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Sensitivity Minimization by Strongly Stabilizing
Controllers for a Class of Unstable
Time-Delay Systems

Suat Gumussoy and Hitay Ozbay

Abstract—Weighted sensitivity minimization is studied within the frame-
work of strongly stabilizing (stable) 7L°° controller design for a class of in-
finite dimensional systems. This problem has been solved by Ganesh and
Pearson, [11], for finite dimensional plants using Nevanlinna-Pick interpo-
lation. We extend their technique to a class of unstable time delay systems.
Moreover, we illustrate suboptimal solutions, and their robust implemen-
tation.

Index Terms—H ™ -control, sensitivity minimization, strong stabiliza-
tion, time-delay.

I. INTRODUCTION

N this note the sensitivity minimization problem for a class of in-
I finite dimensional systems is studied. The goal is to minimize the
‘H™ norm of the weighted sensitivity by using stable controllers from
the set of all stabilizing controllers for the given plant. This problem is a
special case of strongly stabilizing (i.e. stable) controller design studied
earlier, see for example [3]-[6], [14], [18], [19], [21], [24]-[27], [31],
[33], [34], and their references for different versions of the problem.
The methods in [2], [11] give optimal (sensitivity minimizing) stable
H controllers for finite dimensional SISO plants. Other methods pro-
vide sufficient conditions to find stable suboptimal 7 controllers. As
far as infinite dimensional systems are concerned, [13], [29] considered
systems with time delays.

In this technical note, the method of [11] is generalized for a class of
time-delay systems. The plants we consider may have infinitely many
right half plane poles. Optimal and suboptimal stable 7 controllers
are obtained for the weighted sensitivity minimization problem using
the Nevanlinna-Pick interpolation.

It has been observed that (see e.g. [11], [16]) the Nevanlinna-Pick
interpolation approach used in these papers lead to stable controllers
with “essential singularity” at infinity. This means that the controller
is non-causal, i.e. it contains a time advance, as seen in the examples.
In this note, by putting a norm bound condition on the inverse of the
weighted sensitivity we obtain causal suboptimal controllers using the
same interpolation approach. This extra condition also gives an upper
bound on the > norm of the stable controller to be designed. Another
method for causal suboptimal controller design is a rational proper
function search in the set of all suboptimal interpolating functions. This
method is also illustrated with an example.

The problem studied in the paper is defined in Section II. Construc-
tion procedure for optimal strongly stabilizing 7> controller is given
in Section III. Derivation of causal suboptimal controllers is presented
in Section IV. In Section V we give an example illustrating the methods
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— Cj/

Fig. 1. Standard feedback system.

proposed here for unstable time delay systems. Concluding remarks are
made in Section VI.

II. PROBLEM DEFINITION

Consider the standard unity feedback system with single-input-
single-output plant P and controller C' in Fig. 1. The sensitivity
function for this feedback system is S = (14 PC) . We say that the
controller stabilizes the plant if S, C'S and PS are in H™. The set of
all stabilizing controllers for a given plant P is denoted by S(P), and
we define Seo (P) = S(P) N H™ as the set of all strongly stabilizing
controllers.

For a given minimum phase filter W (s) the classical weighted sen-
sitivity minimization problem (WSM) is to find

llew [l »
‘o = Su = nf Itf 1 + Pc‘f . 1
#E L T el T PO
r#0

When we restrict the controller to the set Soo ( P) we have the problem
of weighted sensitivity minimization by a stable controller (WSMSC):
in this case the goal is to find

Tos = (Je‘isllf(f’) ”W,(l * PC)AH”‘) @

and the optimal controller Css opt € Soo(P).

Transfer functions of the plants to be considered here are in the form
M, (s) .
No(s

Ma(s) o)

P(s) = 3)
where M., , M4 are inner and N, is outer. We will assume that A, is ra-
tional (finite Blaschke product), but 3/, and NN, can be infinite dimen-
sional. The relative degree of N, is assumed to be an integer n, € N,
i.e., we consider plants for which the decay rate of 20 log(|No(jw)]|),
as w — 0o, is —20n, dB per decade, for some non-negative integer
No.

