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Abstract—Optical buffers based on Fiber Delay Lines (FDL)
have been proposed for contention resolution in optical
packet/burst switching systems. In this article, we propose a
retrial queuing model for FDL optical buffers in asynchronous
optical switching nodes. In the considered system, the reservation
model employed is of post-reservation type and optical packets
are allowed to re-circulate over the FDLs in a probabilistic
manner. We combine the MMPP-based overflow traffic models
of the classical circuit switching literature and fixed-point itera-
tions to devise an algorithmic procedure to accurately estimate
blocking probabilities as a function of various buffer parameters
in the system when packet arrivals are Poisson and packet
lengths are exponentially distributed. The proposed algorithm
is both accurate and fast, allowing one to use the procedure
to dimension optical buffers in next-generation optical packet
switching systems.

Index Terms—Fiber Delay Line (FDL) re-circulation buffer,
optical packet switching, optical burst switching, Markov mod-
ulated Poisson process, retrial queues.

I. INTRODUCTION

WO packet switching-based paradigms have emerged for

flexible use of bandwidth in optical networks, namely
Optical Packet Switching (OPS) [1] and Optical Burst Switch-
ing (OBS) [2]. In this article, we analytically study the
performance of an OPS/OBS node, hereafter called OPR
(Optical Packet Router), that uses FDLs (Fiber Delay Line) for
optical buffering irrespective of whether the router supports the
OPS or OBS paradigm. OPS/OBS can either be synchronous
(time-slotted) in which packets have either fixed sizes or
variable sizes that are integer multiples of a time unit (called
a slot) or asynchronous (unslotted) with arbitrarily variable
packet lengths. Most of current literature on OPS is based
on synchronous switching [3] whereas asynchronous OBS is
the most dominant mode of OBS operation [2]. However,
exceptions exist in the literature; see [4],[S]. The current
article focuses on asynchronous OPRs only and the use of
FDL buffers in overcoming the performance limitations of
asynchronous switching systems.

In optical packet switching-based (OPS or OBS) networks,
contention arises when two or more incoming optical packets
contend for the same output port/wavelength pair. If the wave-
length of an incoming packet is occupied at the destination
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port, then its wavelength can be converted to one which is idle
[6]. If all wavelength channels at a given port are occupied,
then incoming packets can use optical buffering to resolve
contention [7]. If the capabilities of the OPR (in terms of
wavelength converters and buffers) come short of resolving
the contention, deflection routing can be used to send one
or more of the contending packets to a different output port
[2]. In this article, we study the combined use of wavelength
converters and optical buffers for contention resolution. In
electronic buffering, packets are stored in RAMs (Random
Access Memory) and wait for their turns for transmission
until they reach the head of their corresponding queues. Since
optical RAMS are not feasible today, the most popular optical
buffering technique is the use of FDLs in which a contending
packet is sent over a coil of fiber that provides the packet with
a fixed delay in order to resolve contention. Such a mechanism
is referred to as FDL buffering. The alternative mechanism of
SLDLs (Slow Light Delay Lines) [8] that promise variable
and controllable delays are outside the scope of this article.

