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Closed-Form Green’s Function Representations for Mutual
Coupling Calculations Between Apertures on a Perfect
Electric Conductor Circular Cylinder Covered With

Dielectric Layers

M. S. Akyüz, V. B. Ertürk, and M. Kalfa

Abstract—Closed-form Green’s function (CFGF) representations are de-
veloped for tangential magnetic current sources to calculate the mutual
coupling between apertures on perfectly conducting circular cylinders cov-
ered with dielectric layers. The new representations are obtained by first
rewriting the corresponding spectral domain Green’s function represen-
tations in a different form (so that accurate results for electrically large
cylinders, and along the axial line of a cylinder can be obtained). Then,
the summation over the cylindrical eigenmodes is calculated efficiently. Fi-
nally, the resulting expressions are transformed to the spatial domain using
a modified two-level generalized pencil of function method. Numerical re-
sults are presented showing good agreement when compared to CST Mi-
crowave Studio results.

Index Terms—Aperture antennas, closed-form Green’s functions, gener-
alized pencil of function (GPOF) method, mutual coupling.

I. INTRODUCTION

A wide range of military and commercial applications require accu-
rate and efficient analysis tools to investigate waveguide-fed aperture
antennas/arrays on perfect electric conductors (PEC) covered by di-
electric layer(s) ([1], [2]). A number of integral equation (IE) based
tools have been developed in the past that use closed-form Green’s
function (CFGF) representations as the kernel of the IE [3]–[5]. How-
ever, similar tools are not available for cylindrical structures, because
the available CFGF representations ([6]–[11]) are not valid when the
problem of interest is the mutual coupling between two apertures on a
PEC cylinder covered by dielectric layer(s). Recently, novel CFGF rep-
resentations that are accurate for almost all possible source and field
points are presented in [12] to investigate microstrip antennas/arrays
on cylindrically stratified media. However, there is no counterpart of
[12] for aperture type antennas in the literature. Therefore, in this com-
munication, we provide CFGF representations for magnetic sources to
investigate waveguide-fed aperture antennas/arrays on PEC cylinders
covered by one or more than one dielectric layers.

Our approach starts by modeling an aperture antenna on the PEC sur-
face with a tangential magnetic current mode by invoking the surface
equivalence theorem [13]. Then, the methodology presented in [12] is
followed. Briefly, the conventional spectral domain Green’s function
representations ([6], [7]) of a tangential magnetic type current source is
rewritten in such a way that all the special cylindrical functions (such
as Bessel and Hankel functions along with their derivatives) are rep-
resented in the form of ratios. Thus, possible numerical problems in
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the computations of these functions are avoided. Because the spectral
domain representations of the cylindrical Green’s function contains a
summation over the cylindrical eigenmodes �, and a Fourier integral
over �� , available acceleration techniques that have been used in [12]
are implemented to perform the summation efficiently and to handle
numerical problems along the integration path. Finally, the resulting
expressions are transformed to the spatial domain by taking the �� in-
tegration in closed-form with the help of the generalized pencil of func-
tion method (GPOF) [14].

Note that similar to that of [12], the proposed CFGF representations
(for magnetic sources) in this communication are valid in a significantly
wider source-field point region compared to previously available CFGF
representations, and can be used in the investigation of mutual coupling
between two aperture antennas (in addition to radiation/scattering prob-
lems where � �� ��). Such region includes the axial line of the cylinder
(i.e., � � �� and � � ��). Because of several techniques used in the
course of CFGF derivations to improve the efficiency and accuracy, the
proposed CFGF representations are accurate both for electrically small
and relatively large cylinders, where the latter case has been usually
accomplished using high-frequency based techniques ([1], [2]). How-
ever, the summation over � may exhibit some convergence problems
for electrically very large cylinders. Besides, the proposed CFGF ex-
pressions are not valid in the source region where two magnetic current
modes touch/overlap with each other.

