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Abstract—We consider fast and accurate solutions of scattering
problems involving increasingly large dielectric objects formulated
by surface integral equations. We compare various formulations
when the objects are discretized with Rao-Wilton-Glisson func-
tions, and the resulting matrix equations are solved iteratively
by employing the multilevel fast multipole algorithm (MLFMA).
For large problems, we show that a combined-field formulation,
namely, the electric and magnetic current combined-field integral
equation (JMCFIE), requires fewer iterations than other formu-
lations within the context of MLFMA. In addition to its efficiency,
JMCFIE is also more accurate than the normal formulations
and becomes preferable, especially when the problems cannot be
solved easily with the tangential formulations.

Index Terms—Dielectrics, iterative solutions, multilevel fast mul-
tipole algorithm (MLFMA), surface integral equations.

1. INTRODUCTION

URFACE integral equations (SIE) are commonly used to

formulate electromagnetic scattering problems involving
three-dimensional dielectric objects with arbitrary shapes [1].
Using the equivalence principle, electric and magnetic currents
are defined on the surface of the scatterer. By means of a simul-
taneous discretization of the geometry and the integral equa-
tions, equivalent surface currents are expanded in a series of
basis functions. Then, the coefficients of the basis functions are
calculated by solving the dense matrix equations, which are ob-
tained by testing the boundary conditions for the electric and
magnetic fields on the surface of the object [2]. Many dielec-
tric formulations are derived by using various combinations of
the boundary conditions, testing schemes, and scaling opera-
tions [3]-[16]. Some of these methods are known to be stable
and provide accurate results, although their performances may
vary significantly in terms of efficiency and accuracy.
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For homogeneous dielectric objects, surface formulations
are generally constructed by combining tangential (T) and/or
normal (N) equations. In the T equations, boundary conditions
are tested directly by sampling the tangential components
of the fields on the surface. In the N equations, however,
fields are tested after they are projected onto the surface via
a cross-product operation with the outward normal vector. In
both cases, we assume a Galerkin scheme using the same set of
functions to expand the current densities (basis functions) and
to test the boundary conditions (testing functions). Considering
the boundary conditions for the electric and magnetic fields
separately, we can derive four different integral equations,
namely, the tangential electric-field integral equation (T-EFIE),
the normal electric-field integral equation (N-EFIE), the tan-
gential magnetic-field integral equation (T-MFIE), and the
normal magnetic-field integral equation (N-MFIE) [9]. These
equations are derived for both the inner and outer regions and
can be combined in various ways. To avoid numerical internal
resonances, it is preferable to derive a combined-field integral
equation (CFIE) by linearly combining EFIE and MFIE [§].
For example, a combination of T-EFIE and T-MFIE leads to
a T-T-CFIE formulation. Similarly, one can obtain T-N-CFIE
(T-EFIE+N-MFIE), N-T-CFIE (N-EFIE+T-MFIE), and
N-N-CFIE (N-EFIE4+N-MFIE) by combining EFIE and MFIE
appropriately. In these formulations, equations obtained for the
inner and outer regions are solved simultaneously to obtain the
two sets of unknowns, i.e., electric and magnetic currents. We
can also derive various other formulations involving triple com-
binations, such as TN-N-CFIE (T-EFIE+N-EFIE+N-MFIE),
for more stable solutions [9].

CFIE formulations described above are based on a linear
combination of EFIE and MFIE in the same way for each
medium, while it is also possible to use different combinations
for the inner and outer regions [10]. Alternatively, we can
linearly combine the inner and outer equations while solving
EFIE and MFIE simultaneously. In this class of formulations,
Poggio-Miller-Chang-Harrington-Wu-Tsai (PMCHWT) [1],
[4], [5] and Miiller [3] formulations are well known and com-
monly used in the literature. Both T and N versions of these
formulations are possible, but only the tangential PMCHWT
(T-PMCHWT) formulation and the normal Miiller formulation
(NMF) are stable, whereas the normal PMCHWT and the
tangential Miiller formulations are usually unstable [11], [13].
Recently, remarkable efforts have been made to further improve
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the dielectric formulations by devising novel combinations of
the integral equations. For example, the combined tangential
formulation (CTF) is similar to the T-PMCHWT formulation,
but it involves a careful (and improved) scaling of T-EFIE and
T-MFIE [14]. A similar combination of N-EFIE and N-MFIE
leads to the combined normal formulation (CNF) [14]. Finally,
the modified NMF (MNMF) is obtained by normalizing the
equations in NMF to produce better-conditioned matrix equa-
tions [13].

In this paper, we consider the iterative solution of relatively
large dielectric problems using the multilevel fast multipole al-
gorithm (MLFMA) [17]. We compare both the accuracy and
efficiency of the solutions obtained by using different formula-
tions. Specifically, we consider CTF, CNF, MNMF, and a formu-
lation called the electric and magnetic current combined-field
integral equation (JMCFIE) [12], which is derived by combining
CTF and CNF. These formulations have recently been investi-
gated for the solution of scattering problems involving relatively
small objects [14]. However, one needs to compare them also
when the problem size is large and the solution is performed it-
eratively. In general, our results show that JMCFIE becomes the
most efficient formulation for large problems since it requires
fewer iterations than other formulations. In addition, scattered
fields obtained by JMCFIE are more accurate than those ob-
tained by the N formulations, such as CNF and MNMF.

