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Paraxial Space-Domain Formulation for
Surface Fields on a Large Dielectric
Coated Circular Cylinder

V. B. Ertirk and R. G. Rojas

_Abstract—A new method to evaluate the surface fields excited along a SDP on which the integrand decays most rapidly. This
within the paraxial (nearly axial) region of an electrically large  method reduces to the saddle point integration considered in
dielectric coated circular cylinder is presented. This representa- [6][8] and in contrast to most asymptotic solutions, the results

tion is obtained by performing the Watson'’s transformation in the lid f bitraril I fi f d field
standard eigenfunction solution and using the fact that the circum- aleé valid ior arpitraniy smail SEparations or Source and iie

ferentially propagating series representation of the appropriate Points. However, none of these asymptotic solutions ([6]-[9])
Green’s function is periodic in one of its two variables. Therefore, yields accurate results within the paraxial (nearly axial) region.
it can be approximated by a Fourier series where the two leading This is a well-known problem that has been observed for PEC
terms of the expansion yield engineering accuracy in most cases.ang impedance cylinders in the past [10]-[14]. Among these so-

This work can be used in conjunction with a method of moments uti B dL 13 d & two-t Deb
solution for the design/analysis of conformal microstrip antennas 1Utions, Boersma and Lee [13] used a two-term Debye approx-

and arrays. Numerical results are presented and Compared with a imation for the |Ogarithmic derivatives of Hankel functions and

standard eigenfunction expansion. obtained a closed-form solution for a PEC cylinder which re-
Index Terms—Coated cylinders, Green's function, paraxial Mains accurate in the paraxial region. Unfortunately, to the best
representation. of our knowledge, it is not possible to obtain such closed-form

solutions for a dielectric coated cylinder.

In this paper, a new space-domain representation for the sur-
face fields excited by an elementary current source is presented.

HE STUDY of surface fields, created by a current distriThese new expressions are valid within the paraxial region
bution on the surface of a thin dielectric layer deposited as opposed to the previously presented asymptotic solutions

a perfect electrically conducting (PEC) circular cylinder, servg6]—[9]. The essence of this formulation is based on the fact that
as a canonical problem for the analysis of conformal microstripe ¢-propagating series representation of the Green’s function
antennas/arrays mounted on dielectric coated arbitrarily convexperiodic in one of its variables after an appropriate change
bodies. A derivation of the rigorous dyadic Green’s functioof variables. Hence, it can be approximated by a Fourier series
using a spectral domain Green'’s function (radially propagatin(f)S) where the coefficients of this series expansion can be
for an electric dipole located on the surface of a dielectric coatedsily obtained by a simple numerical integration algorithm.
PEC circular cylinder has been presented by several authBesed on numerical experimentation, it appears that only the
[1]-[5]. This representation is known to have convergence prafvo leading terms of the expansion are necessary in most cases.
lems for large cylinders and separations between source & expected, the accuracy of the Green’s function, as well
observation points. A few asymptotic representations for tlas the ease of its evaluation, are determined by the type of
dyadic Green’s function has been presented to overcome thlgorithm used to calculate the FS coefficients. In Section II,
difficulty [6]—[9]. the development of this novel approximate Green’s function

The uniform theory of diffraction (UTD)-based Green’s funcrepresentation, as well as new expressions for the surface fields
tions for the surface fields on a dielectric coated circular cylindealid within the paraxial region, are presented. Numerical
derived by Munk [6] were implemented in [7] and [8] and nuealculations are presented in Section Ill, which indicate that
merical calculations showed that reasonable results can be thie results shown here are valid for arbitrarily small and large
tained for large separations if only the leading terms are iseparations of source and field points. At time dependence
cluded. Recently, a steepest descent path (SDP) representati@ssumed and suppressed throughout this paper.
of the dyadic Green'’s function for the dielectric coated circular
cylinder has been presented [9], which is based on a circum- II. PARAXIAL SURFACE FIELD FORMULATION

ferentially (¢)-propagating series representation of the appro-C id | t ¢ lectri t .
priate Green’s function and its efficient numerical evaluatiogy onsider an elementary surlace electric current source given

. INTRODUCTION
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Fig. 2. Spacés, §) and spectral¢, ¥») polar coordinates (after [15]).

