
IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXX 2013 1

Discriminative Fine-Grained Mixing for Adaptive
Compression of Data Streams

Buğra Gedik, Member, IEEE

Abstract—This paper introduces an adaptive compression algorithm for transfer of data streams across operators in stream processing

systems. The algorithm is adaptive in the sense that it can adjust the amount of compression applied based on the bandwidth, Cpu, and

workload availability. It is discriminative in the sense that it can judiciously apply partial compression by selecting a subset of attributes

that can provide good reduction in the used bandwidth at a low cost. The algorithm relies on the significant differences that exist among

stream attributes with respect to their relative sizes, compression ratios, compression costs, and their amenability to application of

custom compressors. As part of this study, we present a modeling of uniform and discriminative mixing, and provide various greedy

algorithms and associated metrics to locate an effective setting when model parameters are available at run-time. Furthermore, we

provide online and adaptive algorithms for real-world systems in which system parameters that can be measured at run-time are limited.

We present a detailed experimental study that illustrates the superiority of discriminative mixing over uniform mixing.

Index Terms—stream compression; adaptive compression

�

1 INTRODUCTION

In today’s highly instrumented and interconnected
world, there is a deluge of data coming from various
software and hardware sensors. This data is often in the
form of continuous streams. Examples can be found in
several domains, such as financial markets, telecommu-
nications, surveillance, manufacturing, and healthcare.
Accordingly, there is an increasing need to gather and
analyze data streams in near real-time to extract in-
sights and detect emerging patterns and outliers. Stream
processing systems [6], [1], [26], [11], [32], [29] enable
carrying out these tasks in an efficient and scalable
manner, by taking data streams through a network of
operators placed on a set of distributed hosts.

In the context of a stream processing system, a data
stream is defined as a potentially infinite series of time
ordered tuples. Typically, a stream has a well defined
schema, which consists of a list of typed attributes
defined at application development time [14]. Stream
connections among operators that are placed on different
hosts is a common occurrence in stream processing
systems. Furthermore, the rate of such inter-operator
streams is usually very high close to the ingestion point,
since most streaming applications perform progressive
filtering [28]. Such filtering involves using computation-
ally cheap analytics close to the ingestion point and
progressively increasing the complexity as the data rates
reduce towards the end of the operator data flow graph.

In this work we investigate the problem of adaptive
data stream compression, which is a critical functional
need in data stream processing systems. As we have
outlined, close to the data ingestion point both the
computational capacity and the network bandwidth are
scarce resources. As such, reducing the rate of data
streams by applying compression, without making the
Cpu a bottleneck, is a critical capability in increasing the
throughput of streaming applications.

• B. Gedik is at Bilkent Univ., Turkey. E-mail: bgedik@cs.bilkent.edu.

Motivated by this need, we develop an adaptive data
stream compression scheme called discriminative fine-
grained mixing (DFGM). In its essence, DFGM applies
compression judiciously, by determining the best subset
of tuple attributes to compress, the best compression
algorithms to use, and the right mixing ratio to apply. It
aims to best utilize the bandwidth and Cpu utilization,
with the ultimate goal of maximizing throughput. DFGM
takes advantage of the significantly different characteris-
tics of the stream attributes, with respect to compression
rate, compression cost, relative size, and suitability of
different compression algorithms. Furthermore, through
its adaptive nature, it adjusts the level of compression
performed based on the changes in the bandwidth, Cpu,
and workload availability.

Our work is highly influenced by the fine-grained
mixing (FGM) approach of Pu and Singaravelu [20], as
well as compression in column oriented databases [3].
FGM [20] is designed for general purpose data transfers,
where no assumptions are made about the contents of
the data streams. The main idea is to arbitrate between
compression and no compression at a very low level,
resulting in partial compression of the stream when there
is not enough Cpu to perform full compression. The
mixing ratio can be defined as the average fraction of
data blocks that are compressed, even though such a
parameter is not explicitly studied in [20].

Since data streams in stream processing systems con-
tain a list of typed attributes, in this work we take
advantage of this structure to develop a discriminative
fine-grained mixing approach. As shown in the con-
text of column-oriented databases [3], within a single
column (attribute), there is often significant repetition.
Furthermore, certain kinds of stream attributes (e.g.,
sequence numbers, Boolean and Enum types, etc.) can
be compressed very cheaply with custom compressors.
In this work, we take advantage of these properties to
provide an adaptive compression scheme based on dis-
criminative mixing, which outperforms uniform mixing.

Digital Object Indentifier 10.1109/TC.2013.103 0018-9340/13/$31.00 © 2013 IEEE

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXX 2013 2

In particular, we make the following contributions:
• We provide a modeling of fine-grained mixing and

give a formula for the optimal mixing ratio.
• We extend our model to discriminative mixing and

formalize an optimization problem.
• We develop several heuristic methods for finding an

effective configuration for discriminative mixing, as the
brute-force approach is too expensive for streams with
many attributes. Our heuristic methods assume that all
model parameters can be measured at run-time.
• We develop an online algorithm as well as an online

and adaptive algorithm for systems that do not have
explicit access to all model parameters. These algorithms
make increasing sacrifices in terms of solution optimality,
but are more suitable for real-world deployments in
stream processing systems.
• We provide an evaluation of our techniques that

showcase their effectiveness in terms of throughput as
well as bandwidth and Cpu utilization. We use both
model-based experiments as well as an implementation
that runs on real-world streaming data.

The rest of the paper is organized as follows. Section 2
gives the preliminaries on FGM, including the optimal
mixing ratio. Section 3 introduces DFGM and provides
several heuristic model-based algorithms, as well as
online and adaptive algorithms. Section 4 gives details
about our implementation of the DFGM algorithm. Ex-
perimental results are presened in Section 5. Section 6
gives the related work. Section 7 discusses future work
and Section 8 concludes the paper.

2 PRELIMINARIES

We start by introducing the basic notation. We then iden-
tify when FGM can be superior to switching between
two modes of all-compress and no-compress. Finally, we
provide a formula for the optimal mixing ratio.

2.1 Basic Notation

We denote by T the throughput in terms of bytes/s.
We denote by p the mixing ratio (0≤p≤1). Mixing ratio
represents the ratio of the number of compressed tuples
to the total number of tuples. We use r to represent the
compression ratio, where 0<r≤1. The compression ratio
is the ratio of the size of the compressed data to the size
of the original data.

We use c to denote different kinds of computation
costs. Concretely, we have:

• Compression cost, cc: cost of compressing tuples.
• Submission cost, cs: cost of submitting tuples.
• Application cost, cp: cost of application related work.

All costs are per-byte. The application cost covers the
work done on tuples before they are submitted for trans-
mission. Submission includes the cost of taking tuples
through the submission process (the transport stack).

We denote by C the total available computation ca-
pacity per second (0≤C≤1). All computation costs, that
is cc, cs, and cp, are also in the range [0, 1]. Finally, we
denote by B the available bandwidth in terms of bytes/s.

2.2 Fine-grained Mixing

The bandwidth and processing constraints must be
satisfied by FGM. Concretely, we have:

c(p) ≤ C/T (processing constraint), and

b(p) ≤ B/T (bandwidth constraint),

where c(p) is the per-byte processing cost for a given
value of the mixing ratio and b(p) is the per-byte
bandwidth cost for the same. We have:

c(p) = p · (cp + cc + r · cs) + (1− p) · (cp + cs)

b(p) = p · r + (1− p)

The per-byte processing cost simply includes the per-
byte processing cost for uncompressed tuples (cp + cs,
since it only involves processing and submission) plus
the cost for compressed tuples (cp + cc + r · cs, since it
involves processing, compression, and submission). The
former is scaled with 1 − p as that is the ratio of the
uncompressed tuples, and the latter is scaled with p.
Note that per-byte processing cost of compressed tuples
have r · cs as the submission cost, since compression
reduces the amount of data to be submitted.

The per-byte bandwidth cost includes the per-byte
bandwidth cost of sending an uncompressed tuple (sim-
ply 1) plus the cost for compressed tuples (simply r).
The former is scaled with 1− p as that is the ratio of the
uncompressed tuples, and the latter is scaled with p.

With these definitions at hand, the throughput that
can be achieved for a given value p of the mixing ratio
is denoted by T (p), and is defined as follows:

T (p) = min

(
C

c(p)
,

B

b(p)

)
(1)

Assuming workload availability, Equation 1 follows, as
either the computation or the bandwidth becomes a
bottleneck, and the throughput is limited by whichever
becomes the bottleneck. Note that increasing p means
we are compressing more tuples and as such the com-
putational cost increases. We have two special cases:
TC = T (1), throughput for all-compress; and TN = T (0),
throughput for no-compress.

As a special case of Equation 1, we have:

TC = min

(
C

cp + cc + r · cs
,
B

r

)

TN = min

(
C

cp + cs
, B

)

2.3 Benefit Analysis

An important topic is to determine when FGM brings
additional benefits in terms of the throughput. For this
purpose, we define few Boolean variables:

• K
cpu
C : computation is bottleneck for all-compress

• K
cpu
N : computation is bottleneck for no-compress

• Kbwh
C : bandwidth is bottleneck for all-compress

• Kbwh
N : bandwidth is bottleneck for no-compress

Again, we are assuming that there is sufficient workload
to saturate either Cpu or bandwidth. We have:

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXX 2013 3

K
cpu
C ≡ Ubwh

C < 1 and Kbwh
N ≡ U

cpu
N < 1 (2)

In Equation 2, Ubwh
C represents the bandwidth utilization

for all-compress, assuming infinite workload availability.
The computation is the bottleneck for all-compress if
and only if the bandwidth utilization is below 1. In
Equation 2, U

cpu
N represents the Cpu capacity utilized for

no-compress, assuming infinite workload availability.
The bandwidth is the bottleneck for no-compress if and
only if the Cpu utilization is below 1. We have:

Kbwh
C ≡ ¬ K

cpu
C and K

cpu
N ≡ ¬ Kbwh

N (3)

K
cpu
N → K

cpu
C and Kbhw

C → Kbhw
N (4)

Equation 3 follows, as the system can have a single
bottleneck at a time. Equation 4 follows from a simple
observation: If the computation is the bottleneck for no-
compress, then it must be a bottleneck for all-compress
as well, since compression increases the computation
cost (we assume1 that cc/cs > 1− r)).