This paper is organized as follows. In the next section,
we summarize surface formulations of dielectric problems.
Section IIT presents accurate and robust discretizations of the
surface integral equations. Then, Section IV discusses how to
calculate the far-field interactions efficiently using MLFMA,
and Section V presents block-diagonal preconditioning to
accelerate the convergence of iterative solutions. Finally, nu-
merical results are presented in Section VI, followed by our
concluding remarks in Section VIIL.

II. SURFACE FORMULATIONS OF DIELECTRIC PROBLEMS

To derive the surface integral equations, operators for the out-
side (I = 1) and inside (I = 2) the object are defined as

T{X}(r) = ik /S i’ {X(r')+ki?v'.X(r')v a(rr)
)

XN = [ X ) x Vi) @

PV,s
where PV indicates the principal value of the integral, X (r)
is either the equivalent electric current J(r) or the equivalent
magnetic current M (r) on the surface of the object S, k; is the
wavenumber associated with medium /, and

exp (ikiR)
4R

denotes the homogeneous-space Green’s function. Using the
operators in (1) and (2), the T formulations can be derived as
(14]

gi(r.7') = (R=l|r—7')) ©)

—t- [any "(K1 + 0.5Z,) + byy ' (K2 — 0.5Z,,)] {M}(r)
+t-[aTi + VDI }(r) = —an; 't E'(r) )

i' [0771 (’Cl + 0.5In,) + dUQ(ICQ — 05],,)]{:]}(7‘)
+t- [Ty + dBI{M}(r) = —emt - H'(r) )

where E'(r) and H' (r) are the incident electric and magnetic
fields, 7; is the impedance of medium /, and # is any tangential
vector at the observation point 7 on the surface. In (4) and (5),
Z.{X}(r) = n x X(r), where n is the outward normal vector
at the observation point. Among infinitely many possibilities for
the scalars {a, b, ¢, d}, several choices provide stable formula-
tions, such as

a=n,b=mn, c=1/n,d=1/n (6)
and
a=b=c=d=1 @)

which lead to the T-PMCHWT formulation [1], [4], [5] and CTF
[14], respectively. Matrix equations obtained from CTF have
identical diagonal partitions!, and they are usually better condi-
tioned than the matrix equations obtained from the T-PMCHWT
formulation [14].

Different from the T formulations, the N formulations are de-
rived as

7 X [a(K1 + 0.5Z,,) — b(Ko — 0.5Z,)[{J }(r)

+ 0 x [an; 'T1 — by, '] {M}(r) = —an x H'(r) (8)
7 X [¢(Ky + 0.5Z,) — d(Ko — 0.5Z,)[{M}(r)

+ 2 X [—em Ty + dpp I{ T} (r) = i x E'(r) ©)

where the choices

a=p1, b=p2, c=c, d=¢ (10)

and
a=b=c=d=1 (11

lead to NMF [13] and CNF [14], respectively. Using a Galerkin
scheme, matrix equations obtained by using the N formulations
are usually better conditioned than those obtained with the T
formulations. This is because the N formulations involve well-
tested identity operators, which appear on the diagonal parti-
tions of the matrix equations. Finally, choosing the scalars as

a=p1/(p + p2), b= p2/(p1 + p2),
c=¢€1/(e1+€), d=ex/(e1+ €2) (12)

in (8) leads to MNMF, which usually produces better-condi-
tioned matrix equations than NMF [13].

When the scatterer is a perfect electric conductor (PEC), the
operators associated with the “inner” medium (! = 2) and
the magnetic current disappear in the T and N formulations in
(4)—(5) and (8)—(9). Then, T-EFIE and T-MFIE in the T formu-
lations are decoupled, and they can be solved independently to
obtain the induced electric current on the surface of the object.
Although T-MFIE is extremely unstable, T-EFIE is stable and
is commonly used in the literature [19]. Similarly, in the N for-
mulations, N-MFIE (stable) and N-EFIE (unstable) are decou-
pled for PEC objects. Finally, we also consider a linear combi-
nation of CTF and CNF, which is denoted as JMCFIE [12], for
dielectric objects. We note that IMCFIE reduces to two forms of

IDiscretization of dielectric formulations leads to matrix equations with 2 x 2
partitions as detailed in Section III.



178 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 57, NO. 1, JANUARY 2009

CFIE for PEC objects, while only one form involving T-EFIE
and N-MFIE is stable.

In this paper, we compare CTF, CNF, MNMF, and JMCFIE
for the solution of scattering problems involving only homoge-
neous dielectric objects. However, these formulations can easily
be extended to those problems including composite structures
with multiple dielectric and PEC regions. The generalized pro-
cedure consists of the following main stages.