There are different architectures proposed for using FDL
buffers; we refer the reader for an extensive discussion of
such architectures in [9],[10],[11]. Buffer architectures are
generally classified as feed-forward (FF) or feedback (FB)
[12]. In feed-forward buffering, optical packets are delayed
at the output ports so as to leave the node after traversal
through the FDL. On the other hand, in feedback buffering,
optical packets are delayed while being fed back to the node
after the propagation delay of the FDL. FDL buffers can
also be classified based on their lengths; the Fixed-length
FDL (F-FDL) architecture uses FDLs of the same length
and therefore all FDLs realize the same delay D making it
necessary for the packets to re-circulate if longer delays are
required. On the other hand, Increasing-length FDL (I-FDL)
architecture comprises FDLs of increasing length which are
generally taken to be integer multiples of a basic granularity
unit, i.e.,, D,2D,..., BD, where B denotes the buffer size
[3],[13]. In this regard, F-FDLs present a better fit for the FB
architecture whereas FF architecture is more likely to use I-
FDLs. Another classification is made by [12] based on the type
of reservation; if the output port is reserved prior to entering
the buffer, this architecture is called Pre-Reservation (PreRes).
If the output reservation is attempted at the end of each FDL
re-circulation of the packet, the architecture is called Post-
Reservation (PostRes). In PostRes, all blocked packets will
use buffers if available whereas in PreRes, a blocked packet
will only be admitted into the buffer only when an output port
can be reserved at the epoch of exit from the buffer. One other
classification can also be made based on whether buffers are
shared or dedicated for each output port.
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Our goal is to introduce a new generic queuing model for
FDL buffers based on [14] as opposed to modeling one of the
specific architectures already proposed in the literature. By
doing so, we not only aim to gain insight on the operational
principles of optical buffers but also our proposed models
can be used as building blocks for analytical modeling of
more general and realistic architectures. For this purpose, we
focus on a single output port of an OPR with K available
wavelength channels and B FDLs of the same length D. We
assume exponentially distributed packet lengths with mean set
to unity, i.e., the time unit is taken to be mean packet length,
and Poisson packet arrivals with rate A at the designated
output port. The system load is denoted by p = MN/K.
The assumptions of Poisson call arrivals and exponentially
distributed call-holding times have been successfully used for
circuit-switched networks handling call-oriented traffic. In our
generic model, an optical packet which finds all K wavelength
channels occupied is said to be blocked. A blocked packet will
always use a buffer (if available) to retry entry into the output
port. Such behavior is consistent with the PostRes model
which is simpler to implement than the PreRes scheme since
the decision of buffer admission only depends on whether
any one of the B FDLs is available at the epoch of arrival
and not on the availability information at the epoch of exit
from the FDLs. A packet is said to be a retrial packet once
it traverses one of the B FDLs. A retrial packet will use one
of the free wavelength channels if available at the epoch of
exit from the FDL. Otherwise, it will attempt to re-circulate
through one of the FDLs with probability x < 1 and otherwise
with probability 1 — &, it will be discarded, i.e., lost. Such a
probabilistic re-circulation policy not only limits the average
number of re-circulations in the system but is also amenable
to analytical modeling. Although a deterministic policy of
allowing at most a given number of re-circulations is more
common in the literature [15], we leave analytical modeling
of such systems for future research. In this setting, the problem
at hand provides a model for feedback FDL buffers with (i)
F-FDLs, (ii) PostRes reservation model (iii) dedicated output
buffers. The reason behind the interest in this particular system
is its relative simplicity since the switch controller only needs
to keep track of binary variables that are indicative of the
occupancies of wavelength channels as well as the occupancies
of the FDLs at their entrance points. Note that in this model,
two or more packets can use the same FDL at the same time
using spatial multiplexing.

Our goal in this paper is to introduce a simple queuing
model for FDL optical buffers that accurately capture the be-
havior of this system for which related work already exists in
the literature. Let us first start with the particular case of k = 0
which is studied more in the context of feed-forward I-FDL
buffers using the PreRes reservation model which amounts
to the balking property of FDLs, i.e., a packet will not be
admitted into the FDL buffer if the maximum delay provided
by all available FDLs is not sufficient to reserve an output
port. Most of the research in this area focuses on the single-
wavelength case, i.e., K = 1; the reference [13] presents
an approximate method using an iterative procedure which
is simple to implement for Poisson arrivals and exponential
packet lengths. Again, for the same scenario, the work in
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[16] provides closed-form expressions for loss probabilities
and expected delays. Similarly, the authors derive closed-
form expressions in [17] that allow one to optimize the fiber
lengths of an optical buffer for variable length packets. For
the same I-FDL type feed-forward buffer, [18] relaxes the
traffic models for interarrivals and service times while still
being able to provide an accurate approximative method which
turns out to be exact in some certain sub-cases. Recently,
[19] proposed an exact analytical procedure for the single-
wavelength case for I-FDL feed-forward buffers using the
paradigm of feedback fluid queues even with more general
arrival processes such as Markovian Arrival Process (MAP)
and phase-type distributed packet lengths. The reference [15]
introduces a queuing model for a single-wavelength feedback
optical buffer when there is a limit on the number of FDL
circulations. Results associated with x = 0 but for the multi-
wavelength case, i.e., K’ > 1, are rather rare. One of the earlier
works in this area is [14] that uses an M/M/K/K+B queuing
model with K servers and B additional waiting places whose
main assumption is that a stored burst can immediately start
to use a channel whenever it becomes available. However,
FDL delays are deterministic and a packet cannot leave the
FDL buffer arbitrarily. Therefore, the proposed method only
provides a lower bound for the loss probability. With this
observation in place, [20] provides upper and lower bounds
for the loss probability for a related system of interest using I-
FDLs via the Erlang loss formula (no buffers) and the method
of [14], respectively. On the other hand, [21] proposes an
approximate Markovian model to capture the balking property
but in a system with variable delays which is more of a
property of SLDLs. The closest work to ours in the literature
is [12] which provides a simulation-based study of I-FDL
feed-forward PreRes buffers in comparison with a system
employing F-FDL feedback PostRes buffers. Our goal in this
article is to introduce a queuing model for the latter which is
computationally efficient even for systems with large number
of wavelengths and FDLs.

