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Paraxial Space-Domain Formulation for
Surface Fields on a Large Dielectric

Coated Circular Cylinder
V. B. Ertürk and R. G. Rojas

Abstract—A new method to evaluate the surface fields excited
within the paraxial (nearly axial) region of an electrically large
dielectric coated circular cylinder is presented. This representa-
tion is obtained by performing the Watson’s transformation in the
standard eigenfunction solution and using the fact that the circum-
ferentially propagating series representation of the appropriate
Green’s function is periodic in one of its two variables. Therefore,
it can be approximated by a Fourier series where the two leading
terms of the expansion yield engineering accuracy in most cases.
This work can be used in conjunction with a method of moments
solution for the design/analysis of conformal microstrip antennas
and arrays. Numerical results are presented and compared with a
standard eigenfunction expansion.

Index Terms—Coated cylinders, Green’s function, paraxial
representation.

I. INTRODUCTION

T HE STUDY of surface fields, created by a current distri-
bution on the surface of a thin dielectric layer deposited on

a perfect electrically conducting (PEC) circular cylinder, serves
as a canonical problem for the analysis of conformal microstrip
antennas/arrays mounted on dielectric coated arbitrarily convex
bodies. A derivation of the rigorous dyadic Green’s function
using a spectral domain Green’s function (radially propagating)
for an electric dipole located on the surface of a dielectric coated
PEC circular cylinder has been presented by several authors
[1]–[5]. This representation is known to have convergence prob-
lems for large cylinders and separations between source and
observation points. A few asymptotic representations for the
dyadic Green’s function has been presented to overcome this
difficulty [6]–[9].

The uniform theory of diffraction (UTD)-based Green’s func-
tions for the surface fields on a dielectric coated circular cylinder
derived by Munk [6] were implemented in [7] and [8] and nu-
merical calculations showed that reasonable results can be ob-
tained for large separations if only the leading terms are in-
cluded. Recently, a steepest descent path (SDP) representation
of the dyadic Green’s function for the dielectric coated circular
cylinder has been presented [9], which is based on a circum-
ferentially -propagating series representation of the appro-
priate Green’s function and its efficient numerical evaluation
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along a SDP on which the integrand decays most rapidly. This
method reduces to the saddle point integration considered in
[6]–[8] and in contrast to most asymptotic solutions, the results
are valid for arbitrarily small separations of source and field
points. However, none of these asymptotic solutions ([6]–[9])
yields accurate results within the paraxial (nearly axial) region.
This is a well-known problem that has been observed for PEC
and impedance cylinders in the past [10]–[14]. Among these so-
lutions, Boersma and Lee [13] used a two-term Debye approx-
imation for the logarithmic derivatives of Hankel functions and
obtained a closed-form solution for a PEC cylinder which re-
mains accurate in the paraxial region. Unfortunately, to the best
of our knowledge, it is not possible to obtain such closed-form
solutions for a dielectric coated cylinder.

In this paper, a new space-domain representation for the sur-
face fields excited by an elementary current source is presented.
These new expressions are valid within the paraxial region
as opposed to the previously presented asymptotic solutions
[6]–[9]. The essence of this formulation is based on the fact that
the -propagating series representation of the Green’s function
is periodic in one of its variables after an appropriate change
of variables. Hence, it can be approximated by a Fourier series
(FS) where the coefficients of this series expansion can be
easily obtained by a simple numerical integration algorithm.
Based on numerical experimentation, it appears that only the
two leading terms of the expansion are necessary in most cases.
As expected, the accuracy of the Green’s function, as well
as the ease of its evaluation, are determined by the type of
algorithm used to calculate the FS coefficients. In Section II,
the development of this novel approximate Green’s function
representation, as well as new expressions for the surface fields
valid within the paraxial region, are presented. Numerical
calculations are presented in Section III, which indicate that
the results shown here are valid for arbitrarily small and large
separations of source and field points. An time dependence
is assumed and suppressed throughout this paper.

