at a down-
stream or an upstream local bottleneck machine.

Lemma 2: If job �� waits for service at some local bottleneck, then
it will wait for service at all downstream local bottlenecks.

Proof: We consider two consecutive local bottleneck machines �
and �� � ��, and assume that job �� waits at machine �, so we have
������ � ������. If these two local bottleneck machines are adjacent,
i.e., if � � � then, from (1), we have

���� � ������ � �� (18)

and

�������� � ������ � ����� (19)

Since �� � ���� by definition, from (18) and (19), we get �������� �
���� , i.e., job �� waits at machine �� � ��.

If, on the other hand, these two local bottlenecks are not adjacent,
i.e., � � � then, from (1) and Lemma 1, we have

���� � ���� �

�

�����

�� � ������ � �� �

�

�����

�� (20)

and

�������� � ������ � ���� � ������ �

�

�����

�� � ����� (21)

Since �� � ���� by definition, from (20) and (21), we get �������� �
���� , i.e., job �� waits at machine �� � ��.

The result extends iteratively to all downstream local bottleneck ma-
chines concluding the proof.

Next, we define the most downstream local bottleneck of the system
as the global bottleneck.

Definition 3: A local bottleneck machine � is also a global bottle-
neck if its service time satisfies �� � ������������ �� .

There can be no local bottleneck machines downstream to a global
bottleneck, therefore, from Lemma 1, no waiting is observed after the
global bottleneck machine. Hence, the completion times can be deter-
mined as presented in the next lemma.

Lemma 3: The completion time of job �� is given by

���� � ��� ������ � ��	 
� �

�

���

�� (22)

where ���� � �� and �� � ������������ �� is the service time of
the global bottleneck machine.

Proof: From (1), the departure time of job �� from the global
bottleneck machine is given as

���� � ����������	 ������� � ��� (23)

If job �� does not wait at the global bottleneck machine, i.e., if
������ � ������, from Lemma 2, it also does not wait at any upstream
machines, therefore, we have

������ � 
� �

���

���

�� � ������� (24)

Hence, from (23) and (24), we get

���� � ��� ������ � ��	 
� �

�

���

�� � (25)

Since no waiting is observed after the global bottleneck machine �,
from (25), we can write the job’s completion time as

���� �

���� if � � �

���� �
�

�����

�� if � � �

� ��� ������ � ��	 
� �

�

���

��

In the next section, we employ the characteristics from this section
to derive a simpler convex optimization problem formulation.

IV. SIMPLER CONVEX OPTIMIZATION PROBLEM

The result of Lemma 3 allows us to replace (1) and (2) in � by (22)
resulting with the formulation

� 	 �
�
�

���������


 �

�

���

������ �

�

���

��������

subject to

���� � 
� �

�

	��

�	 (26)

���� � ��� ������ � ���
	��������

�		 
� �

�

	��

�	 (27)

�� ��� (28)

for � � �	 
 
 
 	 � and � � �	 
 
 
 	� .
By linearizing the max functions in (27), we get the convex optimiza-

tion problem � given as

� 	 �
�
� �


���������

���������


� �
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������ �

�

���

�������� (29)

subject to

���� � 
� �

�

	��

�	 (30)

���� � 
� �

�

	��

�	 (31)

���� � ������ � �� (32)

�� ��� (33)

for all � � �	 
 
 
 	 � and � � �	 
 
 
 	� . In this formulation there
are � �� variables, one equality and �� � ���� � �� inequality
constraints excluding the � boundary value constraints on the service
times. Therefore, compared to the �� problem, improvements in solu-
tion times and memory requirements are expected.
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TABLE I
COMPUTATION TIMES (IN SECONDS)

V. NUMERICAL EXAMPLES

We first consider the example in [1], where ten jobs are to be served
in a flow shop of four machines. The total service cost ������ at ma-
chine � is given as

������ �
��

��
(34)

for some constant �� , while the completion-time cost for job�� is given
as

������� � � ������� � ���
�
	 (35)

Note that these costs satisfy Assumptions 1 and 2.
The arrival times of the jobs are given as � �

��	�
 �	�
 �		
 		

 �	�
 �	�
 
	�
 
	�
 ��	�
 ��	��. Since ten jobs
are to be processed, the � parameter vector in [1] is adjusted to
become � � ����
 ��
 ���
 ����. The service times on these four
machines are bounded below by � � ��	��
 �	��
 �	��
 �	���.

The optimal service times are found to be �� �
��		
	�
 �	�	
�
�	��
�
�		
	��. Hence, for the optimal so-
lution, the first machine turns out to be a local bottleneck, while the
third machine is the global bottleneck. From Lemma 1, we expect to
see no waiting in front of the second and the fourth machines.

The optimal cost for this example is given as 1329.01 compared to
1290.15 given in [1]. The cost difference is due to not having the flex-
ibility to adjust the service times between processes. It may be viewed
as the benefit to be gained by replacing all these non-CNC machines
by CNC machines.

In order to demonstrate the benefits due to simplifications, we fur-
ther present the computation times in Table I under different � and

 settings for given �, �, and � parameter vectors. Note that a dash
sign, as in the entry for 10 machines and 750 jobs, represents an ”out of
memory” crash. The times are reported from a 1.6 GHz Intel Dual Core
processor and 1 GB of RAM running cvx (see [16]), a modeling system
for convex programming developed in Stanford University, employing
the second order cone and semidefinite programming solver SeDuMi
1.1R3 implemented in Matlab.

The results in Table I suggest that it is definitely faster to solve for
�. One may argue, however, that since these calculations are to be per-
formed offline before the manufacturing operation starts, the improve-
ment in the calculation times are not that important. After all, thanks to
today’s fast CPUs, both problems are solved within minutes. (It takes
about 65.2 s to solve for � when � � �� and 
 � ����.) In fact, the
results suggest that the bottleneck in these calculations is not the CPU
speed but the memory size. (Numerical solution of 
� is feasible only
for small systems.) The important contribution of our work is that, by
the proposed simplifications, we relieve this bottleneck and allow the
optimization of larger systems.

VI. CONCLUSION

This technical note considered deterministic flow shop systems,
where the service times of the machines were set only once and could
not be altered between processes. A standard solution method based
on the linearization of the max constraints was demonstrated to yield
a convex optimization problem with high memory requirements.
Unfortunately, the inflexibility constraint on the service times removed
the no-waiting property preventing the simplifications in [1].

In order to derive an equivalent convex optimization problem with
lower memory requirements, a set of waiting characteristics of jobs
served in fixed-service-time flow shop systems were exploited. The re-
sulting simplified convex optimization problem had significantly lower
memory requirements and somewhat lower solution times.

Replacement of non-CNC machines with CNC machines clearly im-
proves system performance. We conjecture that the CNC machine sin-
glehandedly brings the no-waiting property to its downstream lowering
the costs, and this is the subject of future research.
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