The utilizations are defined as follows:

U
cpu
N = min

(
1,

(cp + cs) ·B

C

)
(5)

Ubwh
C = min

(
1,

r · C

(cp + cc + r · cs) · B

)
(6)

In Equation 5, we assume no-compress and there are
two cases. If the bandwidth is the bottleneck, then the
throughput is given by B and thus the computational
cost is B · (cp + cs), leading to a utilization value of
B·(cp+cs)

C . If the computation is the bottleneck, then Cpu
utilization equals to 1.

In Equation 6, we assume all-compress and there are
two cases as well. If the computation is the bottleneck,
then the throughput is given by C/(cp + cc + r · cs) and
the bandwidth cost is r times the throughput, leading to

a utilization value of
r·C/(cp+cc+r·cs)

B . If the bandwidth is
the bottleneck, then bandwidth utilization equals to 1.

Let T ∗ denote the optimal throughput that can be
achieved with FGM. Table 1 shows all possible scenarios
and lists the conditions under which all-compress or
no-compress approaches can attain optimality. It also
shows the scenarios under which FGM can provide an
advantage over switching between no-compress and all-
compress. Such throughput advantage has been shown
empirically [20].

Table 1 shows all possible scenarios.The first row of the
table represents the case when computation is not the
bottleneck for the all-compress scenario but the band-
width is the bottleneck for the no-compress scenario.
In this case, the all-compress approach achieves optimal
throughput. The second row of the table represents the
case when computation is the bottleneck for the all-
compress scenario but the bandwidth is not the bottle-
neck for the no-compress scenario. In this case, the no-
compress approach achieves optimal throughput.

1. cc > cs, that is the cost of compression is larger than the cost of
submission, is sufficient to satisfy this, which is typical.

K
cpu
C

K
cpu
N

Kbwh
C Kbwh

N T∗ = TC T∗ = TN

× × � � � ×
All-compress is the optimal choice if

Cpu is not the bottleneck, but the bandwidth is.

� � × × × �

No-compress is the optimal choice if
Cpu is the bottleneck, but the bandwidth is not.

� × × � × ×
Neither all-compress nor no-compress is optimal if

Cpu is bottleneck for all-compress and bandwidth for no-compress.

× × × × � �

Both all-compress and no-compress are optimal
if workload is the limiting factor (no bottlenecks)

TABLE 1: Optimality of no-compress and all-compress under
different scenarios (same color columns are for dual variables.)

The most interesting case is represented by the third
row, which happens when computation is the bottleneck
for the all-compress scenario and the bandwidth is the bottle-
neck for the no-compress scenario. In this case, neither the
all-compress nor the no-compress can achieve optimal
throughput. This is where FGM can provide superior
performance compared to approaches that switch be-
tween no-compress and all-compress.

Finally, the last row of the table shows the case when
there are no Cpu or bandwidth bottlenecks. This hap-
pens when the workload availability is the bottleneck.
In this case, both no-compress and all-compress are
optimal, but they make different trade-offs in terms
of the load imposed on the Cpu and the bandwidth.
For instance, no-compress will achieve optimal through-
put using more bandwidth, whereas all-compress will
achieve optimal throughput using more Cpu.

2.4 Optimal mixing ratio

We find the mixing ratio that achieves the optimal
throughput based on the following theorem.

Theorem 1: The mixing ratio, p∗, maximizing the
throughput of FGM for K

cpu
C ∧ Kbwd

N is given by:

p∗ =
1

1 + r ·
(1−Ubwh

C
)

Ubwh
C

·(1−U
cpu
N

)

(7)

Proof: Let U
cpu
N (p) be the computation capacity uti-

lized by the non-compressed portion of FGM for a given
value of the mixing ratio p. Similarly, let U

cpu
C (p) be

the computation capacity utilized by the compressed
portion of FGM for a given value of the mixing ratio
p. We use U

cpu
NC(p) = U

cpu
N (p) + U

cpu
C (p) to denote the

total computation capacity utilized by FGM. We use sim-
ilar notation for throughputs TNC(p) (total throughput),
TN(p) (throughput due to non-compressed data), and
TC(p) (throughput due to compressed data).

Assume no-compress approach for the last row from
Table 1 as the baseline for FGM, that is p = 0. We have
Ubwh
N (0) = 1, U

cpu
N (0) = U

cpu
N < 1, and TN(0) = B.

From this state, we can set p = p∗ such that this
corresponds to taking ε from the bandwidth utilization
Ubwh
N (0) of the p = 0 state and giving it to the bandwidth

utilization Ubwh
C (p∗) of the p = p∗ state. Thus we have

Ubwh
N (p∗) = 1 − ε and Ubwh

C (p∗) = ε. For optimality of
throughput, ε should be made as large as possible, as
long as there is enough computational capacity. Initially

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXX 2013 4

U
cpu
NC(0) = U

cpu
N (0) < 1, and thus we need to have

U
cpu
NC(p

∗) = 1 to maximize the throughput.

Moving ε unit of bandwidth utilization from no com-
pression to compression will increase the throughput to
TNC(p

∗) = B · (1 − ε) + B · ε/r = B · (1 + ε · (1/r − 1)),
since compression uses bandwidth more efficiently. The
bandwidth utilization is still kept at its maximum. More-
over, the computation utilization of the non-compressed
part is reduced to U

cpu
N (p∗) = (1− ε) ·U

cpu
N . On the other

hand, the computation utilization of the compressed part
is increased to U

cpu
C (p∗) = ε/Ubwh

C . The former follows
as the computation cost is linear to the bandwidth for
the case of no compression. The latter follows, as to use
ε amount of bandwidth utilization with the compressed
approach, one needs to achieve ε·B/r throughput, which
means (ε ·B/r) ·(cs+cc+r ·cs) computation capacity and
thus ε/(r·C

B·(cs+cc+r·cs)
) = ε/Ubwh

C computation utilization.

The sum of the computation utilizations for the no
compression and compression parts should be 1 for p =
p∗, so as to use all the available resources to maximize
the throughout. Thus, U

cpu
NC(p

∗) = U
cpu
N (p∗) + U

cpu
C (p∗) =

1. This means (1 − ε) · U
cpu
N + ε/Ubwh

C = 1. Solving this,

we get ε =
(1−U

cpu
N

)·Ubwh
C

1−U
cpu
N

·Ubwh
C

.

By definition, we have p = TC(p
∗)/TNC(p

∗) (ratio of
the number of original bytes sent per sec with compres-
sion to the total number of bytes sent per sec). Since
TC(p

∗) = B · ε/r and TNC(p
∗) = B · (1+ ε · (1/r− 1)), we

get p∗ = 1
1+r·(1/ε−1) . Plugging in ε, we get Equation 7.

3 DISCRIMINATIVE FINE-GRAINED MIXING

The main idea behind DFGM is to perform compression
on only a subset of the attributes in the data stream and
to adjust this subset dynamically as a function of the
available computation and bandwidth resources.

The goal here is to avoid compressing tuple attributes
that are less amenable to compression and/or are costlier
to compress. By prioritizing the compression of at-
tributes that can achieve a higher compression ratio, the
bandwidth resources can be put into better use. Similarly,
by prioritizing the compression of attributes that result
in less costly compression, the computation resources
can be put into better use.

There are a number of observations that motivate the
applicability of this idea in practice. In particular, differ-
ent attributes in a stream can have: (i) different compres-
sion ratios using the same compression algorithm; (ii)
different compression costs using the same compression
algorithm; (iii) different compression algorithms that
provide the best compression; (iv) different compression
algorithms that provide the cheapest compression.

Figure 1 shows the time it takes to compress a 64K
block using different compression techniques on differ-
ent data patterns. The data type used is a 4-byte integer.
For data patterns, ‘random’ represents a series of integers
that were uniformly chosen at random, ‘randomXfixedY’
represent a series where X random integers are fol-
lowed by Y occurrences of a fixed integer, ‘consecu-

tive’ represents integers increasing by a fixed delta, and
‘fixed’ represent repeated occurrences of a fixed integer.
For compression algorithms, ‘zlib’ and ‘gzip’ are two
well known compressors, ‘sameValComp’ is a special-
purpose simple compressor optimized for compressing
sequences containing large segments of repeated values,
and ‘seqComp’ is a similar compressor that is optimized
for compressing sequences of values with a fixed numer-
ical difference between them. It can compress integral
numbers or even strings that contain a fixed prefix and
an increasing sequence id. Since data streams are typed
(each stream has a schema and each attribute has a type
that is known at compile-time), building such special
purpose compressors is possible.

���� ���� ��	
��� �����
���

��������� ����������� ���������

����

����

����

����

�
�
�
�
�
�

!
"
��
##
$
%
�

#&
'
$ &
(
%
)
**
#$
%
+

��, -

�.
/

�.
/

�.
0

�.
0

�.
1
23
4

�.
1
23
4

�.
0

�.
0

�.
1
25
/

�.
1
25
/

�.
0

�.
0

�.
1
20
5

�.
1
20
5

�.
0

�.
1
23

�.
1
26
7

�.
1
26
7

�.
1
21
1
1
/
6

�.
0

�.
1
21
1
1
8
4

�.
1
21
1
1
8
4

�.
0

�.
5
20
�
91
3

:;<=>?