II. PARAXIAL SURFACE FIELD FORMULATION

Consider an elementary surface electric current source given
by

(1)

located on the surface of a dielectric coated circular cylinder
whose geometry is given in Fig. 1 . The surface
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Fig. 1. Dielectric coated PEC circular cylinder where the radius of the PEC
cylinder isa and the thickness of the dielectric coating ist = d� a.

field component in the-direction ( or ) at excited
by a -directed source defined in (1) ( or ) can be written
as

(2)

where is the -propagating series representation of
the appropriate dyadic Green’s function component which is
explicitly given in [9] for both source and observation points
located on the surface . In this paper, we are only
interested in the tangential components of the surface fields
due to the tangential current sources since most of the mo-
ment method based conformal printed antenna analysis/design
algorithms require the use of these components. Therefore,
the -components, which might be important for applications
involving an excitation via a probe, are not considered here
due to space limitations. However, note that the computation
of the normal components are similar to that of the tangential
components considered here.

It is known that the series in (2) converges very slowly for
electrically large cylinders because the Green’s function in-
volves Bessel and Hankel functions along with their derivatives.
Their computation for large values of is not a trivial matter
due to the numerical instabilities that occur when the order and
argument of these functions become large. Therefore, (2) can
be transformed into a more rapidly convergent-propagating
series representation by using the Watson’s transformation [9].
Provided that the cylinder is electrically large (at least one
wavelength in radius), it is enough to retain the leading term.

Fig. 2. Space(s; �) and spectral(�;  ) polar coordinates (after [15]).

As a result of this process, the surface field component is given
by

(3)

The integral given by (3) can be expressed in polar coordi-
nates by performing the following transformations [15]

where (4)

and

(5)

where the definitions of , , , and are shown in Fig. 2. The
result of this procedure can be written as

(6)
The inner integral of (6) can be evaluated asymptotically in
closed form with respect to using the stationary phase method
[16] where the stationary points [the point(s) where the most sig-
nificant contribution to the integral occurs] are at and

. Applying this method to (6) and keeping the leading
term, yields

(7)

An analysis with respect to reveals that the tangential com-
ponents of the dyadic Green’s function are periodic with(i.e.,

) and hence, (7) becomes

(8)
Noting that is the large argument
approximation for the Bessel function [18], (8) can be
approximately written as

(9)

Note that expression (9) is similar to the leading term of the
surface field expression for the planar case (infinite radius of
curvature) [17]. Although expressions (8) and (9) do not yield
accurate results within the paraxial region for some field com-
ponents, they serve as a guide for the development of a more
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accurate paraxial formulation. The accuracy of (8) and (9) can
be improved by adding the second term in the stationary phase
integration, however, an alternative approach is followed here.

Keeping in mind that is periodic in (with period
of ), it can be represented by a FS, namely

(10)

where and are coefficients given by

(11)

(12)

where , for and , for . As seen in
(11) and (12), the FS coefficients are only functions of. As a
result of this, the variablesand are separated in the approx-
imate Green’s function representation simplifying the surface
field calculations significantly. The FS coefficients are calcu-
lated using numerical integration, namely

(13)

(14)

where are the appropriate weights. The stationary phase
method shows that the strongest contributions to the-integral
come from and ( along the axial direc-
tion). Thus, to obtain a valid solution within the paraxial region,
the Green’s function components should be exact at
least at and . Using this information, the abscissas
in (13) and (14) should include these two points. An additional
benefit is that the expressions for become much sim-
pler when , and (due to the terms involving ,

), resulting in a simpler numerical integration with respect
to in (6).

Although the essence of the method is the same for all com-
ponents, each of them has certain unique features and hence, has
been treated slightly different as discussed in Sections II-A–C.

A. Component

In addition to its periodicity, is even with respect
to yielding . Furthermore, based on numerical ex-
perimentation, including the leading two terms gives enough
accuracy for this component. Therefore, using a three-point
trapezoidal rule [18] in the interval for the calculation
of and , yields the following simple expressions:

(15)

(16)

where the identity has been
used to simplify the expressions. Substituting (15) and (16) into
(10), is given by

(17)

A similar approximate form is given in [15] (although it was
obtained in a heuristic fashion). The expression in (17) is exact
at (and also at ). This implies that using (17) in
(6) yields accurate results around the paraxial region ( or

). However, it loses accuracy asbecomes large for
large values of .