As a result of this process, the surface field component is given

by
/ /oo je Glu ]/ k )P:
2ﬂ- oo ]E 2rwd
—jks(z=2") y—iv($= d’)dudk e>0. (3)

The integral given by (3) can be expressed in polar coordi-
nates by performing the following transformations [15]

k.= —Ccost, v =pdwherep=—siny  (4)

and

=d(¢p—¢')=ssiné, (2—2)=scosd (5)
Fig. 1. Dielectric coated PEC circular cylinder where the radius of the PEC
cylinder isa and the thickness of the dielectric coating is= d — a. where the definitions of, 6, s, and( are shown in Fig. 2. The

result of this procedure can be written as

field component in thé-direction { = ¢ or z) atp = d excited 27 qu C ) )
by au-directed source defined in (L) & ¢ or z) can be written ~ Ei(s, 0) s / / —or Tl el cos=8) gy

as (6)
0o The inner integral of (6) can be evaluated asymptotically in
Ei(z,¢) = 1 Z ein(9—¢") closed form with respect tp using the stationary phase method
2 = [16] where the stationary points [the point(s) where the most sig-
* G k) pu k(oo nificant contribution to the integral occurs] areyat = ¢ and
X /Oo Wpe e k- (2) s = 6+m. Applying this method to (6) and keeping the leading
term, yields

whereGy,(n, k) is the p-propagating series representation of 1 [ Gr(C,6) [27

the appropriate dyadic Green’s function component which (s, §) ~ _/ PY [l“—’ \/iej(sc—(wﬂ))
explicitly given in [9] for both source and observation points 2 Jo 2m 5¢

located on the surfadg = p’ = d). In this paper, we are only +qu(<f, §+m) \/@eﬂ_s@r(ﬁm)} cde. ()
interested in the tangential components of the surface fields 2w sC

due to the tangential current SOurces since most of _the M5 analysis with respect t¢ reveals that the tangential com-
ment method based conformal printed antenna analysis/de Nents of the dyadic Green’s function are periodic wite

algorithms require the use of these components. Therefoye, .. | _ )
the p-components, which might be important for applications t(C; ) = Gru(C, ¥+ m)) and hence, (7) becomes

involving an excitation via a probe, are not considered here 1 v |2
due to space limitations. However, note that the computatiorEl(s"s) ~ ﬂ/o Guu(C 0) P \ smc ©° (SC - _) Qdc.
of the normal components are similar to that of the tangential
components considered here. Noting that y/2/sm(cos(s¢ — w/4) is the large argument

It is known that the series in (2) converges very slowly foapproximation for the Bessel functiafy(s¢) [18], (8) can be
electrically large cylinders because the Green's function iapproximately written as
volves Bessel and Hankel functions along with their derivatives. 1 [
Their computation for large values afis not a trivial matter Ei(s,6) ~ Py / Jo(sC)Gru (¢, 6)Pr¢dC. 9)
due to the numerical instabilities that occur when the order and TJo
argument of these functions become large. Therefore, (2) ddate that expression (9) is similar to the leading term of the
be transformed into a more rapidly convergenpropagating surface field expression for the planar case (infinite radius of
series representation by using the Watson'’s transformation [@rvature) [17]. Although expressions (8) and (9) do not yield
Provided that the cylinder is electrically large (at least oreccurate results within the paraxial region for some field com-
wavelength in radius), it is enough to retain the leading terrmponents, they serve as a guide for the development of a more
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accurate paraxial formulation. The accuracy of (8) and (9) carhere the identityG..((,v = 7) = G..({,¢ = 0) has been
be improved by adding the second term in the stationary phased to simplify the expressions. Substituting (15) and (16) into
integration, however, an alternative approach is followed herél0), G..({, ) is given by

Keeping in mind that7,,,({, v) is periodic iny (with period

of T' = ), it can be represented by a FS, namely G..(C, V)~ G.. (Cﬂ/) - g) + [Gu(cﬂ/, =0)
N N _ o T 1+ cos 2y
Gru(C,9) = Y an(¢) cosn2y + > bu(¢)sinn2y  (10) G (C”/ B 2)} ( 2 ) - @0
n=0 n=1