:;<=>?@ABCD=E

:;<=>?EABCD=E

:;<=>?EABCD=@

F><GDFHIBJD

ABCD=

Fig. 1: Compression cost and
ratio for different algorithms on

different data patterns.

We observe from
Figure 1 that for
different data patterns,
different compression
algorithms provide
the best results (w.r.t.
compression ratio
and cost), such as
‘sameValComp’ for
‘fixed‘ and ‘seqComp‘
for ‘consecutive’.
We see that special
purpose compressors
can achieve good compression with small cost, but
only for the right data pattern. As for general purpose
compression algorithms, it is important to note that the
cost of compression is dependent on the data pattern,
which further motivates the need for applying DFGM.

In stream processing applications, there is ample op-
portunity for DFGM. For instance, many data streams
contain sequence numbers (usually 64-bit integers) that
increment by one, date-time strings or time counters
that are repeated (since data streams are generally time-
ordered series), and categorical attributes with small
domain sizes (such as the type of a financial transaction).
Many of these attributes can provide good compression
ratio, but even more importantly, in a very computa-
tionally inexpensive way if a data-specific compressor is
used. Thus, we pick ‘seqComp‘ and ‘sameValComp‘ as
example domain-specific compressors for this work.

Even in the absence of opportunities for effective and
cheap compression, DFGM is still expected to provide
improvement in throughput. This is because general
purpose compressors have varying costs across different
data patterns. We use ‘zlib‘ and ‘gzip‘ as examples, since
they are well known and commonly available.

3.1 Formalization

We now formalize the DFGM problem. Let A = {ai :
0≤i≤|A|} denote the list of attributes in a tuple for the
data stream. For each attribute a ∈ A, we define:

• r(a): the compression ratio for attribute a,
• cc(a): the compression cost for attribute a, and
• s(a): relative size of attribute a in the tuple.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXX 2013 5

Here, s(a) ∈ (0, 1] represents the ratio of the size of the
attribute to the tuple size. All of the above are measured
variables. We also define a set of decision variables:

• V (a): 1 if attribute a is compressed, 0 otherwise

We define the optimization problem for DFGM as:

argmax
V

min

(
C

c(V)
,

B

b(V)

)
, (8)

where c(V) is the per-byte computation cost and b(V)
is the per-byte bandwidth consumption. We have:

c(V) =
∑
a∈A

s(a)·
(
V (a) · (cp + cc(a) + r(a) · cs)

+ (1− V (a)) · (cp + cs)
) (9)

b(V) =
∑
a∈A

s(a) ·
(
V (a) · r(a) + (1− V (a))

)
(10)

In Equation 9, for each attribute a, we are summing
the cost of processing the attribute with compression
(multiplied with V (a), thus only contributes when the
attribute is set to be compressed) and the cost without
compression (multiplied with 1 − V (a)) and scale the
result with s(a) (since only that fraction of bytes are from
this attribute). Similar logic is applied in Equation 10, for
the bandwidth consumption.

3.2 Handling Discreteness

One problem with the formulation we have so far
is that, due to the discrete nature of the number of
attributes, it may not be possible to find a solution
that could outperform the one from uniform FGM,
with respect to throughput. For instance, if there is
only a single attribute (|A|=1), there are only two
options: all-compress or no-compress. We solve this
problem by applying compression using the decision
variables V , but only with probability p∗(V). Here, the
mixing ratio can be given as in Equation 7, with the
exception of replacing r with r(V) and cc with cc(V).
Here, r(V) represents the overall compression ratio
and cc(V) represents the overall compression cost, for
a given set of attribute compression settings V . We have:

r(V) = b(V) (11)

cc(V) =
∑
a∈A

s(a) · V (a) · cc(a) (12)

In Equations 11 and 12 the compression ratio and cost
are computed as aggregates over all attributes, with
appropriate scaling using the relative attribute sizes.
The final problem can be stated as follows:

argmax
V
T (p∗(V)) (13)

Here, the throughput function T (.) is from Equation 1,
with r and cc replaced with Equations 11 and 12, respec-
tively. p∗(V) is from Equation 7. With this formulation,
DFGM completely generalizes uniform FGM.

A brute-force algorithm to solve Equation 13 takes a
long time as the number of attributes reaches 10 or so,
due to the combinatorial explosion of solutions (V). Since
the optimization needs to be performed frequently, this
is unacceptable and we look at heuristic approaches.

Algorithm 1: greedyCNP(A,s(.), r(.), cp, cc(.), cs, YCN (.))

Data: A: tuple attributes, s: relative sizes, r: compression ratios, cp:
application cost, cc: compression costs, cs: submission cost, YCN :
utility function to be used

V (a) ← 1, ∀a∈A � Reset all attributes to compress
L ← sort(A, YCN) � L is a sorted (using YCN) list on A
for a ∈ L, in decreasing order do

V (a) ← 0 � Set attribute a to compress
L ← L \ a � Remove a from the list
if C

c(V) > B
b(V) then � Bottleneck is bandwidth

V (a) ← 1 � Revert a to no compress
p∗(V) ← computeP(A, s, r(V), cp, cc(V), cs) � Use Eq. 7

3.3 Model-based Algorithms

Here, we assume that all non-decision variables can be
measured on a continuous basis, such as the compres-
sion, submission, and application costs, as well as the
computation and bandwidth availability. In other word,
we strictly follow the model we have developed so far.

The algorithms we describe are heuristic in nature. The
main idea is to start from no-compress or all-compress
and gradually move to the other direction unless an
infeasible solution is reached. For instance, if we start
with the no compress (∀a∈AV (a) = 0) state, at each step
we can pick one attribute a and set V (a) = 1 unless the
computation becomes the bottleneck (B/b(V) > C/c(V)).
We call this algorithm ‘greedyNC’.

The reverse algorithm, called ‘greedyCNP’, starts from
all-compress (∀a∈AV (a) = 0), and at each step picks one
attribute a and sets V (a) = 0 unless bandwidth becomes
the bottleneck (C/c(V) > B/b(V)). The pseudo-code for
code the algorithm is given in Algorithm 1. Since the
‘greedyCNP’ algorithms stops at a configuration V for
which the computation is still a bottleneck, Equation 7
is used to set the mixing ratio to p = p∗(V), whereas in
‘greedyNC’ the mixing ratio p is set to 1.

In these greedy algorithms we need to use a heuristic
metric to decide the order in which the attributes are
tried. For this purpose, we define a utility function,
denoted by YNC for ‘greedyNC’, and YNC = 1/YCN for
‘greedyCNP’. For YNC(a), we define a few alternatives:

• LR, lowest compression ratio: 1/r(a).
• HB, highest bandwidth used: s(a) · r(a).
• SC, smallest computation cost: 1

s(a)·(cp+cc(a)+r(a)·cs)
.

• HBC, highest bandwidth gained per computation

cost incurred: 1−r(a)
cc(a)−(1−r(a))·cs

.

To pick the next attribute to compress, we can locate
the one that compresses well (LR), uses up the highest
bandwidth (HB), incurs the smallest computation cost
(SC), or provides the highest reduction in the amount
of bandwidth used for unit of additional computation
incurred when compressed (HBC).

Example: ‘greedyCNP’. Consider the following setup.
We have a stream with 4 attributes, [a1, · · · , a4]. Assume
that the compression ratios are [0.25, 0.6, 0.9, 0.5], the
relative sizes are [0.16, 0.2, 0.4, 0.24], and the compression
costs are [10, 15, 25, 5]. Further assume that the process-
ing cost is 20 and the submission cost is 2. Finally,
assume that the total computational capacity is 150 and
the bandwidth capacity is 4. Based on these setting,

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXX 2013 6

the list L that contains the attributes ordered by the
metric YCN based on HBC heuristic is computed as
[a3, a2, a1, a4]. This means that the ‘greedyCNP’ algo-
rithms will consider the attributes for which to turn off
compression in this order.

Initially, the ‘greedyCNP’ algorithm will set V (ai) =
1, ∀i∈[1..4]. That is, we start with all-compress. First we
will consider turning off compression for a3. After set-
ting V (a3) = 0, we still have C

c(V) ≤
B

b(V) (Cpu is still the
bottleneck), as 5.52 ≤ 7.35. Thus, we move to the next
iteration. This time, we try turning off compression for
a2. This succeeds as well, since after setting V (a2) = 0,
we still have C

c(V) ≤
B

b(V) , as 6.17 ≤ 6.58. Next, we
try turning off compression for a1. However, setting
V (a1) = 0 results in C

c(V) > B
b(V) (bandwidth becomes

the bottleneck), as 6.42 > 5.68. As a result, we leave
V (a1) = 1. Finally, we try a4 and similar to the case for
a1, this fails due to bandwidth becoming the bottleneck.
At the end, we get V = [1, 0, 0, 1].

After finalizing V , we need to set the mixing ratio
p∗(V). We have r(V) = 0.76 and cc(V) = 2.8. This
implies that DFGM for the computed V is similar to hav-
ing a uniform compression algorithm with compression
ratio 0.76 and compression cost 2.8. Finally, applying
Equation 7, we get p∗(V) = 0.84.

3.4 Online Algorithm

As we discussed earlier, in practice it is a challenge to
measure all the model variables on a continuous basis.
As such, we now look at an online algorithm that relies
on three easily measurable runtime metrics, namely:

• Overload (denoted by o) is a Boolean metric that
determines whether the Cpu is fully utilized.

• Congestion (denoted by g) is a Boolean metric that
determines whether the network is fully utilized.

• Throughput (denoted by t) is a metric that measures
the rate at which the tuples are being processed.

The overload metric can be measured using Cpu uti-
lization, through OS APIs available in most operating
systems. The congestion metric can be measured by
looking at the size of the network buffers and if that
is not available at the application level, the congestion
can be measured using blocking I/O on sends and
measuring the blocking time2.