¢ Formulate an equivalent problem for each non-PEC do-
main by defining equivalent currents and applying the
boundary conditions on the surfaces.

e Perform the discretization process detailed in Section III
for each domain by employing oriented basis and testing
functions.

* Combine the related unknowns on the boundaries and the
corresponding equations to form a single matrix equation
to solve.

This generalized procedure is extensively discussed in [18] in
the context of a EFIE-CFIE-PMCHWT formulation, together
with various techniques to handle the junctions, i.e., those loca-
tions where three or more domains intersect.

III. DISCRETIZATION OF THE INTEGRAL EQUATIONS

For the numerical solution of surface integral equations, we
discretize the surfaces by using small planar triangles and em-
ploy Rao-Wilton-Glisson (RWG) [19] basis functions to ex-
pand the unknown surface current densities. Using a Galerkin
scheme, we also choose the testing functions as RWG. Then,
the interaction between the mth testing function &, (r) and the
nth basis function b, () are defined for different operators (K
and 7") and equation types (T or N) as

KlT[m,n]:/ d'rtm(r)-/ dr'b, (v )x V' g (r,7")  (13)
S PV,S

KlN[m,n]:/ d'rtm('r)-'fz/ dr'b, (r')x V' gi(r,7") (14)
s PV,S,

m

T, n] =iy /S drt,n(r)- / drb, (')g1(r.7)
/drV’ (Vv
TN [m,n] = ik, / drt,, (r) - X /9 dr'b,, (r')gi(r,7")

__/ drt,,

where S,,, and S, represent the spatial supports of &,,(r) and
b, (r), respectively. The interactions are calculated for m,n =
1,2,..., N, where N is the number of RWG functions used to
expand the electric and magnetic currents. Accurate calculations
of the integrals in (13)—(16) can be summarized as follows.
» Using RWG functions, the interactions in (13) and (14) can
be modified as [20]

"gi(r,r’)
(15)

/ 0N b ()Y i ()
(16)

K{'[m,n)] :/ d'rtm('r)-bn('r)x/ dr'V'gi(r,7) (17)
s PV,S,

m

Ki¥ o) = [ dr(tn(r)xa)b,n)x [ ar' V)

- Sm - vasn
(18)

where the outer integrals are evaluated numerically by em-
ploying a Gaussian quadrature rule [21]. Only the principle
value of the inner integral is required, so that (17) and (18)
are not evaluated for the self interactions of the triangles.
However, the value of the inner integral is infinite when the
testing point is on the edge of the source triangle. Since the
singularity is logarithmic and it is quite mild, interaction
of two near-neighboring (touching) triangles can be calcu-
lated accurately by sampling the observation points strictly
inside the testing triangle. In addition, the accuracy and ef-
ficiency of the calculations can be improved by extracting
the singularity, as detailed in [22].

* Using divergence-conforming RWG functions, the interac-
tion in (15) is modified as

T7 [, n] = ik / rtu(r) - / b () (r, )

——/ drv - t,, / dr'V’ - b

by moving the differential operator onto the testing func-
tion in the second term. This is commonly practiced for
T-EFIE formulations of PEC objects [19]. For the second
term of (16), however, the differential operator is kept on
the Green’s function. Then, this term is calculated simi-
larly to the interaction in (14). In contrast to (14), however,
(16) should also be calculated for the self interactions of
the triangles.
e The inner integrals in (13)—(16) are calculated as

I= /5 dr' f(r ) (r,7)

i / P exp(ik}lzR) -1

(g (r,7") (19)

/ ar'f E =h+l (20)
and
I= / dr'V' gi(r, ")
Sn
_ i / '’ <€Xp(ik1R) -1+ 0~5/€l2R2>
R
1 2
+—/)dv(_> k/(WVR
Sn

_Il +12+13 (21)

where f(r') = {1,2’,y'} in (20). We perform coordinate
transformations for efficiency [23]. In (20) and (21), we

note that
. exp(ikiR) -1 .
N @
’ -1 . .2 P2
lim V’ <exp(‘klm + 05k R ) =0. (23
R—0 R

Therefore, I; and I; can be calculated numerically using
an adaptive integration method [23] or a Gaussian quadra-
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ture rule. The remaining terms, i.e., I2, I, and I'5 are eval-
uated analytically [20], [24], [25].
The processing time for the calculation of the interactions in
(13)—(16) depends on the medium parameters. When the rela-
tive permittivity or permeability of a medium increases, it be-
comes difficult to evaluate the interactions since the integrands
become more oscillatory. In such cases, accurate calculations
of the interactions require extracting more terms to smooth the
integrands or increasing the number of sampling points for the
numerical integrations.
Calculating the interactions in (13)—(16), 2N x 2N matrix
equations are constructed as

o ) o] =L
Zy ary | |y
where a; and aj; are the coefficients of the RWG functions
expanding the electric and magnetic currents, respectively, and
v'S represents the excitation vectors obtained by testing the in-
cident fields. Upper partitions of the 2N x 2N matrix, i.e., Z1;
and Z 15, are obtained by the discretization of (4) or (8), or their
combination, depending on the type of the dielectric formula-
tion. Similarly, lower partitions Z; and Z», are obtained from
(5) or (9), or their combination.