A similar approximate form is given in [15] (although it was
wherea,, (¢) andb, (¢) are coefficients given by obtained in a heuristic fashion). The expression in (17) is exact
aty = 0 (and also at) = ). This implies that using (17) in
. (6) yields accurate results around the paraxial region:(0 or
an(¢) :—"/ G (C, 1) cosn2ipda) (11) « — m/2). However, it loses accuracy dsbecomes large for
; T large values of.
b, :—/Gu , ) sin n2vydap 12
Q) =3 [ Ol ¥)snn2pay 12 g Gy (C,1) = G.y(C, 1) Component
wheree, = 1, forn = 0 ande, = 2, forn # 0. As seen in The G, (¢, 1) component, which is an odd function with
(11) and (12), the FS coefficients are only functiong ofs a "€SPect tap, is written as

result of this, the variablesand+ are separated in the approx- ¢2sin 20

imate Green’s function representation simplifying the surface Gy:(C ) = TGw(Cﬂ/}) (18)
field calculations significantly. The FS coefficients are calcu-

lated using numerical integration, namely whereé¢z(§,z/;) is Gy-(C, ) as defined in [9], except that

(v/d)k. = pk. = (¢*sin 2¢)) /2 is excludedGy. (¢, ), which
P is an even function i), is approximated with a FS where in-
an(C) ~5n Z w,Gru (€, 1p) cosn2ip,, (13) cluding only the leading term gives enough accuracy. The FS co-
[t efficients forG,. (¢, 1) can be obtained in the same fashion as
9 P the FS coefficients of7, . (¢, ¢). Thus, the FS coefficient,,
bn(¢) =— Z wp Gy (¢, p) sinn2ep, (14) is calculated performing a numerical integration in fiher] in-
it terval using a two-point trapezoidal rule and is given by

where w, are the appropriate weights. The stationary phase L [g (é¢z(<77/} =0)+ Gy (Coth = W))}

method shows that the strongest contributions ta/thetegral e ™

come fromy) = § andy) = 7 + § (§ = 0 along the axial direc- =Gy ((, 9 =0) (19)

tion). Thus, to obtain a valid solution within the paraxial region,. . .

the Green’s function component. (¢, ) should be exact at Y'€!ding

least at) = 0 andy) = «. Using this information, the abscissas (Zsin 2y -

in (13) and (14) should include these two points. An additional Go:(C ) = > Go:(C 9 = 0) (20)

benefit is that the expressions #64.,(¢, 1) become much sim- . .

pler whemy, = 0, 7/2 andr (due to the terms involvingin 1), which is .exact at) = 0. Numerical resglts reveal that if we .

cos 1), resulting in a simpler numerical integration with respe&tS€ (20) in (6), accurate results are obtained around the paraxial

to ¢ in (6). _reglon(ﬁ — 0(a — 7/2), l_aut the accuracy deteriorates &s
Although the essence of the method is the same for all cofficreases for large separations (lasge

ponents, each of them has certain unique features and hence .a(s;d)d)(c? ) Component

been treated slightly different as discussed in Sections II-A—
Evaluation of this component differs from the others be-

A. G..(¢, 1)) Component cause the methods used for the calculation of the components
’ G..(¢,v) and G.,(¢, ) do not yield results with enough

In a(_dditi_on to its periodicity(G..((, ¢) is even with respect accuracy. Therefore;,,(C, ) is written as the sum gflanar
to ¢ yielding b,, = 0. Furthermore, based on numerical ex;B curvature correctiorterms, namely

perimentation, including the leading two terms gives enoug

accuracy for this componeqt. Therefore, using a threg—pomt Gs(C, ) = GE (¢ ) + G;(;?(C,dj) (21)

trapezoidal rule [18] in the intervdD, «] for the calculation

of ag_. anda;__, yields the following simple expressions: Whereu = x ory andp denotes “planar” whereas: stands
for “curvature correction.” The planar terr6?,, (¢, v), corre-

. sponds to a cylinder with an infinitely large radius of curvature.
[GZZ(C/!/} =0)+G.: (C;’l/f = 5)} (15) Itis written as
1 —cos 2y

[Gacr=0) -G (Co=T)] a8 Chalc) =GhO - GO (T e @)

ao..(C) =
a1..(C) =

N =D =
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: : : : : o — Re[212] eigenfunction solution
_ _ Im[Z, ] eigenfunction solution
0.2 - Fle[Z1 2] FS representat.ion H
o Im[Z1 2] FS representation

0.1

Fig. 3. Realandimaginary parts of the mutual impeddute ) between two identical-directed current sourcéa = 90°) for a coated cylinder with = 3,
t, = 0.06Xg, €, = 3.25.