Retrial queuing systems have extensively been studied in
the literature; see [22],[23],[24] for an exhaustive survey of the
literature on retrial queues. An M/M/K retrial queue comprises
a K-server queuing system in which the primary customers
arrive according to a Poisson flow and service times are
exponentially distributed. A primary customer finding a server
free will occupy the server and leave the system after the
service time. On the other hand, a primary customer finding
all servers busy upon arrival will join a so-called orbit so as
to repeat his demand after an exponential time with parameter
w. Typically, orbit capacities are infinite and such a system is
well described by a bi-variate process {(C(t), N(t)),t > 0},
where C(t) is the number of busy servers at time ¢ and
N(t) is the number of customers in the orbit at time ¢ [22].
Classical Markov chain solution techniques do not apply since
the orbit capacity is infinite and most existing literature on
M/M/K retrial queues addresses accurate and approximate
calculation of the steady-state probabilities of this bi-variate
process. Variations of this basic model are available such
as a retrial finding the system full will re-enter orbit with
probability « and leave the system forever with probability
1 — k independent of the number of trials the customer has
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already made [24]. Although most well-known methods rely
on the solution of large Markov chains, there are also relatively
simple and easy-to-implement methods for approximating
system behavior such as RTA (Retrials see Time Averages) or
FRA (Fredericks and Reisner Approximation) [24],[25]. There
are several differences between the classical retrial queue and
the FDL buffer:

o The orbit time is exponential in retrial queues whereas it
is deterministic in PostRes FDL buffers,

o The orbit capacity is typically infinite in retrial queues
whereas we have a finite number B of FDLs in FDL
buffers,

« Even in case the orbit capacity can be taken to be finite,
say J, in a retrial queue, the value J limits the number of
customers in the orbit. However, the value B limits the
number of FDLs and not the number of packets traveling
through the FDLs.

Although there are differences between the two models, we
introduce a queuing model inspired by retrial queues in the
current article. The main idea is to characterize the retrying
traffic with an MMPP (Markov Modulated Poisson Process)
and feeding back this process to the system using an iterative
procedure. While doing so, we benefit from MMPP-based
overflow models of the classical circuit-switching literature
[26],[27]. With the model at hand, we address the provisioning
problem of selecting the FDL delay D as well as the buffer
size B and re-circulation parameter ~ that meets delay, loss,
and re-circulation requirements.

The remainder of this article is organized as follows.
Section 2 presents the queuing model we propose for multi-
wavelength feedback FDL buffers. In Section 3, we provide
numerical examples for validating the accuracy of this ap-
proach as well as the use of these models for engineering and
dimensioning purposes. Finally, we conclude.

II. ANALYTICAL MODEL

Recall that we focus on a single output port of an OPR
with K available wavelength channels and B FDLs of the
same length D and we use the PostRes reservation model.
Fig. 1 illustrates the operation for an FDL buffer with K = 2
channels and B = 2 FDLs with each FDL being of length D =
4 time units and no re-circulations, i.e., x = 0. For illustrative
purposes, all packets have the same size which is three time
units. Consider the situation depicted in Fig. 1(a) at ¢ = 0~.
On channel 1, packet 1 is under transmission upon a repeated
attempt whereas on channel 2, packet 2 is under transmission
upon its first attempt, therefore this packet is not using any
FDL resources. The FDL 1 has the tail of packet 1 at its head
but another packet 4 has just started to traverse through FDL 1
since it arrived one time unit ago but found both channels
occupied. On FDL 2, packet 3 has just completed its journey
on FDL 2 and is about to look for an opportunity to join
one of the two wavelength channels. Since x = 0 and re-
circulations are not allowed for this example and both channels
are busy at ¢ = 07, this packet 3 will be dropped by the
system leading to packet loss. Note that such a packet drop
is specific to the PostRes reservation model since the output
channel would not be reserved immediately when the packet
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Fig. 1. The evolution of a feedback PostRes FDL buffer with K = 2
wavelength channels and B = 2 FDLs each with length D = 4 time units
where all packets have a length of three time units at three different time
epochs (a) t = 0, (b) t = 1, (c) t = 2. For a given time epoch 7, packet
arrivals are said to occur at 7~ and at time epoch 77, decisions for these
packets, i.e., whether they are admitted to the wavelength channels or admitted
to the FDL buffer or they are simply discarded, are made.