In MLFMA, there are O(N) near-field interactions, which
are calculated directly during the initial setup stage of the pro-
gram and stored in memory, to be used multiple times during the
iterations. When the problem size is large, the setup of MLFMA
usually requires negligible time, compared to the iterative solu-
tion part. Therefore, the long setup time of IMCFIE, compared
with CTF, CNF, and MNMEF, is negligible when the overall time
is considered for large problems. However, near-field interac-
tions require a significant amount of memory. With nonidentical
diagonal partitions, i.e., Z1; # Z22, MNMF requires larger
memory (4/3 that of others) to store the near-field interactions.

(24)

IV. CALCULATION OF INTERACTIONS BY MLFMA

For the solution of scattering problems involving large di-
electric objects, we employ MLFMA to efficiently perform the
matrix-vector multiplications (MVMs) required by the iterative
solvers in O(N Np,) time using O(N N, ) memory, where N, =
O(log N) is the number of levels [26]. We construct a tree struc-
ture of Ny, levels by placing the scatterer in a cubic box and
recursively dividing the computational domain into sub-boxes
(clusters). Then, MLFMA calculates the interactions between
the radiating (basis) and receiving (testing) elements, which are
far from each other, in a group-by-group manner consisting of
three stages called aggregation, translation, and disaggregation
[26]. In each MVM, these stages are performed on the tree struc-
ture in a multilevel scheme.

By factorizing the Green’s function and performing a diago-
nalization [27], the interactions in (13)—(16) can be rewritten as

K['[m,n) Fﬁ’g(’“l)
5\* . 2 K.N

K[ [m,n] _ ik /d212: F, o (ki)

T [m, ] ar ) Fol (k)

7.l Fi2 (k)

'OZLI (kl,RCCI)SCln(kl) (25)

when the testing and basis functions are far from each other. In
(25), the integral is evaluated on the unit sphere, k; = kk;, and

L,
ar, (ki, Roor) = Z’it(% + D)AM (ki Roer ) P(Roc: - k)
t=0

(26)

is the translation operator expressed in terms of the spherical
Hankel function of the first kind hgl) and the Legendre polyno-
mial P;. The translation operator in (26) is employed to trans-
late the radiation pattern of the nth basis function in cluster C’,
i.e., Scin(ki), into incoming fields for the testing functions in
cluster C'. Then, the incoming fields are received by using the
receiving pattern of the mth testing function, i.e., F'r, (k). The
distance between the clusters is represented by the vector

Rccr = ReorReer =1 — e (27)

where r¢ and r¢: are reference points of the clusters C' and C’,
respectively.

The radiation pattern of a basis function b, (r) with respect to
a reference point r¢ can be written as

Sc’n(kl)

- / dr' expl[—iky - (r' — re)(I— k) -bu (') (28)
JS,

where I denotes the 3 x 3 unit dyad. In contrast to radiation
patterns, receiving patterns depend on the type of the operator
and the equation. Using a Galerkin scheme, the receiving pattern
of a testing function ¢,, (r) with respect to a reference point r¢
can be derived for different operators (K and 7") and equation
types (T and N) as

Fﬁ’g(kl) = —kx / drexplik; - (r — ro)]tm(T)
S

= —.’A“ x {Scm(ki)}t*
Fig(kz) = /S dr explik; - (r — ro)|(T — kk) - £, (7)

(29)

= {Scm(k)}” (30)

FIN (k) = / drexplik; - (1 —ro)|(I — kk) -t (r) X 20
Sm

3D

FEN (k) = —k x / dr expliky - (r — 10)] X £ (1) x &
Som

=kx {FT2 (k) }
where “*” represents the complex-conjugate operation. Using
the RWG functions, the integrals in (28)—(32) can be calculated
analytically.

Similar to the near-field interactions, the radiation and re-
ceiving patterns of the basis and testing functions are calculated
and stored in memory before the iterations. Since the patterns
have only # and ¢ components, they are stored in spherical co-
ordinates. Using CTF, only one set of patterns is required for
each medium (I = 1,2), because both of the receiving patterns,
Fﬁg(kl) and Fi’g(kl), can be obtained from the related ra-
diation pattern S¢., (k;), as indicated in (29) and (30). In other

(32)
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words, receiving operations during the MVMs can be performed
by using the radiation patterns (instead of the receiving patterns)
with small modifications involving a complex conjugation and a
cross product with the angular direction k. However, CNF and
MNMF require two sets of patterns, as the receiving patterns
Fﬁ’g(kl) and F;év(kl) can be derived from each other, but
they cannot be obtained directly from the related radiation pat-
tern S (ki) in spherical coordinates. Finally, IMCFIE also re-
quires two sets of patterns, considering all relations in (29)—(32).
In MLFMA, the interactions in (25) are calculated in a multi-
level scheme. During the aggregation process, radiation patterns
of the clusters are calculated from the bottom to the top of the
tree structure. We sample the fields uniformly in the ¢ direc-
tion and use Gauss-Legendre points in the é direction. Then, a
total of (L; + 1) x (2L; + 2) samples are required for each
cluster, where L; is the truncation number for the series in (26).
To determine the value of L; for each level, we use the excess
bandwidth formula for a one-box-buffer scheme, i.e.,