Note that, the planar ternd*,,({,v) is already written L e 0\ e po
as a two term FS expansion ih and can be integrated in 2 2
closed-form with respect t¢. However, the curvature correc- 1 — cos 2¢)
tion term,G<%,(¢, ), has a behavior similar t6'..(¢, ). Itis (f) (26)
an even function iny) which implies thab,, = 0. Furthermore,

based on numerical exp_erime_ntation, including the first tWRsintheGZZ(C7w) andG. (¢, 1) cases, using (26)in (6) yields
terms of the FS expansion gives accurate results. After a8. rate results around the paraxial regior{ 0 or e — /2),
extensive testing of different numerical integration routing$,vever it loses accuracy dsbecomes large for large values
and number of sample points, accurate numerical results gge,
obtained forao,, anda;,, with the following algorithm: Equations (17), (20), and (26) are the components of the ap-
1 ™ imate space domain Green'’s function representation which
a0, ~~ |G (¢, = 0) + cc(,):_)] 23) Proximate spac ' 1 rep .
000 ™y [ sa(C Y ) so \& ¥ 2 3) are substituted into (6) to find the surface fields due to tangential
1 - current elements located on the coating. In all components, the
a1, N7 [ 30(C 9 =0) =G5y (C,z/J = 5)] . (24) common feature is the separation of thend) variables which
As a result of this process, the final expression for the curvatLﬁ'gow.s the closed-form mtegr ation with respect/)tm (6). .SUb'
- stituting (17), (20), and (26) into (6), and calculating thante-
correction term becomes . X . :
grals in closed form, the following expressions are obtained for

56(C 1) %%{G;i(mﬁ =0) the surface fields:
+ (o5 (cv=7) - s =0 Bua(6.5) ~ 50
X (%) } (25) x {k%P@) + 5— [P(s) — Q(s)]} (27)
Gon(oo s e by e CIEEMS Tunelon COMPONEN (o 2 P (o) e} @9
GolC, ) MGIA(Q) + 5 Gy(Cob = 0) Pusts.9) 2 Lt + 2

€r

- {—Czazi«) * [%) - IW(S)H
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Fig. 4. Real and imaginary parts of the mutual impeddute ) between two identical-directed current sourcéa = 70°) for a coated cylinder with = 3\,
tn, = 0.06Xo, €, = 3.25.
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Fig. 5. Real and imaginary parts of the mutual impedai£ge ) between:z- and¢-directed current sourcésr = 88°) for a coated cylinder witlk = 3,
t, = 0.06Ag, €, = 3.25.

JZop? {S( ) + 3_2T( )} (29) The(-integrals are evaluated numerically along the real axis
27ko or? 3 using a Gaussian quadrature algorithm. In all functions, except
R(s), S(s), andT'(s), an envelope extraction technique is used
where P(s), Q(s), M(s), R(s), W(s), U(s), S(s), andT(s) to overcome the difficulties in the numerical integration arising
are givenin (31) through (75), respectively, in Appendix 1. Noté&om their oscillatory as well as slowly decaying behavior of
thatU(s) andW (s) are exactly the same special functions dehe integrands. The special functioR$s), S(s), andT'(s) are
fined in [17] (special functions used for the Sommerfeld integratlatively smooth and absolutely integrable. Therefore, the use
representation for the single layer microstrip dyadic Greends an envelope extraction technique to integrate these functions
function) for the planar case. is not required. Furthermore, the singularities which are on the
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Fig. 6. Real and imaginary parts of the mutual impedai#€g ) between:- and¢-directed current sourcésy = 75°) for a coated cylinder witlk = 3,
tp, = 0.06Aq, €, = 3.25.