The online algorithm works in periods. It observes
the throughput, overload, and congestion for some time,
called the adaptation period, and then adjusts the compres-
sion decisions based on these values.

Here we describe one such algorithm that works on
the following principles:

• Contract. Turn compression on for an additional
attribute if there is congestion but no overload,
unless we have been there but seen less throughput.

• Expand. Turn compression off for an attribute if there
is no congestion but overload, unless we have been

2. InfoSphere Streams [11] middleware uses this latter approach to
come up with a metric called “congestion index”.

Algorithm 2: onlineDFGM(g, o, t)

Data: g: congested?, o: overloaded?, t: throughput
i ← |a ∈ A : V (a) = 1| � Compressed attribute count
if t≺ > t and a≺ �= nil then � Throughput decreased

V (a≺) ← 1 − V (a≺) � Revert back the last decision
else � There may be a chance to improve throughput

a≺ ← nil � Set last action taken to none
if g and ¬o then � Congested but not overloaded

if i < |A| and Ti+1 ≥ t then � Open from above
a≺ ← argmax

{a∈A:V (a)=0}
YNC(a)

V (a≺) ← 1 � comp=on for next best attrb.
else if ¬g and o then � Not congested but overloaded

if i > 0 and Ti−1 ≥ t then � Open from below
a≺ ← argmin{a∈A:V (a)=1}YNC(a)

V (a≺) ← 0 � comp=off for next best attrb.

Ti ← t � Remember the performance at level i
t≺ ← t � Remember the last throughput

there before but seen less throughput.
• Revert. Go back to the previous setting if through-

put decreases due to Contract of Expand after an
adaptation period has passed.

The pseudo-code for the ‘onlineDFGM’ algorithm that
implements this logic is given in Algorithm 2. The
algorithm maintains the following three variables across
adaptation steps:

• Ti: throughput observed at level i (the number of
attributes compressed), initialized to ∞ at start-up,

• t≺: throughput observed at the end of the previous
adaptation period, initialized to −∞, and

• a≺: the attribute whose compression setting was
changed at the end of the previous adaptation pe-
riod, initialized to nil.

The algorithm simply applies the Contract, Expand,
and the Revert principles using the utility function
YNC(.) to determine the next attribute for which the
compression will be turned on/off. The Ti values are
used to avoid oscillation as part of the Contract and
Expand principles, whereas the t≺ and a≺ values are
used to implement the Revert principle.

This version of the ‘onlineDFGM’ algorithm has a
serious flaw: it cannot handle changes in the availabil-
ity of the computation capacity or bandwidth capacity.
For instance, assume that in the steady state we are
compressing two attributes and compressing one more
results in computation becoming the bottleneck and the
throughput going down. Further assume that after some
time the computation capacity available to us has in-
creased, so it is possible to compress one more attribute.
However, due to the Ti+1 ≥ t check, we won’t be able to
re-explore this setting. One solution to these adaptivity
problems is to periodically reset the Ti values back to ∞
in order to let the algorithm re-explore (similar to [24]).
This variation of the algorithm can adapt to changes,
but the reset interval should be kept large to avoid os-
cillation, and thus the adaptation cannot happen at small
time-scales. Also, unlike the model based algorithms, the
online algorithm suffers from discreteness problem.

Example. We continue using the example setup from
Section 3.3. With the online algorithm, the list of at-
tributes are considered in reverse order, [a4, a1, a2, a3],
since we start from the no-compress setting. Initially, we

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXX 2013 7

Algorithm 3: adaptiveDFGM(Q)

Data: Q: the buffer of tuples
while not terminated do � Thread’s main loop

Wait until Q has tuples � Until data arrives
Let Ls = block of tuples at the front of Q
Try sending Ls without blocking � Non-blocking I/O
if would block then � Compress more

c ← 0 � Amount compressed
for each block L of tuples in Q do

Let A′ = {a ∈ A : a is not compressed in L}
if L �= ∅ then � Can compress further

a ← argmax
a∈A′YNC(a) � Best attribute

Compress attribute a in L
c ← c + s(a) � Update amount compressed
if c ≥ |Ls| then break � A block’s worth

else
Dequeue Ls from Q � Done sending this block

will observe congestion, since (C
c(V) >

B
b(V) , as 6.82 > 5).

Since there is no knowledge about a higher level (open
from above), the online algorithm will compress a4 next.
The congestion will persist (C

c(V) >
B

b(V) , as 6.53 > 5.68).
Since the throughput has increased (5.68 > 5), the
algorithm will not revert back. And since we do not have
knowledge about a higher compression level, the next
attribute in line, a1 will be compressed. This time, we
will observe overload (C

c(V) ≤
B

b(V) , as 6.17 ≤ 6.58). The
algorithm will check if there is a need to revert back.
Since the throughput has increased (6.17 > 5.68), this
won’t be attempted. Next it will check if overload can
be resolved by reducing the compression level. However,
since it is known that the level below provides less
throughput, the algorithm will settle down.

3.5 Online, Fine-grained Adaptive Algorithm

We now look at an algorithm that is both online and
adaptive. Interestingly, it does not use metrics directly,
but it indirectly relies on the bandwidth and compu-
tation capacity availability. Here we describe the main
operation logic of the algorithm in general terms and
provide the intuition for its adaptation properties. In the
next section, we look at various implementation issues.

We assume that there is a transport thread that picks
up tuples to submit from a buffer that is shared with the
application level thread(s) that enqueue the tuples into
this same buffer. The pseude-code for the logic executed
by the transport thread is given in Algorithm 3.

The transport thread takes a block of tuples from the
buffer and tries sending it using non-blocking I/O. If the
block is submitted in full, the algorithm moves on to
executing the same logic for the next block of tuples.
Otherwise, the algorithm tries to compress one block’s
worth of data, but it does this ‘vertically‘. For each tuple
block in the buffer, from the oldest towards the newest, it
compresses one attribute per block until the total amount
of data compressed is equal to the size of a block. This
means that the algorithm keeps track of the number of
attributes compressed for each tuple block. The order in
which the next attribute to compress is determined by
the utility function YNC(.).

When neither the bandwidth nor the computation is
the bottleneck for all-compress and for no-compress (i.e.,
workload is not sufficient to utilize all resources), the

algorithm will send all tuples without compression since
all submissions will go through in the first try.

When the bandwidth is the bottleneck but computa-
tion is not for all-compress (Table 1, row 1), the algorithm
will compress all tuples. This is because the tuples will
build up in the buffer when the incomplete submissions
happen frequently due to bandwidth unavailability. In
response, the algorithm will start compressing tuples
attribute-by-attribute until bandwidth is available. But
even with partially compressed tuples, the bandwidth is
still the bottleneck, and thus the build-up will continue.
Eventually all sent tuples would be fully compressed.

When the computation is the bottleneck but band-
width is not for no-compress (Table 1, row 2), the algo-
rithm will not compress any tuples. Again this is because
all submissions will go through in the first try.

The true benefit of the algorithm compared to uniform
mixing is when the computation is the bottleneck for all-
compress and the bandwidth is the bottleneck for no-
compress (row 3 in Table 1). In this case, the algorithm
will perform partial compression, preferring to compress
attributes that are cheaper to compress and compress
well, based on the utility function.

The value of the utility function YNC(a) for each at-
tribute a is determined by online profiling. In particular,
every profiling period, a block of tuples is analyzed to
determine the compression cost, ratio, and the relative
attribute size. Furthermore, the contents are analyzed
to determine if custom compressors are applicable. The
latter can also be obtained from the compiler without
the need for profiling if they can be derived from the
semantics of the stream processing language at hand or
through user hints. It is expected that the utility function
values for attributes do not change frequently and thus
profiling does not need to be performed frequently.

4 IMPLEMENTATION

We now describe our implementation of the adaptive
algorithm. In particular, we look at the practical con-
siderations that has to be taken into account when
implementing Algorithm 3.

Figure 2 provides a depiction of the operational state
of the algorithm. As outlined earlier, the algorithm is im-
plemented by having a buffer in between the application
and the network. This buffer is called the compression
buffer (outermost box in the figure). Recall that the
application threads enqueue tuples into the compression
buffer. The goal of the transport thread is to submit these
tuples to the network, and opportunistically compress
data when bandwidth is not available.

In our implementation, the compression buffer has
a two-segmented structure. The first segment, called
the tuple buffer, keeps the enqueued tuples. The second
segment, called the block buffer, keeps the enqueued
tuples divided into blocks. Each block contains the wire
representation of the list of tuples associated with it as
well. The wire representation is the result of serializing
the tuples on an attribute-by-attribute basis.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXX 2013 8

���
�������	

	�

�������	

	�

�������	

	�

�
�
��
�

�
��
�

���

�������	

	�

���
�����	

	�

�����	

	�

�����	

	������	

	�

�����	

	�
���

�������	

	�

�����	

	�

�������	

	�

������

������ � ������

���

� !�" � #!"��

$

$

$

��%�!���"�& ��''�!

()
*+
,-
.
* -
/(
01
,-
*

/1
12
34
/
* 3,
(
2)
5)
2

Fig. 2: Operational state of the online, adaptive algorithm

Since DFGM uses attribute-based compression, it
needs to accumulate sufficient number of tuples to
achieve reasonable compression ratios for each attribute.
The block size H should be set such that rH(a) <
(1−σ) ·r∞(a), where rH(a) is the compression ratio that
can be achieved with a block size of H and σ is a small
number, typically less than 0.1. However, the block size
may also impact the latency. The acceptable latency is
highly dependent on the application’s quality-of-service
(QoS) requirements. Given the average tuple size, the
latency introduced due to a block can be computed by
the number of tuples in a block times the inverse of the
stream rate achieved. In the figure, a block keeps 4 tuples
(this is a rather small block used for illustration purposes
only). In the evaluation part we study the impact of
buffer and block sizes on performance.