B. Component

The component, which is an odd function with
respect to , is written as

(18)

where is as defined in [9], except that
is excluded. , which

is an even function in , is approximated with a FS where in-
cluding only the leading term gives enough accuracy. The FS co-
efficients for can be obtained in the same fashion as
the FS coefficients of . Thus, the FS coefficient
is calculated performing a numerical integration in the in-
terval using a two-point trapezoidal rule and is given by

(19)

yielding

(20)

which is exact at . Numerical results reveal that if we
use (20) in (6), accurate results are obtained around the paraxial
region , but the accuracy deteriorates as
increases for large separations (large).

C. Component

Evaluation of this component differs from the others be-
cause the methods used for the calculation of the components

and do not yield results with enough
accuracy. Therefore, is written as the sum ofplanar

curvature correctionterms, namely

(21)

where or and denotes “planar” whereas stands
for “curvature correction.” The planar term, , corre-
sponds to a cylinder with an infinitely large radius of curvature.
It is written as

(22)
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Fig. 3. Real and imaginary parts of the mutual impedance(Z ) between two identicalz-directed current sources(� = 90 ) for a coated cylinder witha = 3� ,
t = 0:06� , � = 3:25.

Note that, the planar term is already written
as a two term FS expansion in and can be integrated in
closed-form with respect to. However, the curvature correc-
tion term, , has a behavior similar to . It is
an even function in which implies that . Furthermore,
based on numerical experimentation, including the first two
terms of the FS expansion gives accurate results. After an
extensive testing of different numerical integration routines
and number of sample points, accurate numerical results are
obtained for and with the following algorithm:

(23)

(24)

As a result of this process, the final expression for the curvature
correction term becomes

(25)

Combining (22) with (25), the Green’s function component
is given by

(26)

As in the and cases, using (26) in (6) yields
accurate results around the paraxial region ( or ),
however it loses accuracy asbecomes large for large values
of .

Equations (17), (20), and (26) are the components of the ap-
proximate space domain Green’s function representation which
are substituted into (6) to find the surface fields due to tangential
current elements located on the coating. In all components, the
common feature is the separation of theand variables which
allows the closed-form integration with respect toin (6). Sub-
stituting (17), (20), and (26) into (6), and calculating theinte-
grals in closed form, the following expressions are obtained for
the surface fields:

(27)

(28)
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Fig. 4. Real and imaginary parts of the mutual impedance(Z ) between two identicalz-directed current sources(� = 70 ) for a coated cylinder witha = 3� ,
t = 0:06� , � = 3:25.

Fig. 5. Real and imaginary parts of the mutual impedance(Z ) betweenz- and�-directed current sources(� = 88 ) for a coated cylinder witha = 3� ,
t = 0:06� , � = 3:25.

(29)

where , , , , , , , and
are given in (31) through (75), respectively, in Appendix 1. Note,
that and are exactly the same special functions de-
fined in [17] (special functions used for the Sommerfeld integral
representation for the single layer microstrip dyadic Green’s
function) for the planar case.

The -integrals are evaluated numerically along the real axis
using a Gaussian quadrature algorithm. In all functions, except

, , and , an envelope extraction technique is used
to overcome the difficulties in the numerical integration arising
from their oscillatory as well as slowly decaying behavior of
the integrands. The special functions , , and are
relatively smooth and absolutely integrable. Therefore, the use
of an envelope extraction technique to integrate these functions
is not required. Furthermore, the singularities which are on the
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Fig. 6. Real and imaginary parts of the mutual impedance(Z ) betweenz- and�-directed current sources(� = 75 ) for a coated cylinder witha = 3� ,
t = 0:06� , � = 3:25.

real axis (for lossless case) along the path of integration are
handled by regularizing the integrands. To implement this step,
the singularities are found by means of a Newton–Raphson
method.

