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Abstract—We present the linear-linear (LL) basis functions
to improve the accuracy of the magnetic-field integral equation
(MFIE) and the combined-field integral equation (CFIE) for
three-dimensional electromagnetic scattering problems involving
closed conductors. We consider the solutions of relatively large
scattering problems by employing the multilevel fast multipole
algorithm. Accuracy problems of MFIE and CFIE arising from
their implementations with the conventional Rao-Wilton-Glisson
(RWG) basis functions can be mitigated by using the LL functions
for discretization. This is achieved without increasing the compu-
tational requirements and with only minor modifications in the
existing codes based on the RWG functions.

Index Terms—Basis functions, combined-field integral equa-
tion, magnetic-field integral equation, multilevel fast multipole
algorithm.

1. INTRODUCTION

N THE solution of three-dimensional (3-D) electromagnetic
I scattering problems by the method of moments (MOM) [1],
it is common to apply a triangulation on the scatterer and em-
ploy Rao—Wilton—Glisson (RWG) [2] basis functions defined
on planar triangles to expand the unknown surface current den-
sity. The scattering problem can be formulated either as an elec-
tric-field integral equation (EFIE) or as a magnetic-field integral
equation (MFIE) [3]. Although the same physical current distri-
bution is expanded by an identical set of RWG functions in both
cases, the same levels of accuracy cannot be obtained by EFIE
and MFIE. Independent of the shape of the geometry (smooth
or sharp), MFIE with the RWG functions has a consistent error
that produces worse results for radar cross section (RCS) than
EFIE [4].

We recently conducted a series of studies to investigate in de-
tail the MFIE inaccuracy [4]-[7], and systematically compared
the EFIE and MFIE implementations in order to identify the
source of the error. In those studies the following applies.

1) The singularities arising in the outer integrals of MFIE

were extracted for improved accuracy in the numerical
integrations [5];
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2) The testing scheme of MFIE was extended by allowing the
testing points to reside on the edges of the triangulation [6];
3) The solid-angle factor in MFIE was clarified to avoid in-
correct usage [7].
Although these studies provided a better understanding of MFIE
and led to more robust implementations, the improvement in
the accuracy was limited, indicating that the fundamental
reason for the inaccuracy lied elsewhere. Then, we focused on
the modeling of the current distribution with different basis
functions. By testing the accuracy of MFIE with respect to
the basis and testing functions [8], we demonstrated that the
accuracy of MFIE can be significantly improved by employing
more suitable functions rather than the RWG functions [9].
This is also confirmed by others [10]-[13].

In this paper, we present the linear-linear (LL) basis func-
tions to further improve the accuracy of the MFIE and CFIE im-
plementations. These functions were employed previously for
EFIE [14]. We also employed them for MFIE [15] and demon-
strated that the LL functions improve the accuracy of MFIE
significantly for moderate-size problems, including those with
sharp edges and corners. In this paper, we consider the solu-
tions of large problems with the multilevel fast multipole algo-
rithm (MLFMA) [16]. We show that the RCS results obtained by
the MFIE and CFIE solutions are inaccurate even for large and
smooth geometries, such as a sphere, compared to the solutions
by EFIE. The accuracy can be improved with the LL functions
without increasing the computational requirements.

The LL functions can also be identified as a subset of the
LN/QT or QN/LT type vector functions discussed in [17].
Contrary to the RWG functions, LL functions are first-order
complete to represent the vectors by providing six degrees
of freedom to model the linear variation on the triangles. As
depicted in Fig. 1, there are two kinds of LL functions defined
on the same edge simultaneously to expand the current den-
sity better than the RWG functions that are only zeroth-order
complete. Improved current modeling with higher-order com-
pleteness is achieved at the cost of doubling the number of
basis functions compared to the RWG functions for the same
triangulation of the geometry. On the other hand, we show
that the LL functions provide more accurate RCS results with
MEFIE and CFIE for the same number of unknowns as the RWG
functions. The improvement is present even for the curved
geometries, where the discretization for the LL functions is
coarser and leads to more deviation from the actual geometry
to keep the number of unknowns approximately the same as
when the RWG functions are used on the same geometry with
a finer triangulation.
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Fig. 1. (a) First-kind and (b) second-kind LL functions defined on the edge €., .
The arrows show the direction while the shading indicates the magnitude of the
vector distribution. Light and dark colors represent the low and high values,
respectively, and white corresponds to zero.