A typical example of such plants is retarded or neutral time delay
system written in the form

L R(s) _ X Rl
P(s) = T(?) - Z;;1 Ti(s)cfrjs “)

where

(1) R; and T are stable, proper, finite dimensional transfer func-
tions, fori = 1,...,n.,and j = 1,...,n¢;

(i1) R and T have no imaginary axis zeros, but they may have finitely
many zeros in C4; moreover, 1" is allowed to have infinitely
many zeros in C4, see below cases (ii.a) and (ii.b);

(iii) time delays, &; and 7; are rational numbers such that 0 = h; <
hy < ... <hp,and0 =7 <71 <...< 7Ty,

In [15] it has been shown that under the conditions given above the

time delay system (4) can be put into general form (3). In order to do
this, define the conjugate of T'(s) as T(s) := ¢ "™ *T(—s)Mc(s)

where M is inner, finite dimensional whose poles are poles of T". For

notational convenience, we say that T’ is an F’-system (respectively,

I-system) if T (respectively, T') has finitely many zeros in C ; (note

that when T is an I-system the plant has infinitely many poles in C4).

The plant factorization can be done as follows for two different cases:
Case (ii.a): When R is an F'-system and 7 is an I-system:

T _ R My

M, =Mgrp, My;=M;y=, N,= —
‘ o a = Mp T ©)
Case (ii.b): When R and 1" are both F'-systems:
R Mr
M, = Mgr, M,=Mp, N,= 6
I r, My T, I e T (6)

The inner functions, Mz, M and M7, are defined in such a way that
their zeros are C, zeros of R, T and T, respectively. By assumption
(i), R, T (case (ii.b)) and T (case (ii.a)) have finitely many zeros in
C+, so, the inner functions, Mz, My and My are finite dimensional.

Example: Consider a plant with infinitely many poles in C (this
corresponds to case (ii.a) where R and 1" are F'-system and I-system
respectively; clearly, the plant factorization in case (ii.b) is much
easier):

(s+1)+ 43¢
(s+1)4+2(s—1)e=2s
—0s 4 —3s

R(s) 1o+ (s+1)e
T(s - —0s 2s5—=2 —2s '

(s) le—0 +(25+17)(3 2
It can be shown that I? has only two C zeros at 512 ~ 0.3125 £
j0.8548. Also, T has infinitely many C4. zeros converging to ln /2 &
j(k+(1/2))m ask — oo. In this case relative degree is n, = 0, and the
plant can be re-written as (3) with T'(s) = e >*T(—s)(s—1/s+1) =
24 (s—1/s+ 1)6_2"’,

Pri(s) =

@)

| _(s—s1)(5—52) / _ T(s)

M) = (s+s1)(s 4 s2) Ma(s) = T(s)

N ) — B(‘S) 1

No(s) = Mo (s) T(3)" )

III. OPTIMAL WEIGHTED SENSITIVITY

In this section we illustrate how the Nevanlinna-Pick approach pro-
posed in [11] extends to the classes of plants in the form (4). We will
also see that the optimal solution in this approach leads to a non-causal
optimal controller. In the next section we will modify the interpolation
problem to solve this problem.

First, in order to eliminate a technical issue, which is not essential in
the weighted sensitivity minimization, we will replace the outer part,
N,, of the plant with

N:(5) = No(s)(1+es)™

where € > () and = — (). This makes sure that the plant does not have
a zero at +oc, and hence we do not have to deal with interpolation
conditions at infinity. See [8], [10] for more discussion on this issue
and justification of approximate inversion of the outer part of the plant
in weighted sensitivity minimization problems.

Now, let sy, ..., s, be the zeros of M,,(s) in C+. Then, WSMSC
problem can be solved by finding a function F'(s) satisfying three con-
ditions (see e.g. [7], [11], [31])

(F1) F € H* and || F||ec < 1;

(F2) F satisfies interpolation conditions (9);

(F3) Fisaunitin H™,ie. F.F~' € H™;
W(s:) w;

F(s;) = = —, 1=1,....n 9
(s4) yMa(s:) v ©
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Once such an F' is constructed, the controller

_ Wi(s) —yMa(s)F(s)

N.(s)™" (10)

is in Soo (P) and it leads to ||V (1 + PC) || < 7. Therefore, yes
is the smallest v for which there exists F'(s) satisfying F1, F2 and
F3. It is also important to note that the controller (10) is the solution
of the unrestricted weighted sensitivity minimization (WSM) problem,
defined by (1), when F(s) satisfies F1 and F2 for the smallest possible
~ > 0; in this case, since F3 may be be violated, the controller may be
unstable.