Ly = 1.73ka + 2.16(do )3 (kja)'/? (33)

where a is the box size, and dj is the number of accurate digits
[28]. Due to the oscillatory nature of the Helmholtz equation,
the truncation number and the sampling rate for the radiation
and receiving patterns depend on the size of the clusters with
respect to the wavelength associated with the medium. We em-
ploy local Lagrange interpolation methods to match the different
sampling rates of consecutive levels [29]. After the aggregation
stage, translations are performed to obtain the incoming fields
for all clusters. Using cubic clusters, there are O(1) different
translations in each level, due to the symmetry [30]. Although
using the symmetry reduces the number of translation operators
significantly, we also need interpolation methods to calculate
these operators in O(N) time during the setup stage [31]. After
the translations, the disaggregation stage is performed from the
top of the tree structure to the lowest level using anterpolations
[32]. Finally, the angular integrations in (25) are computed to
complete the matrix-vector multiplications.

V. BLOCK-DIAGONAL PRECONDITIONING

To reduce the number of iterations required for the solutions,
we apply two types of efficient preconditioners, namely, a two-
partition block-diagonal preconditioner (2PBDP) and a four-
partition block-diagonal preconditioner (4PBDP). Matrix equa-
tions in (24) can be preconditioned as

P {Zn Zm} _ {aJ} ey {vl}

. 34
Zo Loy ay vy° (34)

where P is a preconditioner matrix. In both 2PBDP and
4PBDP, we use the self interactions of the lowest-level clusters
of MLFMA, which are calculated directly during the setup
stage of the algorithm. In 2PBDP, we extract the self interac-
tions only from the diagonal partitions of the impedance matrix
(le and 222) as

(35)

= P 0
PZPZ[ " }

0 Py

where P11 and P»; are block-diagonal matrices. For 4PBDP,
however, we also consider the self interactions in the non-diag-
onal partitions (Z12 and Z21) so that

(36)

Since Py, and P»; are also block-diagonal matrices, the inverse
of P4p can be evaluated efficiently as [33]

p—1 Bn B12
Pe =5 by 7
where
Biu=P. [I+P-§"-Pu-P| 09
By =Py P, 57 (39)
By = -8 ' Py - Py} (40)
By =8" (41)

and S = Py — Py - Pl_ll - P15 is the Schur complement of
Pq1. As presented in Section VI, 2PBDP and 4PBDP reduce the
iteration counts significantly, especially for JIMCFIE.

VI. RESULTS

In this section, we investigate the efficiency and accuracy of
the solutions when the scattering problems are formulated by
CTF, CNF, MNMF, and JMCFIE. For all solutions, near-field
interactions are calculated with at most 1% error, and far-field
interactions are computed by MLFMA with three digits of ac-
curacy. Tree structures are constructed by fixing the size of the
lowest-level clusters to 0.25); and using a bottom-up strategy.

A. Efficiency of the MLFMA Solutions

First, we compare the memory required for the MLFMA so-
lutions of various formulations. We consider a dielectric sphere
with a radius of 0.3 meters located in free space and illuminated
by a plane wave propagating in the z direction with the elec-
tric field polarized in the x direction. The radius of the sphere
changes from 0.75\; to 7.5)\1, where \; is the wavelength in
free space. Discretizations with A;/10 triangulations lead to
4142 and 412,998 unknowns, respectively, for radii 0.75)\; and
7.5A1. The relative permittivity of the sphere is ¢,, = 2.0. Fig. 1
presents the peak memory required for the MLFMA solutions
with respect to the number of unknowns. The peak memory de-
pends on the formulation type mainly because of the different
storage requirements for the near-field interactions (identical
or nonidentical diagonal partitions) and the far-field patterns
of the basis and testing functions (one set or two sets of pat-
terns). Having identical diagonal partitions and using one set
of far-field patterns, CTF requires less memory than the other
formulations. CNF and JMCFIE require two sets of far-field
patterns, and their memory usage is larger than CTF. Finally,
MNMF has nonidentical diagonal partitions and requires two
sets of far-field patterns, leading to a larger memory usage than
CTF, CNF, and JMCFIE. Although the memory is not critical for
small problems, it becomes more important as the problem size
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NUMBER OF CGS ITERATIONS TO REDUCE THE RESIDUAL ERRORTQQEEJIIO*a FOR THE SOLUTION OF SPHERE PROBLEMS WITH €,. = 4.0

Sphere Problems CTF CNF MNMF JMCFIE
Radius | Unknowns | NP | 2PBDP | 4PBDP | NP | 2PBDP | 4PBDP | NP | 2PBDP | 4PBDP | NP | 2PBDP | 4PBDP
0.75X1 4152 102 344 325 48 47 32 34 26 19 46 34 28
1.00A\1 7446 245 623 557 87 52 42 46 30 30 94 48 37
1.50\1 16,728 259 1145 959 184 115 76 66 51 32 129 77 63
2.00\1 29,742 213 1317 1183 272 182 90 66 54 46 122 86 54
3.00A\1 65,724 678 NC NC 305 278 128 144 111 108 173 189 113
6.00A1 264,006 417 NC NC NC 1583 755 332 234 174 414 276 148
7.50\1 412,998 369 NC NC 1153 1005 468 380 303 321 269 230 123
NP: No preconditioner, 2PBDP: Two-partition block-diagonal preconditioner, 4PBDP: Four-partition block-diagonal preconditioner.