Although the LL functions are first-order complete to rep-
resent the vectors, they are only zeroth-order complete to
represent the divergence or curl of a vector. In fact, they are
simply the decomposition of the RWG functions as elucidated
in Section III. The LL functions improve the accuracy of
MEFIE to the level of EFIE, while they are similar to the RWG
functions by providing linear variations for the induced current
on the triangular domains. In this manner, the LL functions are
different from the higher-order techniques in computational
electromagnetics appeared in the literature to improve the
accuracy of the integral equations [18]—[20]. The advantages of
the LL functions can be listed as follows.

1) The LL functions can be implemented with simple modi-
fications on the existing codes employing the RWG func-
tions. Most of the numerical procedures in MLFMA, such
as the singularity extractions for the near-field interactions
and Fourier transforms for the far-field interactions, can be
adapted from those of the RWG functions;

2) For the same number of unknowns, employing the LL func-
tions in the MLFMA implementations does not require
extra computational load compared to employing the RWG
functions.
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For the solution of large problems, the combined-field inte-
gral equation (CFIE) [3] is preferred whenever it is applicable,
i.e., when the scatterer is smooth and it can be modelled with
a closed conductor. This is because CFIE provides better-con-
ditioned matrix equations compared to EFIE and MFIE [21],
and this is essential for iterative solvers such as MLFMA. In
addition to this, CFIE is free of the internal-resonance problem
by providing unique solutions at the resonance frequencies of
EFIE and MFIE [22]. In the case of MFIE with the RWG func-
tions, there are two significant error sources in the computation
of the scattered fields, namely, the internal resonance and the
inadequate ability of the RWG functions to discretize the MFIE
kernel. For CFIE, the first error disappears but the second error
due to the RWG functions remains through the contribution of
MEFIE in CFIE. Therefore, the improved accuracy of MFIE with
the new set of basis functions is also essential to obtain accurate
results with CFIE.

Finally, for 2-D implementations, it is reported that the error
in the MFIE is due to the identity operator and that it can be
eliminated by a regularization method [23], [24]. In the present
work, we propose a complete change in the set of the basis func-
tions. Extending the regularization to the 3-D MFIE with the
RWG functions is more difficult to achieve but it is still under
investigation.

II. DISCRETIZATION

We consider scattering problems involving 3-D perfectly con-
ducting closed bodies in free space. With the application of the
MOM discretization to the integral equations, N X N matrix
equations

N
§ : E,M,C
Zmn an

n=1

=EMC T m=1,... N 1)

are obtained. In the above, a,, represents the unknown coeffi-
cients of the basis functions and ZE;M-C represents the matrix
elements derived as

Zﬁn:/ d'rtm('r)-/ dr' g(r,7")b,, (1)
S s

n

—%/5 dr[V-tm(r)}/S

for EFIE and

dr’ g(r,r") [V' . bn(r')} 2)
Z,]);[n = / drt,, (1) - b, (1)
Sm
—/ drty,(r) - n X/ dr'b, (') x V'g(r,7") (3)
Sim Sn

for MFIE, where

. N = R = — 4
o) =r (R=lr=r) @)
denotes the free-space Green’s function in phasor notation with

the e~ convention and k is the wavenumber. In (2) and (3),
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b, and t,, represent the set of basis and testing functions, re-
spectively, where n, m = 1,2,..., N and N is the number of
unknowns. The right-hand-side vector in (1) is derived as

vfl = é /5 drt,(r) - Ei(r) 5)

m

and

oM = / drt,,(r) -7 x H(r) (6)
Sm

for EFIE and MFIE, respectively, where E* and H* are the in-
cident fields and 7 is the characteristic impedance of free space.
Finally, CFIE is obtained by the convex combination of EFIE
and MFIE as [25]

26 =aZP +(1—a)ezM

kmn

vS =avf + (1 - a)%v%. @)

III. LINEAR-LINEAR FUNCTIONS

Spatial distributions of the LL functions are depicted in Fig. 1,
where there are two kinds of LL functions defined on the same
edge e,,. The expressions for the LL functions of the first kind
and second kind are given in (8) and (9), respectively, at the
bottom of the page. In (8) and (9), /,,, represents the length
of edge e,,, 7 is the outwardly directed normal, and A,,; and
Ao are respectively the areas of the first (.S,,1) and the second
(Sm2) triangles associated with the edge e, . In Fig. 1, the vertex
locations 71, T2, T3, and 74 are labelled as well as the three
edges of the triangles e,,, ¢, and e, depending on the kind of
the LL function. For both kinds of the LL functions, the spatial
distribution

1) is parallel to one of the side edges e, over both of the

triangles;