The problem of constructing F'(s) satisfying F1-F3 has been solved
by using the Nevanlinna-Pick interpolation as follows. First define

e "0,

G(s)=—InF(s), F(s)= (11

Now, we want to find an analytic function G : C4 — C such that

G(s;)=—lnw; +In~ — j27l; =: v;, (12)

where ¢; is a free integer due to non-unique phase of the complex log-
arithm. Note that when || F||oo < 1 the function G has a positive real
part hence it maps C into C.. Let D denotes the open unit disc, and
transform the problem data from C4 to D by using a one-to-one con-
formal map z = ¢(s). The transformed interpolation conditions are
wi

f(Zi) =

v

i=1,....,n

13)

where z; = ¢(s;) and f(z) = F(¢"(z)). The transformed interpo-
lation problem is to find a unit with || f||cc < 1 such that interpolation
conditions (13) are satisfied. By the transformation g(z) = —In f(z),
the interpolation problem can be written as,

(14)

Define ¢(v;) =: (;. If we can find an analytic function § : D — D,
satisfying

glz)=¢ i=1,...,n (15)
then the desired g(z), hence f(z) and F'(s) can be constructed from
g(z) = 7' (§(2)). The problem of finding such § is the well-known
Nevanlinna-Pick problem, [9], [20], [32]. The condition for the exis-
tence of an appropriate ¢ can be given directly: there exists such an
analytic function g : D — C. if and only if the Pick matrix P,

/ 2lny —Inw; — In &y + j2al
P (v, {lis te}); , = ny— Wy 4 J27hy,

16
1—zzZk (16)
is positive semi-definite, where {1, ; = £, — {; are free integers. In [11],
it is mentioned that the possible integer sets { ¢;, (. } are finite and there
exists a minimum value, Yss, such that P (7ss, {€;, €5 }) > 0.

The Nevanlinna-Pick problem posed above can be solved as outlined
in [9], [20], [32]. As noted in [11], [16] and we illustrate with an ex-
ample in Section V, generally, as v decreases to vss the function G(s)
satisfies

G(s) — kys, where k. € Ry ass — oc.
Therefore, in the optimal case F'(s) has an essential singularity at in-
finity, i.e., lim,— |F(s)| = 0, thus F~' is not bounded in C, i.e.,
F~' ¢ 'H>°. Clearly, this violates one of the design conditions and
leads to a non-causal controller (10), which typically contains a time
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advance. In the next section to circumvent this problem we propose to
put an 7°° norm bound on F~*.

Suboptimal solution of weighted sensitivity minimization (2) by
stable controller is similar to the optimal case. The suboptimal con-
troller can be represented as in (10) where v > .. The controller
synthesis problem can be reduced into calculation of interpolation
function F'(s) satisfying the conditions F1, F2 and F3. By similar
approach used in optimal case, the conditions are satisfied if g is calcu-
lated satisfying the interpolation conditions (15). This is well-known
suboptimal Nevanlinna-Pick problem and the parametrization of the
solution for suboptimal case is given in [9]. After the parametrization
is calculated, the controller parametrization (10) can be obtained by
back-transformations as explained above.

IV. MODIFIED INTERPOLATION PROBLEM

The controller (10) gives the following weighted sensitivity

W(s) (14 P(s)C, (s)™" = 7 Ma(s) F(s) a7)
where F, F™' € H*, ||F||lo < 1 and (9) hold. Since one of the
conditions on F is to have F~' € H* it is natural to consider a norm
bound
1P oo < p (18)
for some fixed p > 1. This also puts a bound on the H>° norm of the
controller; more precisely,
oo) . (19)

Recall that we are looking for an F' in the form F(s) = ¢~ % for
some analytic G : C4+ — Cy satisfying G(s;) = vi, i = 1,...,n.
In this case we will have |F(s)| = |e (@) < 1 foralls € C.
On the other hand, F~'(s) = ¢“*). Thus, in order to satisfy (18), G
should have a bounded real part, namely