In Section II, the geometry and the derivation of the CFGF represen-
tations are presented. The expressions are written in the same form of
those presented in [12] so that similar methodology can be followed.
Numerical results in the form of mutual coupling between two wave-
guide-fed aperture antennas on a PEC cylinder covered with a dielec-
tric layer are given in Section III to assess the accuracy of the method.
An ���� time dependence, with � being the angular frequency, is as-
sumed and suppressed throughout this communication. Note also that
��� stands for the �	 component for the spatial domain Green’s func-
tion of a magnetic field due to a magnetic current mode, whereas ����

is its spectral domain counterpart.

II. FORMULATION

Fig. 1 illustrates the geometry of two identical apertures on an in-
finitely long PEC cylinder (along the 
-axis) covered with a dielec-
tric layer and the outermost region is free-space. The PEC cylinder
has a radius of ��, the dielectric layer has a thickness of �� (hence,
�� � �� � ��), permittivity of 
� � 
�
� and permeability ��. The
dimension of each aperture is 
	 � �	��	 � ����� in the 
- and �-di-
rections, respectively, with � � ���. In Fig. 1, � denotes the geodesic
path distance between the apertures and � is the angle between the
geodesic path and the �-axis.

Similar to [12], the spectral domain Green’s function components for
tangential magnetic sources ���� (� � 
 or �, 	 � 
 or �), originally
given in [6], [7] for � �� ��, are rewritten for � � �� as
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where �� � � � ��, and for �	 � 

 	 � � 
, � � �, � � 
, for
�	 � �
 � 
� 	 � � �, � � 
, � � �, and for �	 � �� 	 � � �,
� � 
, � � 
. Note that (1) is exactly in the same generic form as that
of an electric current mode ([12]). This is very advantageous because
from now on, all the steps and techniques that have been presented
in [12] to improve the efficiency and accuracy can be implemented in
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Fig. 1. Geometry of the problem.

the same fashion. However, the term ������ ��� differs from those of
electric current mode for each component and is explicitly given by
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where ��	��� �� with � � �� � � � � � is the ��� ��th entry �� � �� � � ��
of the 2� 2 matrix ��	 expressed as
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� in (6)–(9) is the 2� 2 identity matrix, and the expression 	
��� in

(6)–(9) contains the 2� 2 generalized reflection and transmission ma-
trices 	

� and 	
�, respectively, all of which are explicitly given in [6].

Finally in (1)–(9), � denotes the derivative with respect to the argument,

and �� � ��� � ��� with �� being the wave number of the medium

��� �
�
	� ���.

Note that in (1), all Bessel and Hankel functions are in the form of
ratios. Besides, Debye representations [15] of the ratios are found in
closed-form and used during the summation over � when necessary.
Thus, efficiency is improved and possible numerical problems in the
computations of these functions are avoided, in particular for large �

values. Moreover, by applying an envelope extraction method with re-
spect to � to (1), the efficiency and accuracy of the summation are fur-
ther improved. Thus, (1) becomes
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In (10), ������� is the limiting value of ������ ��� for very large �

values. It is obtained numerically and is constant with respect to �.
Also in (10), � ��

� 
�� is a function of 
���
� ��� ���� ����� and is given

for each component as
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The addition theorem of Hankel function ([15]) is used in the course of
obtaining (11)–(13). Explicit expressions for (12) and (13) are in [12].