Sphere (sr =2.0)

3
5 10°¢
=
>
o]
£
2
2
x 10°}
[0
o
x CTF
x o MNMF
. —— CNF or JMCFIE
10 ‘ ‘
10* 10°

Number of Unknowns

Fig. 1. Peak memory required for the MLFMA solutions of scattering problems
involving a sphere with a relative permittivity of 2.0. The radius of the sphere is
in the range from 0.75A; to 7.5, where A; is the wavelength in free space.

grows. For example, when the radius is 7.5\, the peak memory
is 2370 MB and 3385 MB for CTF and MNMF, respectively.

Next, we focus on the processing time required for the

MLFMA solutions of dielectric problems. Once again, we con-
sider the solution of scattering problems involving a dielectric
sphere with a radius of 0.3 meters located in free space and illu-
minated by a plane wave propagating in the z direction with the
electric field polarized in the z direction. As the problem size
gets larger, the setup time becomes negligible, compared with
the time required for the iterations. Then, the processing time of
the MLFMA solutions is directly proportional to the iteration
counts. Table I lists the number of conjugate-gradient-squared
(CGS) iterations to reduce the residual error below 10~3 when
the radius of the sphere is in the range from 0.75\1 to 7.5\
and ¢, = 4.0. For all formulations, we apply two efficient
preconditioners, i.e., 2PBDP and 4PBDP, in addition to the
no-preconditioner (NP) case. Our comments for the iteration
counts in Table I are as follows.

* Preconditioning the matrix equations with 2PBDP and
4PBDP does not accelerate the iterative convergence for
CTF. In fact, these low-cost preconditioners decelerate the
convergence and increase the number of iterations for this

formulation. Especially for large problems, convergence
cannot be achieved within 2000 iterations, when 2PBDP
and 4PBDP are used for CTF. These are denoted as “no
convergence (NC)” in Table I. A negative effect of the
efficient preconditioners was also observed for other T
formulations, such as T-EFIE for the solution of PEC
objects [34]. However, 2PBDP and 4PBDP significantly
accelerate the iterative convergence for the N formulations
and JMCFIE.

* Although they are both N formulations, iteration counts
for CNF and MNMF differ significantly; convergence is
consistently faster for MNMF. For large problems, CNF
fails to provide quick convergence even when compared to
CTF without preconditioning.

* Using 4PBDP provides faster convergence than 2PBDP,
especially for JIMCFIE. This is due to the strong non-di-
agonal partitions of JMCFIE, in addition to its strong diag-
onal partitions involving well-tested identity operators.

* For small problems, iteration counts for MNMF are lower
than JMCFIE. This can be observed in Table I, when the ra-
dius of the sphere is in the range from 0.75); to 3);. For
larger problems, however, the convergence for JMCFIE be-
comes faster than the convergence for MNMF. When the
radius of the sphere is 7.5\, iteration counts are consis-
tently lower for JMCFIE with and without preconditioning.

To further compare the dielectric formulations in terms of ef-

ficiency, we consider scattering problems involving a dielec-
tric cube with edges of 4); located in free space. Similar to
sphere problems, the cube is illuminated by a plane wave prop-
agating in the z direction with the electric field polarized in the
x direction. Discretization of the problem with \; /10 triangu-
lation leads to 64,548 unknowns. The relative permittivity of
the cube changes from 2.0 to 16.0. Fig. 2(a) depicts the number
of CGS iterations with respect to the contrast of the cube, i.e.,
(&, — 1), to reduce the residual error below 10~3. For small con-
trasts, CTF has the slowest convergence, while the N formula-
tions, i.e., CNF and MNMF, offer the fastest convergence. As the
contrast increases, however, convergence of CNF decelerates
significantly and this formulation has the poorest convergence
when ¢, = 16.0. Fig. 2(a) also shows that MNMF provides
the most efficient solutions and the number of iterations for this
formulation is almost constant when the contrast increases from
3.0 to 15.0. Fig. 2(b) presents the iteration counts when 4PBDP
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Fig. 2. Tteration counts for the solution of scattering problems involving a cube
with edges of 4A;, where A, is the wavelength in free space. The relative per-
mittivity (€,) of the cube changes from 2.0 to 16.0. Iterative solutions are per-
formed by CGS (a) without preconditioning and (b) accelerated with 4 PBDP.

is used to accelerate the convergence of the solutions. Similar
to sphere problems, CTF solutions are decelerated with 4PBDP
and the convergence cannot be achieved within 2000 iterations
for contrasts from 3.0 to 11.0. Comparing Fig. 2(b) with (a), we
also observe that 4PBDP significantly reduces the number of it-
erations for CNF and JMCFIE, but it provides less improvement
for MNMF. Using 4PBDP, MNMF still has the lowest iteration
counts, but the efficiency of JMCFIE becomes close to the effi-
ciency of MNMF.