1C [l < IV <1+ L

0 < Re(G(s)) <1In(p) =: 0, (20)
Accordingly, define C7° := {s € Cy : 0 < Re(s) < 0,}. Then,
the analytic function G' we construct should take C. into C%°. Note
from (12) that in order for this modified problem to make sense v and
p should satisfy the following inequality so that we have a feasible
interpolation data, i.e. v; € C7°,

max{|wi],...;|we|} <7 < p4+max{|wi],...,|lwe|}. 21
Now take a conformal map ¢ : C7° — D, and set (; := ¥(v;),

z; = ¢(s;), where as before ¢ is a conformal map from C to D. Then,
the problem is again transformed to a Nevanlinna-Pick interpolation:
find an analytic function g : D — D such that g(z;) = (, ¢ =
1,...n. Once § is obtained, the function G is determined as G(s) =
P71 (G(o(s))). Typically, we take ¢(s) = (s — 1/5 + 1)

=1y _1+Z

o (B =1
’ jefjﬂ'v/do_]_
v(v) =

- .jcfjrll/ao +1

=l To (T 1+¢
0 (e (L£9))

see e.g. [23]. Interpolating functions defined above are illustrated by
Fig. 2.

It is interesting to note that in this modified problem ~.s (smallest
~ for which a feasible g exists) depends on p, so we write Yss,,. AS p

(22)
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S; € (C+ G<8i> =V; v; € Ci_o

Y Y

a el 3(z0) = G Geb

Fig. 2. Interpolating functions and conformal maps.

Yss,p versus 00=In(p)

1.45 T T T T T

Fig. 3. ~,, versus p = e?°

decreases, 7ss,, Will increase; and as p — oo, 7ss,, Will converge to
~ss, the value found from the unrestricted interpolation problem sum-
marized in Section III.

V. AN EXAMPLE

Consider the plant (7) defined earlier. Recall that it has only two C
zeros at s1,2 ~ 0.3125+0.85487. Let the weighting function be given
as

1+0.1s

W)=

(23)
Then, the interpolation conditions are wi > = 0.79 ¢ 0.42;5. Applying
the procedure of [16], summarized in Section III, we find 15« = 1.0704.
The optimal interpolating function is

Fs)=e """ @4)
and hence the optimal controller is written as
140.1s 1.0704( sH142(s—1)e 725)
C,.. = a1 2+ ) +(—1)e 25)

s+144e—3s

1.0704 (W) e

Clearly, F~' ¢ H°° and the controller is non-causal, it includes a time
advance e¢*0-°7%

593

Parameter Space in which f, is unit

Fig. 4. Feasible (a, b, ¢) for f to be a unit.

Root invariant regions for q(z)

Fig. 5. Root invariant regions for ¢ = 30.

If we now apply the modified interpolation idea we see that as p —
oo the smallest v for which the problem is solvable, i.e. ~.s, approaches
to 1.0704, which is the optimal performance level found earlier. On
the other hand, as p decreases 7. increases, and there is a minimum
value of p = e%® = 2.41, below which there is no solution to the
interpolation problem. See Fig. 3.

For o0, = 3,ie. p = ¢* ~ 20, we have 7., = 1.08, and the
resulting interpolant is given by

—0.99794(s — 3.415)(s + 1)

= = 2
Gs) =g (0(s) = j (5 + 3.406)(s + 1.001) (26)
The optimal F(s) = e~ is determined from
G(s)=v~" (G(s)) @7
where )" is as defined in (22). The optimal F is
N 0o joo 1+ G(s)
F(s) =exp < 3 - In <71 “ew)) (28)

Note that the optimal F'(s) is infinite dimensional. The magnitude and
phase of F'(jw) are shown in Fig. 6. Rational approximations of (28)
can be obtained from the frequency response data using approximation
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infinite dimensional F and 3rd order F: magnitude plots
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Fig. 6. Magnitude and phase plots of F' given in (28) and (33).

techniques for stable minimum phase infinite dimensional systems, see
e.g. [1], [12], [22], and their references.

Another way to obtain finite dimensional interpolating function
F () is to search for a proper free parameter in the set of all suboptimal
solutions to the interpolation problem of finding F' satisfying F1-F3.
For a given v > s we can parameterize all suboptimal solutions to
this problem as, (see e.g. [9])

P(2)q(2) +Q(»)
P(z)+ Q(2)q(z)’

where 15., Q, P, ( are computed as in [9], [20], [32]. Using first-order
free parameter

f(z)= lalle <1 (29)

az+b

q(2) = P

(30)

we search for a unit f in the set determined by (29). Since ||¢[|- < 1,
the parameters (a, b, ¢) are in the set

Dyi={(a.b,¢) e > Lla+b] < e+ 1| Ja - b < e — 1]}.
(30)

Then a unit function f can be found if there exist (a, b, ¢c) € D, such
that

(az+b)P(z) + (2 + c)Q(2) 32)
has no zeros in D. The problem of finding (a, b, ¢) such that (32) has
no zeros in D is equivalent to stabilization of discrete-time systems by
first-order controllers considered in [30]. So we take the intersection of
the parameters found using [30] and the set D,. The stabilization set
(a, b, c) is determined by fixing ¢ and obtaining the stabilization set in
a — b plane by checking the stability boundaries.