real axis (for lossless case) along the path of integration are~igs. 3 and 4 depict the mutual impedance betweentdn
handled by regularizing the integrands. To implement this stapcted sources far equals to 90 and 70, respectively. As ex-
the singularities are found by means of a Newton-Raphspacted, the mutual coupling is strongest for= 90° (in the
method. same direction of the current sources) and becomes weaker as
a moves away from the axial direction. The oscillatory nature of
. NUMERICAL RESULTS the coupling as the separation changes indicates that there are at

To assess the accuracy of this method, numerical results lgst two types of field contributions adding in and out of phase.
the mutual impedance between two tangential electric currd¥te that for the planar case [19] the sum of space and surface
modes are obtained using (27)—(29) and compared with a st43ve contributions also results in a (_:urve that oscillates.
dard eigenfunction solution given by (2) for a large cylinderwith The next set of results, namely, Figs. 5 and 6, show the mu-
a = 3o, tn = 0.06)g, €& = 3.25 (\o = free-space wave- tual wppe_dange betweenza and aq_b—dlrected Cl_Jrrent sources.
length). Note that the mutual impedariég,, between the cur- K€€ping in mind that the mutual impedance is zero along the
rent modes is simply given by axial direction, the angle has been set to 8&nd 75. In this
case, the mutual impedance becomes strongemasves away
from the axial direction. Actually, it can be shown [20] that it
reaches at maximum at some angle arourfdatl starts to de-
crease again as approaches? The oscillations also become
whereE,, is the field due to source (current modg) andS,,  stronger ag approaches 45
is the area occupied by source (current mallg) The current  Figs. 7 and 8 show the last set of numerical results for the
modes are defined by a piecewise sinusoid along the directiomaditual impedance between twedirected current sources for
the current and by a constant along the direction perpendicular= 90° anda = 70°, respectively. Note that the mutual
to the current. Each element has dimension8.0%)\, (along impedance is slightly stronger when = 90° compared to
the direction of the current) b§.02),. This particular choice « = 70°. As a matter of fact, it can be shown [20] that the
of current modes guarantees the convergence of the referemegual coupling for this case is maximumeat= 0°, reaches a
spectral domain solution (2) for large cylinders, even thoughinimum at some angle larger or equal to 45(it depends on
the rate of convergence is very slow. In all figures, the real atige value ofs/\¢) and begins to increase againaapproaches
imaginary parts of the mutual impedance between two curré@® (the axial direction).
modes are plotted versus separation. For each component, tHa all numerical results shown here, the agreement between
results are given for various values of the anglg. the reference solution and the new paraxial expressions is excel-

T = / E, - Jnds (30)
S
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Fig. 7. Real and imaginary parts of the mutual impeddtite ) between two identicap-directed current sourcés: = 90°) for a coated cylinder with = 3,
t, = 0.06)Ng, €, = 3.25.
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Fig. 8. Realand imaginary parts of the mutual impeddute ) between two identicap-directed current sourcés: = 70°) for a coated cylinder with = 3,
t, = 0.06Ag, €, = 3.25.
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lent. On the other hand, the CPU time for the proposed method
is approximately five times faster than the reference solution
for this particular cylinder. Moreover, the elapsed CPU time for
the solution presented here is fairly independent from the size
of the cylinder’s radius (for radi> A,), whereas, the elapsed
CPU time for the eigenfunction solution increases as the el
trical size of the cylinder’s radius becomes larger. This clearly
shows that the present method is a much more efficient for large
cylinders than the standard eigenfunction solution.

IV. DISCUSSION ANDCONCLUSION

An efficient and accurate scheme for the evaluation of surface
fields within the paraxial region of an electrically large dielectric
coated circular cylinder is developed. These surface fields are
excited by electric current sources mounted on the surface of the
coated cylinder. Note that most previously published results for
large cylinders (with or without coating) fail to yield accurate
results in the paraxial region.

The essence of this representation is based on the fact
that the circumferentially propagating series representation of

the appropriate Green’s function is periodic and hence, C\"flvr}h

be approximated by a Fourier series. Based on numerica
experimentation, it appears that only the two leading terms

of the expansion yield enough accuracy in most cases. The R°(¢) =

accuracy of this Green’s function as well as the ease of its
evaluation are determined by the type of integration algorithm
used to calculate the Fourier series coefficients. The algorithm
used here is based on information obtained from the stationa
phase points of the) integral in (6).