As the next step, first the integration path is deformed as explained
in [12] to be away from the problems related to branch-point and pole
singularities. Then, another envelope extraction with respect to �� is
applied to (10), to avoid numerical problems due to the imaginary part
of (10) that appears when �� is large and 
� is small. As a result, the
spatial domain Green’s function expression becomes
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Fig. 2. Magnitude (in dB) and phase of the mutual admittance � between �- and �-directed magnetic current sources (i.e., apertures) on a circular PEC
cylinder coated with a dielectric layer. The cylinder parameters are � � �� , � � ����� , � � ����, and the aperture parameters are 0.3 � by 0.1 � .
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and�������	 is the value of������	 on the last path of the deformed
integration path for asymptotically large �� values. Note that in arriving
at (15)–(17) the following relations are used:
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Fig. 3. Magnitude (in dB) and phase of the mutual admittance � between two identical �-directed current sources versus separation when � � �� (axial
line) for the coated cylinder with the parameters given in Fig. 2.
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Note also that, the integral part of (14) is well-behaved (except along
the axial line) and hence, GPOF is applied to this part to obtain CFGF
expressions whereas the second term of (14) is already in closed-form.

Before the implementation of GPOF, the last step is to resolve the
axial line (� � �� and 
 � 
�) problem which is performed ex-
actly the same way as explained in [12]. Briefly, the����

� ��� ���� �����
related terms in (14) exhibits a logarithmic singularity (which is in-
tegrable) along the axial line. The small argument approximation of
�

���
� ��� ��� � ����� along the axial line yields
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where � � �	���. The last term, which is the logarithmic singularity
part, is isolated. The contribution coming from its integration over the
surface areas of basis and testing magnetic current modes during a mu-
tual admittance calculation is exactly zero. On the other hand, for the
terms that involve the derivatives of ����

� ��� ���� ����� with respect to

 and 
�, an integration by parts with respect to 
 and 
� is performed
first. This step obviously requires the condition that the selected basis
and testing current modes should be differentiable with respect to 


and 
�.
Finally, implementing a two-level GPOF to the first part of (14) as

explained in detail in [12] and adding the closed-form part of (14) to
the resultant expression, CFGF representations in the spatial domain is
obtained for magnetic sources.

III. NUMERICAL RESULTS

Numerical results in the form of mutual coupling between two aper-
tures on the PEC layer of a dielectric coated circular PEC cylinder is
considered to assess the accuracy and efficiency of the proposed CFGF
representations. The apertures are modeled as tangential magnetic cur-
rent modes,
� and
� , using the surface equivalence theorem [13],
and the developed CFGF representations are used to find the mutual ad-
mittance ��� between them, and is given by

��� �
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The results are then compared with those obtained from CST Mi-
crowave Studio (MWS) [16] simulations, where the apertures are
modeled with small waveguides having dimensions �� and �� in
the �- and �-directions, respectively. Then, 
� and 
� , used in

the CFGF-based mutual admittance calculations, are obtained from
the aperture electric field distributions of CST MWS simulations
�� � � � 
���, and a �-directed current mode is in the following
form:
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Fig. 2 shows the magnitude (in dB) and the phase of mutual admit-
tances ��� , ��� , and ��� versus � for various � values for a PEC
cylinder with �� � ���, �� � �	����, �	 � �	��. The dimensions of
each aperture are selected to be 0.3 �� along the direction of the current
and 0.1 �� along the other direction.

To illustrate the accuracy of the provided CFGF expressions along
the axial line of the cylinder, the magnitude (in dB) and phase of ���
versus � for � � ��� is depicted in Fig. 3 as an example. The cylinder
and the apertures are kept the same. In all figures, the path parameters,
the number of samples and the number of complex exponentials used
in each leg of the deformed integration path (see [12]), that are used
to generate the CFGF results, are similar to those reported in [12]. On
the other hand, good agreement is obtained between the CFGF and the
CST MWS results. The discrepancies in some plots are due to the dif-
ficulties in the convergence of CST MWS results. Finally, each mutual
coupling versus � result for a fixed� lasts approximately 1.5 hours with
CST MWS on a remarkably powerful workstation. However, it takes
approximately 25 seconds to generate the same result using the pro-
vided CFGF expressions on a regular PC using MATLAB. Regarding
the efficiency of the provided CFGF expressions, it should be noted
that the summation over � is still the main bottleneck of the method,
in particular for electrically very large cylinders. As the radius of the
cylinder becomes large, convergence problems may exhibit (good re-
sults are obtained up to �� � ���), and the method becomes less effi-
cient compared to high frequency techniques.