Table I and Fig. 2 show that MNMF and JMCFIE are the
most appropriate formulations for the efficient solutions of
large dielectric problems. These formulations are further inves-
tigated by considering both various preconditioning schemes
and different iterative algorithms to improve the efficiency
of the solutions. As an example, Fig. 3 presents the iteration
counts for the sphere problems when ¢, = 2.0. In addition to
CGS with no preconditioning (NP) and with 4PBDP, we also
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Fig. 3. Iteration counts for the solution of scattering problems involving a
sphere with a relative permittivity of 2.0, when the problems are formulated
with (a) MNMF and (b) JMCFIE. The radius of the sphere is in the range from
0.75A: to 7.5, where A, is the wavelength in free space.

present the solutions obtained by employing a biconjugate-gra-
dient-stabilized (BiCGStab) algorithm. BiCGStab is known to
provide rapid convergence for N and combined formulations
[35]. Fig. 3 shows that the number of iterations is reduced for
both MNMF and JMCFIE, if BiCGStab is employed, instead
of CGS.

Finally, MNMF and JMCFIE are compared for the solution
of very large dielectric problems. Fig. 4(a) presents the itera-
tion counts for the sphere problems (e, = 2.0), when the so-
lutions are performed by BiCGStab accelerated with 4PBDP.
This time, the frequency is extended to 20 GHz and the ra-
dius of the sphere grows up to 20;. At 20 GHz, discretization
of the sphere with A;/10 triangulation leads to 2,925,708 un-
knowns. Fig. 4(a) shows that solutions with JMCFIE become
significantly faster than MNMEF for large problems. Using JM-
CFIE, we are able to solve a 3-million-unknown problem, which
is one of the largest integral-equation problems involving di-
electric objects ever solved. Fig. 4(b) presents the results of a
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Fig. 4. Tteration counts for the solution of scattering problems involving (a) a
sphere with a relative permittivity of 2.0 and (b) a cube with a relative permit-
tivity of 4.0. The radius of the sphere is in the range from 0.75A; to 20, and the
edge length of the cube is in the range from A; to 20X, where A; is the wave-
length in free space. Iterative solutions are performed by employing BiCGStab
accelerated with 4 PBDP.

similar experiment, where scattering problems involving a di-
electric cube (¢, = 4.0) is solved by using BiCGStab accel-
erated with 4PBDP. The size of the cube changes from A; to
201, where \; is the wavelength in free space. The number
of unknowns due to A;/10 triangulations is in the range from
4104 to 1,624,320. Iteration counts required for both 10~2 and
10~3 residual errors are plotted with respect to the number of
unknowns. Similar to the previous case, solutions with JMCFIE
become faster than MNMF for large problems.

In general, JMCFIE leads to more efficient solutions than
MNMEF, when the problem size is sufficiently large. Our inves-
tigations further show that the better performance of JIMCFIE
becomes more evident when a problem involves complicated
targets. As an example, Fig. 5 presents the results of a problem
involving a 5-layer periodic structure in free space excited by
a Hertzian dipole. Dimensions of the structure and the posi-
tion of the source are detailed in Fig. 5(a). Discretization of
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Fig. 5. (a) A 5-layer periodic dielectric structure illuminated by a Hertzian
dipole. (b) Iteration counts (using BiCGStab accelerated with 4PBDP) for the
solution of the problem in Fig. 5(a) when the frequency changes from 200 MHz
to 300 MHz, and the relative permittivity (€,.) of the structure is 2.0 and 4.0.

275 300

the structure with 10 cm triangulation size leads to 38,700 un-
knowns. We consider two different values for the relative per-
mittivity of the structure, i.e., ¢, = 2.0 and €, = 4.0. Fig. 5(b)
depicts the iteration counts for 10~3 residual error as a func-
tion of frequency from 200 MHz to 300 MHz, when the prob-
lems are solved by using BiCGStab accelerated with 4PBDP.
We observe that MNMF offers faster solutions when ¢,, = 2.0,
and the number of iterations is halved compared to JMCFIE.
When ¢, = 4.0, however, the number of iterations for MNMF
increases rapidly as the frequency changes from 200 MHz to
300 MHz. At 300 MHz, convergence cannot be achieved within
1000 iterations by using MNMF. On the other hand, IMCFIE is
more stable in the same frequency range, and it provides sig-
nificantly faster solutions when ¢, = 4.0 and the frequency is
larger than 200 MHz.