This novel representation of the Green'’s function for a large
coated cylinder, which complements previously published
asymptotic representations [9], can be used in conjunction with
the method of moments to analyze and design arbitrarily shaped
conformal printed antennas on coated cylinders. Finally, for

some of the field components, the scheme developed here can

be made valid for regions outside the paraxial region (arbitrary
values of the angle)) with some minor modifications.

APPENDIX

The special functions used in (27)—(29) are given by

Y S
P = | g -
_(Tk-)] 11
Q(s) —/0 ic {T,%(C) T;/z(é)}
x Jo(Cs) d¢ 42
— = C S
M(s) —/0 JT9Q e -

Jo(Cs)dC (34)

P e - 0 (/R @G
R = [ o
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WRH=-C
/ Dplez )de (39)
/ —Jo (Cs)dC (36)
Dp(Q) =\/1 - ¢2 = j\JR2 = ¢2
X cot [th\/k% — CQ} (37)
K 2 _ 2
Dpal¢) =fI - 2 + VL=
X tan [tm [z~ <2} (38)
k2 _ 2
120 =] - GRO - B 500 @9
1
T7(¢) =ko R™?(¢) = C3(0) (40)
; ! 41
RN e @
H®) (kod) ¢
T = ﬁﬁ@? -1 <
—j \/kgo—@ _ %(kgk—oc ) elsewhere
(42)
k2 _ C2 1
021 —€p T 59 43
€ |:tan |:th' k% — CZ:| 2d] ( )
P L
© cot [th k3 — CQ]
+ 21_d tan? [t;,,\/k% - CZ} (44)

tan [t /K = 7|

crl? =

L) kK ti¢?

7 LeEreen
€ cot [tm/kf — CQ]

1 t2¢?

_|_

2der | cog2 [th \/W]
k2 tan® [t;”/k% - 4’2}

k2 _ <2

} (45)

cr/? =

+

} . (46)
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0 0 0
0 (w/Z) (vr/2) (m)
ﬂ-/Q) o) — e Num, (¢)d? + Num, (Q)d+ A, ©) Jo(Cs)
SR 7 G N G0 A B A
T\ (¢ | (o + N (a T ()

pl"r/2 =— /K2 -2+ l k% — <2 69
2 () Tk ¢ €r \ cot [th \/W} ©
EO(0) —1 k§ —¢? 20
N0 =1-eap— (70)

~0 k(% - CZ 2 2
CY(¢) =1+ <k2 — <2> tan [th k2 — 42} (71)
G20y = —2ac™?(c) - | L _ 1S 72
1 7(¢) fx (©) k3 —¢ gin2 [th /—k% — Cﬂ (72)

C3/%(¢) = — 2dCT2(¢)

L 1S 1 nQ[ \ k2 — 2} 73
+ €\ cos2 [th k% _ Cz] k% —C? ta th 1—¢ (73)

The special function§(s) and7'(s), which are related to the Note, that a superscript 0’ ar/2’ denotes that a function is

curvature correction term, are given by

S(s) = (*8%(s) (47) s

and
T(s) = S™/%(s) — S°(s) (48)

where [please refer to (49) at the top of this page] and

Numl< ) © :A1<“92> (oTo(”(;2> ©

- A()(“(/)Z) <<>T1( ") ©) (s0)
Num2< ) © :A2< ) (oTo(”(;2> ©

- AS”%) (<>T2<”92> (©). (1)

The functions used in (49)—(51) are defined in (52)—(68) on the
previous page and (69)—(73) at the top of this page, and finally

o/
H'Z) (kod) ¢

(
3 — (2 Hiegyhod) 1 ¢
C}Ta{Q(O = ko = 6% + ko Hézc)z)(kod)’ ko 1‘ < 23
~54 (kgkfca ’ elsewhere.
(74)
1
Crl0==35 75

evaluated at) = 0 or ¢ = 7 /2, respectively. In all these ex-
pressionsk is the free-space wavenumber ald = /€, ko

the wavenumber inside the dielectric medium with a relative

permittivity e, > 1.
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