III. N UMERICAL RESULTS

To assess the accuracy of this method, numerical results for
the mutual impedance between two tangential electric current
modes are obtained using (27)–(29) and compared with a stan-
dard eigenfunction solution given by (2) for a large cylinder with

, , ( free-space wave-
length). Note that the mutual impedance between the cur-
rent modes is simply given by

(30)

where is the field due to source (current mode) and
is the area occupied by source (current mode). The current
modes are defined by a piecewise sinusoid along the direction of
the current and by a constant along the direction perpendicular
to the current. Each element has dimensions of (along
the direction of the current) by . This particular choice
of current modes guarantees the convergence of the reference
spectral domain solution (2) for large cylinders, even though
the rate of convergence is very slow. In all figures, the real and
imaginary parts of the mutual impedance between two current
modes are plotted versus separation. For each component, the
results are given for various values of the angle.

Figs. 3 and 4 depict the mutual impedance between two-di-
rected sources for equals to 90 and 70 , respectively. As ex-
pected, the mutual coupling is strongest for (in the
same direction of the current sources) and becomes weaker as

moves away from the axial direction. The oscillatory nature of
the coupling as the separation changes indicates that there are at
least two types of field contributions adding in and out of phase.
Note that for the planar case [19] the sum of space and surface
wave contributions also results in a curve that oscillates.

The next set of results, namely, Figs. 5 and 6, show the mu-
tual impedance between a- and a -directed current sources.
Keeping in mind that the mutual impedance is zero along the
axial direction, the angle has been set to 88and 75 . In this
case, the mutual impedance becomes stronger asmoves away
from the axial direction. Actually, it can be shown [20] that it
reaches at maximum at some angle around 45and starts to de-
crease again as approaches 0. The oscillations also become
stronger as approaches 45.

Figs. 7 and 8 show the last set of numerical results for the
mutual impedance between two-directed current sources for

and , respectively. Note that the mutual
impedance is slightly stronger when compared to

. As a matter of fact, it can be shown [20] that the
mutual coupling for this case is maximum at , reaches a
minimum at some angle larger or equal to 45(it depends on
the value of ) and begins to increase again asapproaches
90 (the axial direction).

In all numerical results shown here, the agreement between
the reference solution and the new paraxial expressions is excel-
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Fig. 7. Real and imaginary parts of the mutual impedance(Z ) between two identical�-directed current sources(� = 90 ) for a coated cylinder witha = 3� ,
t = 0:06� , � = 3:25.

Fig. 8. Real and imaginary parts of the mutual impedance(Z ) between two identical�-directed current sources(� = 70 ) for a coated cylinder witha = 3� ,
t = 0:06� , � = 3:25.
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lent. On the other hand, the CPU time for the proposed method
is approximately five times faster than the reference solution
for this particular cylinder. Moreover, the elapsed CPU time for
the solution presented here is fairly independent from the size
of the cylinder’s radius (for radii ), whereas, the elapsed
CPU time for the eigenfunction solution increases as the elec-
trical size of the cylinder’s radius becomes larger. This clearly
shows that the present method is a much more efficient for large
cylinders than the standard eigenfunction solution.

IV. DISCUSSION ANDCONCLUSION

An efficient and accurate scheme for the evaluation of surface
fields within the paraxial region of an electrically large dielectric
coated circular cylinder is developed. These surface fields are
excited by electric current sources mounted on the surface of the
coated cylinder. Note that most previously published results for
large cylinders (with or without coating) fail to yield accurate
results in the paraxial region.

The essence of this representation is based on the fact
that the circumferentially propagating series representation of
the appropriate Green’s function is periodic and hence,can
be approximated by a Fourier series. Based on numerical
experimentation, it appears that only the two leading terms
of the expansion yield enough accuracy in most cases. The
accuracy of this Green’s function as well as the ease of its
evaluation are determined by the type of integration algorithm
used to calculate the Fourier series coefficients. The algorithm
used here is based on information obtained from the stationary
phase points of the integral in (6).