B. Accuracy of the MLFMA Solutions

Fig. 6(a) depicts the bistatic radar cross section (RCS) values
for a sphere with a radius of 3\; and ¢, = 2.0. Normalized RCS
(RCS/)\? in dB) is plotted as a function of the observation angle
from 0° to 180° on the z-x plane, where 0° corresponds to the
forward-scattering direction. Fig. 6(a) shows that the computa-
tional values calculated by using CTF are in agreement with the
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Fig. 6. (a) Normalized bistatic RCS (RCS/A?) of a sphere with a radius of
31 and with a relative permittivity of 2.0. (b) Relative error defined in (42) for
different formulations as a function of the bistatic angle.

analytical curve obtained by a Mie-series solution. Although the
results obtained by MNMEF are also close to the analytical curve,
they are significantly inaccurate compared to CTF. For more
quantitative information, Fig. 6(b) presents the relative error in
the computational results with respect to the reference analyt-
ical solution. In addition to CTF and MNMEF, we also consider
the error for CNF and JMCFIE. The relative error as a function
of bistatic angle # is defined as

_ [fe(8) = fa(®)]
) = g 1Fa(0)]

where fc and f4 are the computational and analytical values of
the far-zone co-polar electric field, i.e.,

(42)

F(8) = lim {rEy(r, 6,6 =0)}. 43)
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Fig. 7. (a) Normalized bistatic RCS (RCS/A7) of a sphere with a radius of
6, and with a relative permittivity of 4.0. (b) Relative error defined in (42) for
different formulations as a function of the bistatic angle. CNF is omitted in this
figure since its accuracy is very close to that of MNMEF, as depicted in Fig. 6(b).

The maximum value of the relative error is also indicated by
a horizontal line in the figure for each formulation. Fig. 6(b)
shows that CTF provides the most accurate results, while the
N formulations (MNMF and CNF) are significantly inaccurate
compared to CTF. JMCIE is also worse than CTF, but it is
more accurate than the N formulations. In Fig. 7, we present
the bistatic RCS values and the relative error for a sphere with
aradius of 61 and ¢, = 4.0. The results are very similar to the
previous case.

In general, the N formulations MNMF and CNF are consis-
tently inaccurate, compared to CTF and JMCFIE. Similar ob-
servations on the accuracy of the N formulations were made
for small and moderate-size PEC [36]-[39] and dielectric ob-
jects [14], as well as large PEC objects [40]. It was also shown
that the accuracy of the N formulations for PEC objects, e.g.,
N-MFIE, could be improved by employing more appropriate
basis functions, instead of the RWG functions [39]-[44]. Im-
proving the accuracy of the N formulations by employing the
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linear-linear (LL) basis functions [45] is presented for both per-
fectly conducting and dielectric objects [14], [46], [47]. In gen-
eral, the error in the N formulations is caused by the well-tested
identity terms discretized with low-order functions, such as the
RWG functions [48]. As demonstrated in Figs. 6 and 7, this error
can be significant even for large dielectric objects with smooth
surfaces.

Being a combination of CTF and CNF, solutions with
JMCEFIE are contaminated with the inaccuracy of CNF. There-
fore, CTF is preferable to JMCFIE in terms of accuracy.
However, JMCFIE is more suitable for the solution of large
problems, which cannot easily be obtained with CTF. For
example, Fig. 8 presents the bistatic RCS values for a sphere
with a radius of 20\; and ¢,, = 2.0 discretized with 2,925,708
unknowns. The computational values obtained with JMCFIE
are close to the analytical Mie-series solution, and the max-
imum relative error is 2.4%. This problem cannot be solved in
a reasonable number of iterations when it is formulated with
CTF, CNF, or MNMF.

VII. CONCLUDING REMARKS

In this paper, we investigate surface-integral equations for the
fast and accurate solutions of large scattering problems with
MLFMA. We specifically consider CTF, CNF, MNMF, and JM-
CFIE, which were recently developed for stable solutions of
dielectric problems. Our observations can be summarized as
follows.

e Although MNMF provides the fastest iterative conver-
gence for small problems, JMCFIE has the smallest
iteration counts when the problem size is large. This result
is similar to the better convergence provided by T-N-CFIE
over N-MFIE for perfectly conducting objects.

¢ In terms of iteration counts, JMCFIE is more stable than
MNME, especially when the solutions are accelerated with
4PBDP. MNMF may fail to provide efficient solutions,
when the problems involve complicated targets.

* Iteration counts for CNF grow rapidly as the problem size
increases. For large problems, the efficiency of CNF is
even worse than CTF. This may not be predictable, because
CNF is an N formulation and contains well-tested identity
operators.

* Using the RWG functions, MNMF and CNF are inaccu-
rate, compared to CTF. Being a combination of CTF and
CNEF, JMCFIE is also more inaccurate than CTF. How-
ever, its accuracy is significantly better than the accuracy
of the N formulations, i.e., MNMF and CNF. The discrep-
ancy among the results of the N formulations, JIMCFIE,
and CTF is visible even for large dielectric objects with
smooth surfaces.

Finally, considering the trade-off for accuracy and efficiency,
CTF and JMCFIE are preferable, respectively. The accuracy
of JMCFIE can be improved by employing higher-order basis
functions, such as the LL functions, while the efficiency of CTF
can be improved by using robust preconditioners.
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