Since the application threads may generate tuples at
a higher rate than the transport layer can handle, the
compression buffer has an upper bound on its size. The
buffer size refers to the total number of tuples in the
compression buffer, including the tuple and the block
buffers. The transport thread is responsible for moving
tuples from the tuple buffer into the block buffer. At each
iteration, it moves one block’s worth of tuples (if exists)
and attempts to submit the oldest block to the network.
If the submission results being incomplete (using non-
blocking I/O call), then the transport thread attempts
to perform compression on the blocks, starting from the
oldest, moving towards the newest. It compresses one
block’s worth of data using partial compression: the next
attribute in line is compressed for each block considered.

In the figure, we could see that the oldest block has
all its attributes compressed, whereas some newer ones
have less attributes compressed. This is due to the fact
that at each compression attempt, we do not compress
a fixed number of blocks, but instead a fixed number
of bytes. This is done to emulate the behavior of a
static system, where at each iteration a block is formed,
compressed, and sent. Each block keeps a variable that
points to the next attribute to be compressed. This is
shown using the * sign in the figure. Note that the
attributes are considered in the order of their utility. In
the figure, this order is: yellow, blue, red. This is easy to
observe, as going from left to right, the first compression
we see is for the yellow attribute, the second is for the
blue attribute, and the third is for the red attribute.

The reason original tuples are kept together with the
wire-format blocks is that special-purpose compressors
are templatized on data types. Given an attribute to
compress and its type, the compressors iterate over

the tuples and stream the compressed output into the
proper location within the serialized block. Furthermore,
for special-purpose compressors, the value of the at-
tribute with its native in-memory layout is required for
performing operations on it (e.g., subtraction for the
‘seqComp’ compressor). To minimize the overhead of
memory allocation and data copying, we perform the
compression in-place, by overwriting the wire-formatted
data. The original tuples can be discarded if and when all
attributes are compressed. In the figure, tuples associated
with the oldest two blocks are already discarded.

Wire-formatted blocks contain data in the column-
oriented format, where the values of the same attribute
from subsequent tuples are placed consecutively in
the serialization. Since we perform compression on an
attribute-by-attribute basis, the compression leaves a gap
in the serialization as we do not want to pay the cost of
shifting the serialized representations of the rest of the
attributes. These gaps can be seen in the figure as part of
the blocks that have compressed attributes. As a result,
we send the serialized blocks to the network transport
using scattered I/O. In particular, we use the writev call
from the Standard C Library.

DFGM incurs some additional overhead due to the
layout of the partially compressed serialized blocks.
First, on the decompression side, we need to dis-
tinguish the sub-blocks corresponding to different at-
tributes within a serialized block. For this purpose we
include the size of the sub-blocks as part of the block
header. This would require 4 · |A| bytes, where 4-byte
integers are used to encode the size of each sub-block.
However, for this purpose we use base 128 varint vari-
able length encoding. This reduces the size to half, that
is to 2 · |A| bytes, for most practical setups. Second, we
need to identify whether each sub-block is compressed
or not, which requires |A|/8 bytes using a single bit to
represent the compression setting for each attribute.

Finally, a writev call in non-blocking mode can result
in partial writes. In Algorithm 3 we assumed that the
transport thread compresses attributes from the not yet
sent tuple blocks when the send attempt returns ‘would
block’. In practice, such non-blocking calls may write
partial data and then return indicating that further write
would block. The figure illustrates this on the oldest
block, where the write is shown to have sent the yellow
and red attributes, but the blue attribute is sent partially.
As a result, we only apply compression to the to be sent
block if it has not been partially written, otherwise we
start the compression from the next block available.

5 EVALUATION

We evaluate the effectiveness of DFGM, using both
model-based results that study a wide range of factors,
as well as results that use our C++ implementation
on real-world data sets. The model based experiments
evaluate the impact of various factors on three im-
portant metrics, namely: the throughput achieved, the
bandwidth and Cpu utilizations. The implementation

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXX 2013 9

props.\names seqNo RIC Date[G] Time[G] Type Bid Price Bid Size Ask Price Ask Size Qualifiers

types long string string string string double double double double string
sizes 0.08 0.07 0.15 0.17 0.09 0.08 0.08 0.082 0.08 0.11
best alg. seq zlib sameVal sameVal sameVal zlib zlib zlib zlib sameVal
compr. ratios ∼ 0 0.28 ∼ 0 0.27 0.13 0.25 0.1 0.25 0.11 0.46
compr. cost 0.006 0.224 0.006 0.011 0.012 0.245 0.114 0.243 0.121 0.019
compr. rank 0 7 1 3 2 9 5 8 6 4

TABLE 2: Properties of the attributes in the TAQ data set.

based experiments compare FGM and DFGM in terms of
throughput and showcase the adaptivity of our solution
by dynamically changing the bandwidth availability.

5.1 Experimental Setup

We describe the experimental setup for the model and
implementation based experiments.

Description default range

of tuple attributes 10 [1, 20]
attrb. size Zipf param. 0.2 [0, 1]
compr. ratio Normal mean 0.1 [0.01, 1.2]
compr. ratio Normal stddev 2.0 [0, 2]
available bandwidth 1Gbit/s [100Mbit/s, 10Gbit/s]
available Cpu 1 [0, 1]
compr. cost scale 10 [1, 20]
computation cost scalers

application 1× —
compression 2× [1, 10]
submission 0.1× —

TABLE 3: Experimental parameters: default values and ranges

Model parameters: Table 3 shows the list of model param-
eters used. Here we describe the parameter settings that
are not immediately obvious from the table. The relative
attribute sizes are generated using a Zipf distribution,
where attribute ai has size proportional to 1/(1 + i)α,
where α is the Zipf parameter. The compression ratios
are picked using a Normal distribution with mean μ and
standard deviation σ, but the distribution is clipped to
fit the range [0.01, 1]. For μ = 0.1 and σ = 2 (default),
we have a mean compression ratio of 0.5. For smaller
values of the σ, the mean gets closer to μ. The available
bandwidth is set to a default value of 1Gbit/sec. The
Cpu availability is set to 1 by default. We adjust the
processing costs such that it is possible to process tuples
at 5× the rate of the default bandwidth when there is no
compression or tuple submission and all Cpu is avail-
able. The relative costs of application, compression, and
submission costs are given in the table. The compression
cost scale is the relative cost of compression for the best
compressing attribute to that of the worst compressing
attribute. Here we assumed a linear relationship between
costs and the compression ratio.

Real-world data-sets: We use a financial data stream called
TAQ [5] as our main workload. The data is a sequence
of trade and quote transactions, where trade transactions
are characterized by the price of an individual security
and the number of securities that were acquired/sold
(i.e., volume). The quote transactions can either be a bid
or an ask quote. A bid quote refers to the price a market
maker will pay to purchase a number of securities and
an ask quote refers to the price a market maker will sell
a number of securities for.

Table 2 provides the properties of the attributes found
in the TAQ stream. In particular, we provide the types of
the attributes, their relative sizes, the best compression
algorithm (based on (1 − r(a))/cc(a)) for the attribute,
the compression ratio, normalized compression cost, and
finally the rank of the attribute for compression (0 mean-
ing the attribute is the first one to be compressed).

We use two additional workloads. One is from the
Linear Road Benchmark [7]. This dataset, referred to as
the LinearRoad dataset, contains location (road, segment,
direction, etc.) and time information about cars driving
on a simulated highway. In this workload, all attributes
are numerical (a total of 10 attributes) and have similar
size. The characteristics of the attributes with respect
to compression is not as diverse as the TAQ workload.
We expect lesser benefit from discriminative mixing for
this dataset. The other workload we use is from a net-
work monitoring application (used in [25]) that monitors
Linux log files for login attempts. This dataset, referred
to as the LogWatch dataset, has 7 diverse attributes,
but interestingly one of the attributes has large size,
constituting a majority of the tuple’s content.

Experimental system: For experiments, we used two ma-
chines, each with a 2.2GHz Intel processor that has 32KB
L1 data, 32KB L1 instruction, and 256 KB L2 cache per
core, 6 MB L3 cache that is shared for all cores, and
4GB of memory. The processor has 4 cores, but we only
use one core for the transport thread. We used a 1Gbit
Ethernet network for the communication. The OS used
was FreeBSD 9.

For controlling the bandwidth available for communi-
cation, we used the ipfw command line tool available
on BSD-based Unix systems. In particular, we used the
dummynet traffic shaper facilities to set the bandwidth
of the connection to the desired value.

5.2 Model based experiments

We discuss the set of experiments conducted using our
model, based on the parameters listed in Table 3.

Impact of Cpu availability: Figure 3 plots throughput as a
function of the Cpu availability, for different approaches.
Here, the goal is to show the superiority of discrimina-
tive mixing over uniform mixing. The ‘pOnly’ approach
represents uniform mixing. ‘subsP’ represents the opti-
mal discriminative mixing, with p∗(V) used to handle
the discreteness problem. It tries every possible subset
to find the best setting of V in terms of throughput.
‘subsD’ is similar, but does not use p∗. ‘plain’ represents
no-compress and ‘comp’ represents all-compress. Results
are relative to the throughput of the ‘pOnly’ approach.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXX 2013 10

��� ��� ��� ��� ��� ���
�	�
���� ���

���

���

���

���

���

���

���

���

��
��
�
�
�
�
�
�
��
��
��
�
�
��
�
�
�
�
��

 !"#$

%&'%(

%&'%)

*+,

 #-."

Fig. 3: Relative throughput as a
function of Cpu availability.

��� ��� ��� ��� ��� ���
�	�
���� ���

���

���

���

���

���

���

�����

�����

�����

����

�����
!"
#"$
%
&
'
(
)
&
*
"&
!+

Fig. 4: Bandwidth utilization as
a function of Cpu availability.