2) changes linearly along the edge e, and becomes maximum
at the intersection of that edge with the main edge e, ;
3) is exactly zero at the other side edge e.;
4) has a continuous normal component across the main edge
em:
5) varies linearly at the main edge e,,, in both the perpendic-
ular and tangential directions.
Because of the final property above, we call these functions
the linear-linear type, providing linear variation along the main
edge in both directions. We note that the RWG functions are
constant-linear type since the perpendicular component along
the main edge is constant [2].
The LL functions can actually decompose the corresponding
RWG function as

Fun(r) = f1'(r) + f.%(r)

where f ,}Z represents the RWG function associated with the mth
edge. The charge distribution implied by the expressions in (8)
and (9) is

(10)

Zj{m—l, r e Sml

Vs filr) = Vs flAe) = L,
m m ZA::27 (S Sm2
0, otherwise

Y

which is constant and exactly half of that for the RWG func-
tions [2]. Equation (11) indicates that the LL functions are di-
vergence-conforming since their divergence is finite. Although
this property is not crucial for MFIE, which also allows the use
of the curl-conforming functions depending on the formulation
type [5], divergence-conforming property of the LL functions
becomes essential for the CFIE implementations, where EFIE
requires the evaluation of (2).

In the MLFMA implementations, far-field interactions are
calculated in a group-by-group manner, as presented in the
Appendix. However, the near-field interactions are calculated
directly by evaluating the double integrals in (2) and (3). Sim-
ilar expressions have been investigated in various references

Im R
4(14 2(7'_7'1)'[(1'4—’]‘1) Xn] (TB_Tl) e Sml
L1 ml
Fo T ) (=) Al (s =), 7€ S ®
, " otherwise
Im N
14 s(r—r1)-[(rs —71) xA](ry—71), 7€ Sm1
L2 ml
= ol =) s =) il (re =) 7€ S0 ®

otherwise
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[26]-[28]. In general, examination of (2) and (3) using the
definitions in (8) and (9) shows that two different types of inner
integrals, i.e.

. 1
11:/ dr’ | o' | g(r, ") (12)

Js, /

Yy

. 1
12:/ dr’ | o' | V'g(r,7) (13)

Js, Y

need to be evaluated, where S; represents the surface of the tri-
angle. We assume that a coordinate transformation is applied so
that the triangle is on the z-y plane having a normal in the z di-
rection. For the numerical evaluation of the integral in (12), the
singularity can be extracted and the integral can be rewritten as

1

11:/ dr' | o'
Js, Y

1
1 1
= dr’ 2 I
47rR> +'/St 4 ;l;, 4R

(14)

<g(m") -

where the second term of the right-hand-side is evaluated ana-
lytically [26]. We note that

. , 1 ik
e (g(r’r) 47rR> i (15)
and the first term of the right-hand side in (14) can be evaluated
numerically using a Gaussian quadrature rule [29] or an adaptive
integration method [30].

For the integral in (13), the singularity can be extracted sim-
ilarly as

12:/ dr' | o'
Js, /

It can be shown that

1 RK?
lim V’ ) - — ) = —/— 17
Rlino <g('r, ) 47rR> 8T an
where R is the unit vector defined as
. R r-1
R=—= 18
R |r—7| (18)

and the first term of the right-hand-side in (16) is again evaluated
numerically, while the second term can be evaluated analytically
[27]. The integration in (16) appears in MFIE, which does not
require the evaluation of the inner integrals for the self-inter-
actions of the half basis and testing functions on the triangles.
Therefore, the discontinuity in the limit shown in (17) does not
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pose a numerical problem for the calculations of the inner in-
tegrals. However, to increase the efficiency and obtain higher
accuracy, it is expedient to evaluate the inner integrals in (13) as

/ 1/ ! / 1 k2
Ig:/s dr o/ \Y% <g(r,r)——4ﬂ_R+§R>
¢ Yy
1 1 12 1
—I—/ dr’ | =/ | V/ <—> ——/ dr' | ' | V'R
S, y/ 47TR 81 S, y/
(19)

by extracting two terms from the Green’s function [28]. The
last term of the right-hand-side in (19) can also be evaluated
analytically [26].

IV. RESULTS

First, we consider scattering problems involving a moderately
large sphere of radius a = 6. The sphere is illuminated by a
plane wave and the scattering problems discretized by various
triangulations are solved by different MLFMA implementations
involving the MFIE and CFIE formulations and the RWG and
LL basis functions. In Fig. 2(a), normalized forward-scattered
RCS is plotted with respect to the number of unknowns. Since
the size of the scatterer is fixed with respect to the wavelength,
the number of unknowns is controlled by changing the fineness
of the triangulation. As the number of unknowns increases from
about 50,000 to 500,000, all the computational curves approach
the analytical value obtained by a Mie-series solution. Conver-
gence is significantly faster for both the MFIE and CFIE formu-
lations with the LL functions, and MFIE with the RWG func-
tions has the slowest convergence. We also observe the poor
performance of CFIE with the RWG functions. Since CFIE is
free of any internal-resonance problem, this shows the insuffi-
ciency of the RWG functions in the discretization of the MFIE
kernel compared to the LL functions.