This novel representation of the Green’s function for a large
coated cylinder, which complements previously published
asymptotic representations [9], can be used in conjunction with
the method of moments to analyze and design arbitrarily shaped
conformal printed antennas on coated cylinders. Finally, for
some of the field components, the scheme developed here can
be made valid for regions outside the paraxial region (arbitrary
values of the angle ) with some minor modifications.

APPENDIX

The special functions used in (27)–(29) are given by

(31)

(32)

(33)

(34)

(35)

(36)

where

(37)

(38)

(39)

(40)

with

(41)

elsewhere

(42)

(43)

(44)

(45)

(46)
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(52)

(53)

(54)

(55)

(56)

(57)

(58)

(59)

(60)

(61)

(62)

(63)

(64)

(65)

(66)

(67)

(68)
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(49)

(69)

(70)

(71)

(72)

(73)

The special functions and , which are related to the
curvature correction term, are given by

(47)

and

(48)

where [please refer to (49) at the top of this page] and

(50)

(51)

The functions used in (49)–(51) are defined in (52)–(68) on the
previous page and (69)–(73) at the top of this page, and finally

elsewhere.

(74)

(75)

Note, that a superscript 0’ or ’ denotes that a function is
evaluated at or , respectively. In all these ex-
pressions is the free-space wavenumber and
is the wavenumber inside the dielectric medium with a relative
permittivity .

REFERENCES

[1] A. Nakatini, N. G. Alexopoulus, N. K. Uzunoglu, and P. L. E. Uslenghi,
“Accurate Green’s function computation for printed circuit antennas
on cylindrical antennas,”Electromagn., vol. 6, pp. 243–254, July–Sept.
1986.

[2] T. M. Habashy, S. M. Ali, and J. A. Kong, “Input impedance and radi-
ation pattern of cylindrical-rectangular and wraparound microstrip an-
tennas,”IEEE Trans. Antennas Propagat., vol. 38, pp. 722–731, May
1990.

[3] K. Naishadham and L. B. Felsen, “Dispersion of waves guided along
a cylindrical substrate-superstrate layered medium,”IEEE Trans. An-
tennas Propagat., vol. 41, pp. 304–313, Mar. 1993.

[4] L. W. Pearson, “A construction of the fields radiated by az-directed
point sources of current in the presence of a cylindrically layered ob-
stacle,”Radio Sci., vol. 21, pp. 559–569, July–Aug. 1986.

[5] K.-L. Wong, Design of Nonplanar Microstrip Antennas and Transmis-
sion Lines. New York: Wiley, 1999.

[6] P. Munk, “A Uniform Geometrical Theory of Diffraction for the Ra-
diation and Mutual Coupling Associated With Antennas on a Material
Coated Convex Conducting Surface,” Ph.D. dissertation, The Ohio State
Univ., Dept. Elect. Eng., 1996.

[7] C. Demirdag and R. G. Rojas, “Mutual coupling calculations on a dielec-
tric coated PEC cylinder using UTD-based green’s function,” inProc.
IEEE Antennas Propagat. Symp. Dig., vol. 3, Montreal, Canada, July
1997, pp. 1525–1528.

[8] R. G. Rojas and V. B. Ertürk, “UTD ray analysis of mutual coupling
and radiation for antennas mounted on dielectric coated PEC convex
surfaces,” inProc. URSI Int. Symp. Electromagn. Theory, vol. 1, May
1998, pp. 178–180.

[9] V. B. Ertürk and R. G. Rojas, “Efficient computation of surface fields
excited on a dielectric coated circular cylinder,”IEEE Trans. Antennas
Propagat., vol. 48, pp. 1507–1516, Oct. 2000.



ERTÜRK AND ROJAS: PARAXIAL SPACE-DOMAIN FORMULATION FOR SURFACE FIELDS ON LARGE DIELECTRIC COATED CYLINDER 1587

[10] Z. W. Chang, L. B. Felsen, and A. Hessel, “Surface Ray Methods for
Mutual Coupling in Conformal Arrays on Cylinder and Conical Sur-
faces,” Polytech. Inst., New York, 1976.