��� ��� ��� ��� ��� ���
�	�
���� ���

���

���

���

���

���

���

�����

�����

�����

����

�����

!"
#"$
%
&
'(

Fig. 5: Cpu utilization as a
function of Cpu availability.

��� ��� ��� ��� ��� ��� ��� ���
�	�
���� �����
��� ��

���

���

���

���

���

���

���

���

��
��
�
�
�
�
�
�
��
��
��
�
�
��
�

�
!
�"

#$%&'

()*(+

()*(,

-./#

#&01%

Fig. 6: Relative tputȧs a
function of bwidth. availability.

We observe from Figure 3 that for low Cpu availability
all approaches except ‘comp’ achieves the same through-
put. As more Cpu becomes available, the bandwidth
becomes the bottleneck and the ‘comp’ approach starts to
gain in terms of relative performance (as it compresses
data) and ‘plain’ starts to lose its relative effectiveness
(as it does not perform compression). More importantly,
we see that discriminative mixing reaches up to 26%
higher throughput compared to uniform mixing. The
throughput difference between ‘subsD’ and ‘subsP’ is
small, as we use 10 attributes by default.

Figure 4 plots the utilization of the bandwidth as a
function of the Cpu availability for different approaches.
We see that all approaches, except ‘comp’, are able to
saturate the bandwidth starting from modest values of
the Cpu availability (> 0.25). However, as it was clear
from Figure 3, discriminative mixing is able to make the
most out of fully utilizing the bandwidth as it is able to
compress as much as possible, without making Cpu the
bottleneck (as opposed to ‘comp’).

Figure 5 plots the utilization of the Cpu as a function
of the Cpu availability. We see that all approaches,
except ‘plain’, are able to saturate the cpu. ‘subsD’ is
able to achieve slightly lower cpu utilization compared
to ‘subsP’, due to the discreteness issue. ‘plain’ suffers
significantly as it does not perform compression and hits
the bandwidth limit early.

Impact of bandwidth availability: Figure 6 plots throughput
as a function of the bandwidth availability, for different
approaches. Again, the goal is to show the superior-
ity of discriminative mixing over uniform mixing. We
see that when the bandwidth is plenty all approaches
except ‘comp’ reach the same throughput. ‘comp’ suf-
fers relatively as it hits the Cpu bottleneck. For very
low bandwidth availability (close to 0), all approaches
except ‘plain’ reduce to all compress, so they all pro-
vide the same throughput, except ‘plain’ which suffers
from lack of compression. Most importantly, we observe
that discriminative mixing provides up to 30% higher
throughput compared to uniform mixing. Figure 7 plots
the utilization of the bandwidth as a function of the
bandwidth availability for different approaches. We see
that all approaches, except ‘comp’, are able to saturate
the bandwidth until the cpu becomes the bottleneck
(0.6 · 109, at which point all approaches except ‘comp’
reduce to no compress), after which point additional
bandwidth ends up being unused. However, as it was

��� ��� ��� ��� ��� ��� ��� ���
�	�
���� �����
��� ��

���

���

���

���

���

���
�����

�����

�����

�� �

��!"�

#
$%
&%'
(
)
*
+
,
)
-
%)
$.

Fig. 7: Bandwidth utilization
as a function of bandwidth

availability.

��� ��� ��� ��� ��� ��� ��� ���
�	�
���� �����
��� ��

���

���

���

���

���

���

�����

�����

�����

�� �

��!"�

#
$%
&%'
(
)
*+
#

Fig. 8: Cpu utilization as a
function of bandwidth

availability.

clear from Figure 6, discriminative mixing is able to
make the most out of fully utilizing the bandwidth as it
is able to compress as much as possible, without making
Cpu the bottleneck.

Figure 8 plots the utilization of the Cpu as a function
of the bandwidth availability. We see that all approaches,
except ‘plain’, are able to saturate the Cpu quickly as
the bandwidth availability increases (> 0.8 · 108). Again,
‘subsD’ is able to achieve slightly lower Cpu utilization
compared to ‘subsP’, due to the discreteness issue. ‘plain’
suffers for low bandwidth availability since it does not
compress data and as such cannot utilize the cpu. Once
there is enough bandwidth availability, cpu becomes the
bottleneck for all approaches.

Joint impact of Cpu and bandwidth availability: Figure 9
plots the available bandwidth as a function of both the
bandwidth and the Cpu availability. Again the through-
put is relative to that of ‘pOnly’. As expected, when
the bandwidth is plenty, all approaches except ‘comp’
provide the same throughput. When the bandwidth is
scarce, all approaches except ‘plain’ provide the same
throughput. The sweet spot for discriminative mixing is
when both the Cpu and the bandwidth availability are
low. This is the region where Cpu becomes the bottleneck
for all compress, whereas bandwidth becomes the bot-
tleneck for no compress, that is the same region we have
identified in Table 1 for fine-grained mixing. We see that
when there is opportunity for performing fine-grained
mixing, doing it via discriminative mixing provides up
to 30% better throughput compared to uniform mixing.

Impact of heuristic approaches: Figure 10 plots the through-
put (absolute) as a function of the Cpu availability,
for different heuristic approaches. Here, we use ‘subsP’
as the upper bound on the throughput and ‘pOnly’
(uniform mixing) as the baseline approach. There are
a number of important observations from the figure.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXX 2013 11

Fig. 9: Throughput vs. Cpu and
bandwidth availability.

��� ��� ��� ��� ��� ���
�	�
���� ���

���

���

���

���

���

���

��
��
�
�
�
�
�
�

��

�����

�� �!

"#$$%�&'!()*&

"#$$%�&'!()*

"#$$%�&'!(+,

"#$$%�&'!(-&

"#$$%�'&()*&

"#$$%�'&()*

"#$$%�'&(+,

"#$$%�'&(-&

.��/�$()*&

Fig. 10: Tput. as a function of
Cpu, for different heuristics.

��� ��� ��� ��� ��� ��� ��� ���
�	�
���� �����
��� ��

�

�

�

�

�

�

�

�

��
��
�
�
�
�
�
�

��

�� !"

#$%#&

'())*"+,&-./+

'())*"+,&-./

'())*"+,&-01

'())*"+,&-2+

'())*",+-./+

'())*",+-./

'())*",+-01

'())*",+-2+

3 !4)-./+

Fig. 11: Tput. as a function of
bwidth., for different heuristics.

� � �� �� ��
����	
���� ���� ����

���

���

���

���

���

���

���

���

���

���

��
��
�
�
�
�
�
�
��
 !
�"
#
�
��
�
$
�
%
 &

'()*+

,-.,/

,-.,0

123'

'*45)

Fig. 12: Tput. as a function of
compression cost scale.

� � �� �� ��
� �� �	 	
��	��

���

���

���

���

���

���

���

���

��
��
�
�
�
�
�
�

���

�����

 !" #

$%&&'�()#*+,(

$%&&'�()#*+,

$%&&'�()#*-.

$%&&'�()#*/(

$%&&'�)(*+,(

$%&&'�)(*+,

$%&&'�)(*-.

$%&&'�)(*/(

0��1�&*+,(

Fig. 13: Throughput as a
function of # of attributes.

��� ��� ��� ��� ��� ���
�	
� �� ��
 ���
 ���� � ���� ��

���

���

���

���

���

���

���

���

��
��
�
�
�
�
�
�

�
�

�� !"

#$%#&

'())*"+,&-./+

'())*"+,&-./

'())*"+,&-01

'())*"+,&-2+

'())*",+-./+

'())*",+-./

'())*",+-01

'())*",+-2+

3 !4)-./+

Fig. 14: Throughput as a
function of attribute size skew.

First, all greedy algorithms perform very close to the
optimal, with the exception of those that use the HB
(highest bandwidth used) metric. Second, these greedy
algorithms all perform better than the ‘pOnly’ baseline,
providing up to 22% higher throughput. Third, the on-
line algorithm that uses HBC metric, that is ‘onlineHBC’
also performs up to 15% better than the ‘pOnly’ baseline,
yet the throughput it achieves is slightly below that
of the greedy algorithms. Third, the ‘CNP’ variants of
the greedy algorithms have a very small throughout
advantage compared to the ‘NC’ variants due to apply-
ing probabilistic compression to solve the discreteness
problem. We will study the impact of the number of
attributes on this difference separately, as part of the
sensitivity studies. Finally, we observe that increasing
Cpu availability makes it possible to use compression to
better utilize the bandwidth that becomes the bottleneck.

Figure 11 plots the throughput (absolute) as a function
of the bandwidth availability, for different heuristic ap-
proaches. The results are similar in nature to those from
Figure 10, with respect to the comparative performance
of the difference approaches. One minor variation is
that, the ‘onlineHBC’ approach performs closer to the
greedy approaches compared to the Cpu graph from Fig-
ure 10. When the available bandwidth reaches a certain
threshold, all approaches reduce to no compression and
provide the same throughput. When the bandwidth is
extremely scarce, all approaches reduce to all compress
and again provide similar throughput. For low band-
width availability scenarios fine-grained mixing (for all
variations except HB-based greedy approaches) again
outperforms uniform mixing.