In Fig. 2(a), the comparison of the RWG and LL functions
is performed in a fair manner since the x axis is based on the
number of unknowns and not on the mesh size. In fact, the re-
sults corresponding to the \/10 mesh size are indicated by dots
on the curves; these dots establish that the number of unknowns
is doubled in the LL case compared to the RWG case. On the
other hand, for the same number of unknowns, the triangula-
tion for the LL functions is coarser than the triangulation for the
RWG functions. Coarser mesh leads to more deviation from the
actual geometry for curved surfaces, such as the sphere. Conse-
quently, we obtain improvement with the LL functions despite
a decrease in the quality of the geometry modeling. Since the
computational resources required for the RWG and LL func-
tions are similar for a fixed number of unknowns, the LL func-
tions are superior to RWG functions because of the significant
boost in the accuracy.

Fig. 2(b) offers another view for the accuracy of the RCS
results obtained with the RWG and LL functions. The RCS
error, which is defined as the error in the scattered field in
reference to the exact Mie-series solution, is plotted on a
log-log scale as a function of the number of linear unknowns
per wavelength. Then, the slope of the error curve signifies
the order of convergence of the numerical solution. It is seen
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Fig. 2. (a) Normalized forward-scattered RCS (RCS/ma?) of a sphere of radius @ = 6\ with respect to the number of unknowns. Results are obtained
by MFIE-RWG, CFIE-RWG, MFIE-LL, CFIE-LL, and a Mie-series solution. Dots on the computational curves represent the triangulations with the mesh
size of about A\/10. (b) Log-log plot of the error in the scattered field as a function of the number of linear unknowns per wavelength. Slopes of the

error curves signify the orders of convergence.
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Fig. 3. Bistatic RCS in dB of a sphere of radius a = 6\ on the E-plane with respect to bistatic direction from 0° (backscattering) to 180° (forward-scat-
tering). The curves are obtained by the CFIE implementations employing the RWG and LL functions. The Mie-series result is also plotted for comparisons.

in Fig. 2(b) that the error decreases with higher slopes for the
LL functions than for the RWG functions, demonstrating that
the LL functions provide higher-order convergence. Note that
the slopes of the error curves for the LL functions are not
constant, as opposed to the slopes of the error curves for the
RWG functions. This is because the LL functions reduce the
error so effectively that the residual error is mainly due to the
discretization, i.e., the error in the geometrical representation
of the sphere.

In Fig. 3, we present the bistatic RCS in decibels (dB) on the
E-plane. The sphere is discretized with mesh sizes of about /8

for RWG and A /5 for LL. Then, the numbers of unknowns are
approximately the same for the RWG and LL cases although
the triangulation is coarser for the LL case as discussed above.
In Fig. 3, computational results are obtained with the CFIE
formulation, and the analytical results are also displayed. The
plot is divided into two parts with different scales of the y
axis for clarity of the details. For the bistatic directions from
0° (backscattering) to 135°, the LL functions unambiguously
provide more accurate results. In the range from 135° to 180°
(forward-scattering), the improvement is not evident in the dB
scale. On the other hand, we plot the relative error in Fig. 4,
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Fig. 4. Relative error as defined in (20) for the bistatic RCS depicted in Fig. 3.
The error for the RWG functions is significantly larger than the error for the LL
functions, especially in the forward-scattering direction, where the RWG error
is above 4%.

where the large error in the forward-scattering direction is
visible. We define the relative error as

eret(¢) = maxy [Eq(¢)] (20)
where E/, and E.. are the complex-valued scattered fields in the
far zone that are obtained analytically (reference) and computa-
tionally, respectively. The error with the LL functions is consis-
tently lower and under 0.2%. The error with the RWG functions
peaks in the forward-scattering direction, where it is above 4%.
This error is not acceptable since the near-field and far-field in-
teractions of the matrix equation are calculated with a maximum
error of 1% and 0.1%, respectively. Furthermore, the relative
residual error in the iterative solution is 10~ so that we ex-
pect the total computational error to be 1% at most. In the RWG
case, the error due to the simultaneous discretization of the ge-
ometry and the current distribution is significant and dominates
the computational error. As Fig. 4 suggests, the excessive error
due to the discretization with the RWG functions can be easily
prevented by replacing them with the LL functions.