For the above example, let v = 1.2 > 1.07 = ~4s. After the calcula-
tion of P, Q, P, (), we obtain feasible parameter pairs (a, b), for each
fixed ¢, resulting in a unit f(z) as shown in Fig. 4. Note that all values
in (a,b,c) parameter set results in stable suboptimal > controller
which gives flexibility in design to meet other design requirements.

In Fig. 5, stability region for (32) is given for ¢ = 30. Red and blue
lines are real and complex-root crossing boundaries respectively. The
yellow colored region (labeled as region O in the grayscale print) is the
area, where the polynomial (32) has no C zeros and the corresponding
H*° controller is stable. The value of v = 1.2 is chosen to show the
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Fig. 7. Feedback system with controller and plant considered in the example.

controller parameterization set and stability regions clearly. If we apply
the same technique for v = 1.08 the feasible region in R* shrinks, but
we still get a solution:

0.068s> 4+ 3.77s% + 21.455 4+ 295.84

F(s)= . 33
(%) 9.93s3 4 62.77s% 4 187.255 + 296.27 (33)
It is easy to verify that
F(s:) = 1'“.“(')"8, for i=12. (34)
The function F is a unit with poles and zeros
zero(F) = — 50.9245, —2.2583 + j8.9628 (35)
pole(F) = — 3.3510, —1.4851 + j2.5881 (36)

and from its Bode plot we find || F'||c = (295.84/296.27) < 1. More-
over, F~1 € H® with ||F!||e & 146.

In order to compare the third order F' given in (33), with the infinite
dimensional F described by (28), (both of them are designed for v =
1.08) we provide their magnitude and phase plots in Fig. 6.

Although finding a finite dimensional F'(s) results in infinite dimen-
sional suboptimal controller C.,(s), (10), it is possible to implement
the controller in a stable manner using the ideas of [15] as discussed in
early versions of the current paper [16], [17].

The structure of the controller for this particular example is in the
form

(37)

(YT FT N (s)W(s)T(s) — T(s)
Cy(s) = ( R(s) )

and the overall closed loop system is as shown in Fig. 7. Note that at
the right half plane zeros of R(s) the numerator vanishes due to inter-
polation conditions on F'(s). This fact and that F1 is stable makes
the controller stable.
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Also, one can see that both modified interpolation problem solution
with infinite dimensional F' (28) and finite dimensional F’ (33) satisfies
sensitivity design constraints. So, the controller is strongly stabilizing
(closed loop system is stable with a stable controller), and by (17), the
magnitude of weighted sensitivity function on the imaginary axis is
equal to

[W(1+ PC)7Y = [vMa(jw)F(jw)| = 7 |F(jw)|.  (38)

Therefore, the magnitude of F’ on the imaginary axis is equivalent to
magnitude of normalized weighted sensitivity function on the imagi-
nary axis. Both sensitivity functions satisfies the H°° norm requirement
for all frequencies. The controllers also achieve good tracking for low
frequency signals as aimed by selection of weighting function W (23).

VI. CONCLUSION

In this note we have modified the Nevanlinna-Pick interpolation
problem appearing in the computation of the optimal strongly stabi-
lizing controller minimizing the weighted sensitivity. By putting a
bound on the norm of F' !, a bound on the H>° norm of the controller
can be obtained. We have obtained the optimal +s,, as a function of
p, where ||[F7'||oc < p. The example illustrated that as p — oo,
Yes,p converges to the optimal s for the problem where ||F™ 1|
is not constrained. The controller obtained here is again infinite
dimensional; for practical purposes it needs to be approximated by a
rational function. In general this method may require very high order
approximations since the order of strongly stabilizing controllers for a
given plant (even in the finite dimensional case) may have to be very
large, [28]. Another method for finding a low order F' satisfying all
the conditions is also illustrated with the given example. It searches
for a first order free parameter leading to a unit f.
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