IV. CONCLUSIONS

CFGF expressions for tangential magnetic sources are developed
to investigate aperture antennas on PEC cylinders coated with dielec-
tric layers. The provided CFGF expressions are accurate in a signif-
icantly wider source-field point region compared to previously avail-
able representations. Furthermore, because of several techniques used
in the course of derivations, mutual coupling results can be obtained
accurately for both electrically small and relatively large cylinders,
where the latter case has been usually accomplished using high-fre-
quency based methods. The proposed CFGFs are not valid in the region
where two magnetic sources touch/overlap with each other. Besides,
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in the course of obtaining CFGF expressions, the approximating func-
tions represent spherical waves with complex distances. Hence, types
of waves that are different in nature than spherical waves, such as sur-
face waves are not represented properly. Consequently, the proposed
CFGF representations are less accurate when the field point is electri-
cally far away from the source location where surface waves start to
dominate.
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Multiwall Carbon Nanotubes at RF-THz Frequencies:
Scattering, Shielding, Effective Conductivity, and Power

Dissipation

Jay A. Berres and George W. Hanson

Abstract—Isolated, infinitely long multiwall carbon nanotubes
(MWCNTs) interacting with electromagnetic waves in the microwave
and far-infrared frequency regime are analyzed using a semi-classical
approach. An expression for the bulk effective conductivity of MWCNTs
is obtained, valid up to THz frequencies. The influence of the number of
tube walls, the radius of the outermost tube wall, and the presence of a
gold core on scattering and shielding is analyzed. Comparisons between
metallic MWCNTs, metallic single wall carbon nanotubes (SWCNTs), and
metal nanowires are provided.

Index Terms—Carbon nanotube, electromagnetic theory, nanotech-
nology.

I. INTRODUCTION

Carbon nanotubes (CNTs) continue to be at the forefront of re-
search today, since their physical properties make them promising
candidates for nanoscale applications. They can form naturally into
two types, single wall carbon nanotubes (SWCNTs) and multiwall
carbon nanotubes (MWCNTs). A MWCNT consists of multiple
co-centric SWCNTs, where the distance between each tube wall is
approximately 0.34 nm, which is the distance between interatomic
layers of graphite (i.e., graphene sheets) [1]. The number of tube
walls for a MWCNT can vary anywhere from 2 to several hundred.
Typically the length of CNTs can be from the nanometer scale up
to centimeters, and in the case of SWCNTs, their cross-sectional
radius varies within the range of approximately 0.3 to 2–5 nm. For
MWCNTs, their overall cross-sectional radius varies within the range
of approximately 1 to 100 nm. The electromagnetic response of CNTs,
and their corresponding applications as antennas, interconnects, and
thermal contrast agents, are being investigated [2]–[15]. Of the papers
that analyze the electromagnetic response of CNTs, the majority
of these papers focus on SWCNTs, although [8] and [12] consider
MWCNTs, [9] and [11] consider nanotube bundles, and [13] and [14]
consider nanotube sheets. From the emerging literature it is becoming
clear that for far-infrared applications, individual SWCNTs have
losses that are too large (associated with their extremely small radius)
to serve as antennas or interconnects. However, bundles of SWCNTs,
and individual or bundles of MWCNTs, may be good candidates for
antenna and interconnect applications. Furthermore, planar sheets
of nanotubes fabricated as conformal patch antennas have shown
excellent properties [13], [14].

In this work, the electromagnetic response of an isolated, infinitely
long MWCNT is analyzed in the microwave and far-infrared frequency
regime using a semi-classical approach. The influence of the number of
tube walls, the radius of the outermost tube wall, and the presence of a
gold core on scattering and shielding characteristics is analyzed. Com-
parisons between metallic MWCNTs, metallic SWCNTs, and metal
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