Sensitivity to compression cost scale: Figure 12 studies the
sensitivity of compression schemes to the compression
cost scale, that is the relative compression cost of the
least compressible data compared to the compression

cost of the most compressible data. Recall that we use
this to study the impact of custom compressors that
can provide extremely cheap compression at a very low
cost. The figure plots the throughput relative to that
of the ‘pOnly’ approach. We see that ‘comp’s relative
performance degrades as the relative cost of difficult
to compress data increases. This is expected as the all-
compress approach is wasting computational resources
even more when the cost of compression increases more
with reducing compression ratio. On the other hand, dis-
criminative mixing excels when there are attributes for
which compression can be done very effectively and very
cheaply, as well as those for which compression is costly
and ineffective. Discriminative mixing achieves this per-
formance by prioritizing the attributes to compress and
thus achieves higher throughput compared to ‘pOnly’.
When the cost of compression is the same irrespective
of the compression ratio (point 1 on the x-axis), the
throughout gained from applying discriminative mixing
over uniform mixing is the least (5% for this particular
setting), but as the costs decreases for better compressing
attributes (such as due to using custom compressors), the
gain in throughput increases significantly (up to %25).

Sensitivity to number of attributes: Figure 13 studies the
impact of the number of attributes on the effectiveness
of the compression. It plots the absolute throughput as
a function of the number of attributes. An important ob-
servation from the figure is that, the approaches that do
not perform probabilistic compression, such as the ‘gree-
dyNC’ variants, suffer when there is a single attribute,
since they reduce to either all compress or no compress.
Their performance catches up only when the number
of attributes go over 5. Another important observation
is that, the ‘pOnly’ and ‘greedyCNP’ approaches both
perform optimally when there is only a single attribute.
The performance of uniform mixing drops as the num-
ber of attributes increases, whereas the performance of
discriminative mixing increases up to 8 attributes. To
summarize, this experiment shows that discriminative
mixing should be performed with probabilistic compres-
sion to avoid throughput sub-optimalities resulting from
discreteness due to a few number of attributes.

Sensitivity to relative size distribution: Figure 14 plots the
throughput as a function of the skew in the attribute
size distribution. Recall that relative attribute sizes are
picked using a Zipf distribution with parameter α. For

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXX 2013 12

α = 0, we have a uniform distribution, and as the
α increases the distribution becomes more skewed. We
observe that the uniform mixing is not impacted by the
skew. Same is true for optimal discriminative mixing,
that is ‘subsP’. Among the heuristic approaches, the
SC (smallest computation cost) based approaches show
decreasing throughput as the skew increases. The HB
(highest bandwidth) based approaches are again per-
forming worse than uniform mixing, yet their through-
put increase with increasing skew. Overall discriminative
mixing holds a steady advantage over uniform mixing
for the entire range of the skew parameter (∼ 25% for
greedy approaches with HBC or LR).

Sensitivity to compression ratio distribution: Figure 15
plots the absolute throughput as a function of the

��� ��� ��� ��� ���
����	
� �� �� ��	����� ��� ��

���

���

���

���

���

��
��
�
�
�
�
�
�

�	�

��� !

"#$"%

&'(()!*+%,-.*

&'(()!*+%,-.

&'(()!*+%,/0

&'(()!*+%,1*

&'(()!+*,-.*

&'(()!+*,-.

&'(()!+*,/0

&'(()!+*,1*

2� 3�(,-.*

Fig. 15: Tput. as a function of
compression ratio deviation.

standard deviation
for the compression
ratio. Recall that the
compression ratios
for the attributes are
picked using a Normal
distribution that is
restricted to the range
[0, 1]. As the standard
deviation gets close to 2
(the right end of the x-
axis), we have almost a uniform distribution, whereas as
it reaches 0 (the left end), we have a fixed compression
ratio of μ = 0.1. The throughput decreases as the
deviation increases, since the overall mean compression
ratio increases due to the range clipping. When there is
no variation in the compression ratios (left end), there
is no additional benefit provided by discriminative
mixing, since we also model the costs as relative to the
compression ratio. As the variance in the compression
rates increases, discriminative mixing starts providing
improvement over uniform mixing. Interestingly, when
the deviation of the compression ratio is low (around
0.3), the ‘onlineHBC’ algorithm starts performing worse
than the ‘pOnly’ approach, where all greedy algorithms
except HB variants outperform the ‘pOnly’ approach.

Summary: We have shown that DFGM can be more
effective compared to uniform FGM (up to 30%).
When model parameters are available at run-time,
discriminate mixing can be implemented cheaply
using the greedy algorithms we introducted. The
HBC (highest bandwidth gained per computation cost
incurred) metric is the most robust one to be used
with the greedy algorithms. The ‘greedyCNP’ performs
better than ‘greedyNC’ for cases where the number of
attributes is small. As such ‘greedyCNP HBC’ is the
most robust model-based algorithm. For cases where
model parameters are not available at run-time, the
‘online’ algorithm still outperforms the optimal uniform
mixing under most scenarios.

5.3 Implementation based experiments

We now present results on implementation based ex-
periments, comparing the adaptive and online implemen-
tations of the fine-grained and uniform mixing ap-
proaches, based on the discussion given in Section 3.5.

Comparison of discriminative and uniform mixing: Figure 16
plots the absolute throughput as a function of the
available bandwidth. For this experiment we compare
the no compress, all compress, uniform mixing, and
discriminative mixing approaches. We observe that the
compress all performs well only for very low bandwidth
scenarios, whereas compress none performs well only
when the bandwidth is plenty. More interestingly, we
observe that discriminative mixing is able to reach its
maximum throughput earlier than uniform mixing. Uni-
form mixing cannot reach this maximum throughput
when the block size is set to its default value of 4K. For
this reason, we have also included the line for uniform
mixing for a block size of 1K. With this setting, uniform
mixing eventually reaches the maximum throughput
but this happens only when the available bandwidth
reaches close its maximum value of 1Gbit/sec. When the
bandwidth availability is at 500Mbits/s, we see that dis-
criminative mixing with 4K blocks provides around 40%
improvement over uniform mixing with 1K blocks and
around 18% improvement over uniform mixing with 4K
blocks. Uniform mixing suffers from large blocks since
making compression decisions on large blocks brings it
closer to an approach that switches between no compress
and all compress (looses its fine-grained nature). On
the other hand, small blocks reduce the effectiveness of
the compression. For discriminative mixing, even with
larger blocks we can perform partial compression, which
is an important advantage over uniform mixing.

Figure 17 plots the throughput for the LinearRoad
dataset. Recall that this dataset has small variability
among the characteristics of the attributes in terms of
their compression cost, compression ratio, and data size.
As such, discriminative mixing provides minor improve-
ment over uniform mixing.

Figure 18 plots the throughput for the LogWatch
dataset. Here, discriminative mixing shows benefit but
only after the bandwidth availability reaches a certain
threshold. Recall that this dataset has one attribute that
constitutes majority of the tuple’s content. As long as
that attribute is one of the compressed attributes, dis-
criminative and uniform mixing are not too different.
Once discriminative mixing decides to exclude this at-
tribute from compression (after there is sufficient band-
width availability), it gains the throughput advantage.

Impact of block size on throughput: Figure 19 plots the
absolute throughput as a function of the block size. We
vary the block size between 1K and 64K. We observe that
the maximum throughput that can be achieved increases
with increasing block size, but eventually it converges
to a fixed maximum. In particular, having a block size
greater than 32K does not provide any additional benefit.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXX 2013 13

� ��� ��� ��� ��� ���� ����
���	
��
� ����	��� ���	�����

�

��

���

���

���

���

���

���

���

��
��
�
�
�
�
�
�
 !
"
#�
$%
$&

'()*+,--.(/,

'()*+,--011

23/,4+53/,67383/9:;

23/,4+53/,67383/9<;

63-'=3/,4+53/,67383/9:;

Fig. 16: Tput. as a function of
available bwidth. – TAQ

� ��� ��� ��� ��� ���� ����
���	
��
� ����	��� ���	�����

�

���

���

���

���

���

��
��
�
�
�
�
�
�
 !
"
#�
$%
$&

'()*+,--.(/,

'()*+,--011

23/,4+53/,67383/9

63-'+3) 3/5: 3;,<3/,4+53/,67383/9

Fig. 17: Tput. as a function of
available bwidth. – LinearRoad

� ��� ��� ��� ��� ���� ����
���	
��
� ����	��� ���	�����

�

���

���

���

���

���

��
��
�
�
�
�
�
�
 !
"
#�
$%
$&

'()*+,--.(/,

'()*+,--011

23/,4+53/,67383/9

63-'+3)3/5: 3;,<3/,4+53/,67383/9

Fig. 18: Tput. as a function of
available bwidth. – LogWatch

� ��� ��� ��� ��� ���� ����
���	
��
� ����	��� ���	�������

�

���

���

���

���

���

���

���

��
��
�

�
!
�
�
"#
$
%�
&'
&(
)
*

+,-.

-,./

.,01

/+0-

+12/.

2-31/

14421

Fig. 19: DFGM throughput with
different block sizes. – TAQ

A 32K block provides around 50% higher bandwidth
compared to our default block size of 4K . In general, a
larger block size is able to reach a given throughput level
at a lower bandwidth availability compared to smaller
block size. However, a larger block size also implies
larger latency, tolerance to which is highly dependent
on the application requirements.

Adaptivity to bandwidth availability: Figure 20 plots the
throughput achieved by discriminative fine-grained
mixing and the available bandwidth as a func-
tion of time. For this experiment, we have changed
the available bandwidth based on a step function.
We use three different steps. The first step mod-
els low bandwidth availability, for which the band-
width is the bottleneck and thus Cpu can be used
to perform compression and achieve a throughput
value that is higher than the available bandwidth.

� �� �� �� �� �� �� �� 	�
�
���

���

���

���

���

���

���

���

���

���

��
�
�
�
�
�
�
�
��
�
��
��
��

��������

� !"#$ %#�

&'() *+),-./+0

Fig. 20: Throughput and
bandwidth availability.