Finally, we present the results of scattering problems in-
volving a relatively long object with sharp edges and corners
as described in Fig. 5. The scatterer is composed of planar
surfaces only, and therefore, its triangulation does not lead to a
deviation from the actual geometry, as opposed to the sphere.
The object is illuminated by a plane wave propagating in the
—y direction and we calculate the forward-scattered RCS at
4 GHz by employing the MFIE and CFIE formulations with the
RWG and LL functions. We apply different discretizations with
the triangulation size varying from 1.5 to 0.375 cm, leading to
total of 15,340 to 238,672 triangles, respectively. We also note
that A/10 triangulation corresponds to 91,782 edges on the
object. Fig. 6 presents the forward-scattered RCS values with
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Fig. 5. A scatterer composed of planar surfaces connected with sharp edges
and corners.
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Fig. 6. Forward-scattered RCS values (rn?) with respect to the number of un-
knowns for the scatterer in Fig. 5 illuminated by a plane wave propagating in
the —y direction at 4 GHz. The curves are obtained with the CFIE and MFIE
implementations employing the RWG and LL functions.

respect to number of unknowns; we observe that all four curves
tend to converge to each other as the mesh gets denser, the
number of unknowns increases, and the computations become
more accurate. However, the convergence rate depends on the
type of the formulation and the basis function. MFIE with
the RWG functions has the slowest convergence while CFIE
with the RWG functions shows relatively poor performance
compared to the MFIE and CFIE formulations employing the
LL functions. As in the case of the sphere problem, we observe
that the LL functions provide significantly improved accuracy
for both MFIE and CFIE solutions of the problem.

V. CONCLUSION

The significant error in MFIE and CFIE due to the RWG
functions can be easily avoided by employing the LL functions
for these equations. Accuracy is improved without increasing
the computational costs. Since the LL functions are strongly
related to the RWG functions, they can be implemented with
simple modifications on the existing codes employing the RWG
functions.
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APPENDIX
EMPLOYING THE LL FUNCTIONS IN MLFMA

For the far-field interactions in MLFMA, the matrix elements
are derived as [25]

250 = oy ik / PEFE(k)T, (k. D), D - k) - FE™ (k)
21
for EFIE and
, k2
Zﬁ;[ _ /dszJ\[reC( )TL(k |D| D k) A[rad(k)
(4m)? "
(22)

for MFIE, where k is the angular direction on the unit sphere,
and

L
Ty(k, D). D k) =" d@+ )P (kD)P(D - k) (23)
=0

is the translation function written in terms of the spherical
Hankel function of the first kind h(l) and Legendre polynomial
P;.In (21) and (22), FE "¢ and FM "¢ represent the receiving
patterns of the mth testing functlon with respect to a close
point C' for EFIE and MFIE, respectively. Similarly, F£;"*!
and Fc,na are the radiation patterns of the nth basis functlon
with respect to a close point C’. The translation function in (23)
evaluates the interaction between the basis and testing groups
that are located at C’ and C, respectively, and separated by

= |DID=rc—rcr. (24)
As an example, we consider the LL functions of the first kind
and take only the first triangles of the basis and testing functions
to derive the radiation and receiving patterns as follows:
EFIE and MFIE radiation patterns:

FE™d(k) = /S dr' e R T =TeD (1 — k) - b, (+')
nl
ln 77 N
= W(I— kk) . (T3 — 7'1) [(’I‘4 — 7'1) X 'n,]
) / d’reiik'("'/*"'c’)(r' —r)
Sn1
=Foni (k). (25)

EFIE receiving pattern:

dre® T (T — k) - t,,,(r)

ml

Fg;ch(’;’) = /s

lm 71 A
= m([- kk) . (Tg — Tl) [(’I‘4 — Tl) X ‘n,]
. / dreik'("'_rc)(r —71)
Sm1

= [FE)] 26)
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MFIE receiving pattern:
Flrec(k) = —k x / dre® =T () x
Sm
lm 7 A
:—mk X [(’I'g —'r]_) X n]
[(ra —r1) x 71 / dreik(T- T (r —1y).
27

In (26), the superscript “x” denotes complex conjugation and the
final equality holds when the sets of basis and testing functions
are the same according to a Galerkin scheme. In (25)—(27), the
integrals are evaluated analytically. These integrals are the same
as those involved in the RWG implementations. The derivations
related to the second triangles and for the LL functions of the
second kind are similar.
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