[11] S. W. Lee and S. Safavi-Naini, “Asymptotic Solution of Surface
Field Due to a Magnetic Dipole on a Cylinder,” Univ. Illinois at
Urbana–Champaign, Dept. Elect. Eng., 76-11, 1976.

[12] P. H. Pathak and N. Wang, “An Analysis of the Mutual Coupling Be-
tween Antennas on a Smooth Convex Surface,” The Ohio State Univ.
ElectroSci. Lab. Dept. Elect. Eng., 784 538-7, 1978.

[13] J. Boersma and S. W. Lee, “Surface Field Due to a Magnetic Dipole on
a Cylinder: Asymptotic Expansion of Exact Solution,” Univ. Illinois at
Urbana–Champaign, Dept. Elect. Eng., 78-17, 1978.

[14] R. J. Pogorzelski, “On the high-frequency asymptotic evaluation of the
potentials of elemental sources on an anisotropic impedance cylinder,”
Radio Sci., vol. 31, pp. 389–399, Mar.–Apr. 1996.

[15] M. Marin and P. Pathak, “Calculation of Surface Fields Created by a
Current Distribution on a Coated Circular Cylinder,” The Ohio State
Univ. ElectroSci. Lab. Dept. Elect. Eng., 721 565-1, 1989.

[16] L. B. Felsen and N. Marcuvitz,Radiation and Scattering of
Waves. Englewood Cliffs, NJ: Prentice-Hall, 1973.

[17] S. Barkeshli, “Efficient Approaches for Evaluating the Planer Microstrip
Green’s Function and Its Applications to the Analysis of Microstrip
Antennas,” Ph.D. dissertation, The Ohio State Univ. Dept. Elect. Eng.,
1987.

[18] M. Abramowitz and I. A. Stegun,Handbook of Mathematical Func-
tions. New York: Dover, 1970.

[19] S. Barkeshli, P. H. Pathak, and M. Marin, “An asymptotic closed-form
microstrip closed-form microstrip Green’s function for the efficient mo-
ment method analysis of mutual coupling in microstrip antennas,”IEEE
Trans. Antennas Propagat, vol. 38, pp. 1374–1383, Sept. 1990.

[20] V. B. Ertürk, “Efficient Hybrid MoM/Green’s Function Technique to
Analyze Conformal Microstrip Antennas and Arrays,” Ph.D. disserta-
tion, The Ohio State Univ., Dept. Elect. Eng., 2000.

V. B. Ertürk received the B.S. degree in electrical engineering from the Middle
East Technical University, Ankara, Turkey, and the M.S. and Ph.D. degrees
from The Ohio State University, (OSU), Columbus, in 1993, 1996, and 2000,
respectively.

Currently, he is an Assistant Professor with the Department of Electrical and
Electronics Engineering, Bilkent University, Ankara, Turkey. His research inter-
ests include design and analysis of active and passive microstrip antennas and
arrays on planar and curved surfaces.

R. G. Rojas received the B.S.E.E. degree from New Mexico State University,
University Park, NM, and the M.S. and Ph.D, degrees in electrical engineering
form The Ohio State University (OSU), Columbus, in 1979, 1981, and 1985,
respectively.

Currently, he is a Professor with the Department of Electrical Engineering,
OSU. His research interests include the analysis and design of conformal arrays,
active integrated arrays, nonlinear microwave circuits, as well as the analysis of
electromagnetic radiation and scattering phenomena in complex environments.

Dr. Rojas was the recipient of the 1988 R.W.P. King Prize Paper Award, the
1990 Browder J. Thompson Memorial Prize Award, both awarded by IEEE,
and the Lumley Research Awards, given by the College of Engineering, OSU,
in 1989 and 1993. He has served as Chairman, Vice Chairman, and Secre-
tary/Treasurer of the IEEE Antennas and Propagation, and Microwave Theory
and Technique Societies, Columbus, OH Chapter. He is a Member of the U.S.
Commission B of URSI.


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