The first and the fourth
segments in the figure
show this, where the
throughput is higher
than the bandwidth. The
second step models high
bandwidth availability,
for which the Cpu is
the bottleneck. As a
result, no compression
is performed and the
throughput achieved is lower then the available
bandwidth. The second segment in the figure illustrates
this. The third step models the scenario where the
available Cpu and bandwidth resources are balanced,
and thus the throughout achieved is close to the
bandwidth available. The third segment in the figure
shows this. Overall, the discriminative mixing is able
to adapt well to bandwidth availability. Due to the
fine-grained nature of the mixing and the non-blocking
I/O based implementation, the adaptation is quick.

6 RELATED WORK

Data compression has been used in distributed systems
to reduce the demand for network and disk bandwidth,
disk space, and to address the disparity between I/O
and processing speeds [9]. As such, it is natural to use
adaptive compression to address variable bandwidth
and Cpu availability in stream processing systems.

Our work is motivated by two lines of research. First

is the work on adaptive fine-grained mixing by Pu and
Singaravelu [20]. Fine-grained mixing switches between
compression and no compression, at the granularity of
individual blocks, and thus achieves partial compres-
sion. In this work, we model fine-grained mixing and
provide a formula for the optimal mixing ratio. We then
extend our model to discriminative fine-grained mixing,
in order to take advantage of the structured nature of
data streams as well as the significantly different com-
pression ratios and costs of different stream attributes.
We show that discriminative fine-grained mixing pro-
vides higher throughput compared to uniform mixing.

Several other works exist in the area of adaptive
compression. In [13], a backward compatible version of
the original fine-grained mixing algorithm is presented,
which provides better compression ratios, wider range
of data reduction and Cpu cost options, and paralleliza-
tion strategies. The idea of using different compression
approaches based on network and Cpu availability has
appeared in several previous works, although without
fine-grained adaptation. For instance, Dynamic Com-
pression Format Selection (DCFS) [18] minimizes the
total delay of transmitting and decompressing Java .jar
files for remote execution. NCTCSys [19] system senses
network and server parameters to efficiently use an
appropriate method to balance the load and performance
of the server and network for transmission of text files.
Similar approaches for general data also exist [30], which
monitor current network and processor resources, as-
sess compression effectiveness, and automatically choose
the best compression technique to apply. Finally, the
Adaptive Compression Environment (ACE) [27] adopts
a strategy that determines whether to use compression
or not based on the Network Weather Service [31].

The second motivation for our work is compression
in databases [8], [22], which is used not only to reduce
disk space and to minimize disk I/O, but also to speed
up query processing [21], [12]. Particularly relevant to
our work is the use of compression in column-oriented
databases [2], for which repeated attribute values are
shown to be common and thus column-wise compres-
sion very effective [3]. Previous work on databases has
also investigated the selection of appropriate compres-
sion methods to best exploit the Cpu and I/O bandwidth
trade-offs for table scans [15].

Compression on streaming data has also been a pop-
ular technique for audio and video transmission, such

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXX 2013 14

as Mpeg-1 layer 3 [16] for audio streaming. As another
example, On-Demand Dynamic Distillation method [10]
uses a proxy-based approach to tailoring content for
clients, which is useful when images and video are trans-
mitted to hardware constrained clients. However, these
approaches typically use lossy compression techniques,
and as such are not applicable in our setting.

7 FUTURE WORK

We consider two lines of future work. First is the inves-
tigation of using more than one thread for compressing
the buffered data. This has been studied to some extent
in the context of uniform fine-grained mixing [13]. A
related issue is the use of compression algorithms that
have built-in support for parallelism [4], [17].

Second, we would like to extend our model to cover
the receiving end of the system (where partial decom-
pression is done). When the receiver processing is heavy
(due to application logic) or decompression takes more
time than compression (asymmetrical algorithms [23]),
this will impact the optimal mixing ratio.

8 CONCLUSION

We introduced an adaptive compression scheme for data
stream processing systems, called discriminative fine-
grained mixing (DFGM). We rely on the typed and
structured nature of the data streams to select an ef-
fective subset of attributes to compress, in order to best
utilize the available bandwidth without making the Cpu
a bottleneck. When the computational resources are not
sufficient to compress the entire stream, our approach
judiciously selects the attributes that can bring good
reduction in the used bandwidth at a low computational
cost. Furthermore, the algorithm can quickly adapt as
the bandwidth, Cpu, and workload availability changes.
Through a detailed experimental evaluation, we have
shown that DFGM outperforms uniform mixing, across
a wide-range of values for the system parameters.

REFERENCES

[1] D. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel, M. Cherniack,
J.-H. Hwang, W. Lindner, A. Maskey, A. Rasin, E. Ryvkina,
N. Tatbul, Y. Xing, and S. Zdonik. The design of the Borealis
stream processing engine. In CIDR, 2005.

[2] D. J. Abadi, P. A. Boncz, and S. Harizopoulos. Column oriented
database systems. VLDB Journal, 2(2), 2009.

[3] D. J. Abadi, S. Madden, and M. Ferreira. Integrating compression
and execution in column-oriented database systems. In ACM
SIGMOD, 2006.

[4] M. Adler. pigz - parallel gzip. http://www.zlib.net/pigz/.
retrieved Jan 2012.

[5] H. Andrade, B. Gedik, K.-L. Wu, and P. S. Yu. Processing high
data rate streams in System S. Elsevier JPDC, 71(2), 2011.

[6] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, R. Motwani,
I. Nishizawa, U. Srivastava, D. Thomas, R. Varma, and J. Widom.
STREAM: The Stanford stream data manager. IEEE Data Engi-
neering Bulletin, 26(1), 2003.

[7] A. Arasu, M. Cherniack, E. F. Galvez, D. Maier, A. Maskey,
E. Ryvkina, M. Stonebraker, and R. Tibbetts. Linear Road: A
stream data management benchmark. In VLDB, 2004.

[8] G. V. Cormack. Data compression on a database system. CACM,
28(12), 1985.

[9] F. Douglis. On the role of compression in distributed systems.
ACM Operating Systems Review, 27(2), 1993.

[10] A. Fox, S. D. Gribble, E. A. Brewer, and E. Amir. Adapting to net-
work and client variability via on-demand dynamic distillation.
In ASPLOS, 1996.

[11] B. Gedik and H. Andrade. A model-based framework for building
extensible, high performance stream processing middleware and
programming language for IBM InfoSphere Streams. Software:
Practice and Experience, 42(11), 2013.

[12] G. Graefe and L. D. Shapiro. Data compression and database
performance. In ACM SAC, 1991.

[13] M. Gray, P. Peterson, and P. Reiher. Scaling down off-the-shelf
data compression: Backwards-compatible fine-grain mixing. In
IEEE ICDCS, 2012.

[14] M. Hirzel, H. Andrade, B. Gedik, V. Kumar, G. Losa, M. Mendell,
H. Nasgaard, R. Soulé, and K.-L. Wu. SPL language spec.
Technical Report RC24897, IBM, 2009.

[15] A. L. Holloway, V. Raman, G. Swart, and D. J. DeWitt. How to
barter bits for chronons: compression and bandwidth trade offs
for database scans. In ACM SIGMOD, 2007.

[16] ISO. Information technology – Coding of moving pictures and as-
sociated audio for digital storage media – Part 3: Audio. Technical
Report ISO/IEC 11172-3, ISO, 1993.

[17] S. T. Klein and Y. Wiseman. Parallel Lempel-Ziv coding. Elsevier
Discrete Applied Mathematics, 146(2), 2005.

[18] C. Krintz and B. Calder. Reducing delay with dynamic selection
of compression formats. In IEEE HPDC, 2001.

[19] N. Motgi and A. Mukherjee. Network conscious text compression
system (nctcsys). In IEEE ICIT, 2012.

[20] C. Pu and L. Singaravelu. Fine-grain adaptive compression in
dynamically variable networks. In IEEE ICDCS, 2005.

[21] G. Ray, J. R. Haritsa, and S. Seshadri. Database compression: A
performance enhancement tool. In COMAD, 1995.

[22] M. A. Roth and S. J. V. Horn. Database compression. SIGMOD
Record, 22(3), 1993.

[23] D. Salomon. Data compression: The complete reference. Springer,
2006.

[24] S. Schneider, H. Andrade, B. Gedik, A. Biem, and K.-L. Wu. Elastic
scaling of data parallel operators in stream processing. In IEEE
IPDPS, 2009.

[25] S. Schneider, M. Hirzel, B. Gedik, and K.-L. Wu. Auto-
parallelizing stateful distributed streaming applications. In PACT,
2012.

[26] StreamBase Systems. http://www.streambase.com. retrieved
May, 2011.

[27] S. Sucu and C. Krintz. ACE: A resource-aware adaptive compres-
sion environment. In IEEE ITCC, 2003.

[28] D. Turaga, H. Andrade, B. Gedik, C. Venkatramani, O. Verscheure,
J. D. Harris, J. Cox, W. Szewczyk, and P. Jones. Design principles
for developing stream processing applications. Software: Practice
& Experience, 40(12), 2010.

[29] Storm project. http://storm-project.net/. retrieved May, 2012.
[30] Y. Wiseman and K. Schwan. Efficient end-to-end data exchange

using configurable compression. In IEEE ICDCS, 2004.
[31] R. Wolskia, N. Spring, and J. Hayes. The network weather

service: A distributed resource performance forecasting service
for metacomputing. Springer FGCS, 15(5-6), 1999.

[32] S4 distributed stream computing platform. http://www.s4.io/.
retrieved May, 2012.

Buğra Gedik is with the Department of Com-
puter Engineering, İhsan Doğramacı Bilkent Uni-
versity, Ankara, Turkey. Prior to that he was with
the IBM T. J. Watson Reserach Center, NY, USA.
He has obtained his Ph.D. degree in Computer
Science from Georgia Institute of Technology,
USA, and his B.S. degree in Computer Engi-
neering and Information Science from Bilkent
University, Turkey. Dr. Gedik’s research interests
are in distributed data-intensive systems with a
particular focus on stream computing.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