is accepted into the buffer in the PostRes model. Due to this
packet drop, the system state is illustrated at ¢ = 0T in the
right figure of Fig. 1(a). We let the system evolve until ¢ = 1~
when two packets (numbered 5 and 6) arrive. The system state
just before the arrivals is given in Fig. 1(b). Compared to
Fig. 1(a), packet 2 has just left channel 2, the transmission of
packet 1 over channel 1 and that of packet 4 over FDL 1 are
in progress at t = 17. Since at t = 17, channel 2 is idle, one
of the arriving packets, say packet 5, would be accepted into
channel 2, and the other arrival 6 would be directed to the idle
FDL 2. The system state just after the arrivals is illustrated in
the right figure of Fig. 1(b). We now let the system evolve until
t = 27 when three packets (numbered 7, 8, and 9) arrive. At
t = 27, packet 7 is assigned to channel 1, packet 8 is directed
to FDL 1, but packet 9 finds both servers and FDLs busy
and is dropped. The system state before and after these three
arrivals is illustrated in Fig. 1(c). For this particular example,
we used fixed packet sizes and instantaneous packet arrivals
as in slotted systems only for illustrative purposes but the
analytical model will be developed for asynchronous systems.

Based on the operational principles outlined in Fig. 1, it
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is not possible to exactly represent the system as a Markov
process as in retrial queues. Therefore, it is clear that approx-
imations are required for analyzing this system. Our approach
is based on the stochastic characterization of the traffic coming
out of the FDL buffer based on MMPP (Markov Modulated
Poisson Process)-based models that have successfully been
used in modeling overflow traffic in circuit-switched networks.
An MMPP is characterized with a matrix pair (Q, R) where
@ is the infinitesimal generator matrix of a modulating finite-
state continuous-time Markov chain and R = diag{\;} is a
diagonal matrix of rates where \; denotes the Poisson rate of
arrivals when the state ¢ of the modulating chain is visited
[28]. For more details on the properties of MMPPs, we refer
the reader to [29]. Of particular interest to this paper is a two-
state MMPP which has two states 1 and 2 with arrival rates
A1 and Ag in these two states, respectively. The transition rate
from state 1 to state 2 (state 2 to state 1) is denoted by o (02).
The two-state MMPP is then said to be characterized by the
ordered quadruple (A1, A2,071,02). In this paper, we assume
that the traffic coming out of the FDL buffer is modeled with
a two-state MMPP called X comprising two states, namely
the HIGH and LOW states, which is characterized by the
quadruple (rg,7z,n,7). In the HIGH state, packet arrivals
are Poisson with rate rg and in the LOW state with rate
rr, such that ry > 7. The two-state MMPP X is helpful
in representing the burstiness of this particular traffic stream
while maintaining simplicity. We do not know the parameters
of MMPP X yet but we will obtain these parameters as an
outcome of an iterative process. However, this MMPP process
is not independent from the channel occupancy process that
keeps track of the number of busy channels at the designated
port. This stems from the observation that a retrying optical
packet will see a system quite correlated with the one the
same packet had attempted to join but failed D time units
back. For the purpose of characterizing this inter-dependence,
let p;. g (pi,r) for 0 < 7 < K denote the joint probability
that the two-state MMPP is in state HIGH (LOW) and there
are 0 < ¢ < K occupied channels at the designated port
at an arbitrary epoch. Similarly, let 7; g (m; 1) denote the
probability that the two-state MMPP is in state HIGH (LOW)
and there are 0 < ¢ < K occupied channels at the designated
port at the epoch of an arbitrary retrial. Again, we do not know
the probabilities p; p,p; 1,7 m, and m;; at this point but
we will obtain these probabilities through the same iterative
procedure. Moreover, we define

K K K K
PH = E Di,H,PL = E Pi,L,TH = g Ti,H,TL = E T, L -
i=0 i=0 i=0 i=0

Let us now define the bi-variate process X (t) =
{(Cp(t),Sp(t));t > 0}, where 0 < Cp(t) < K denotes
the number of busy channels at the designated port and
Sp(t) € {H,L} denotes the state of the two-state MMPP
X (whether it is in the HIGH or LOW state) at time ¢t.
The rate of repeated (i.e., retrying) arrivals when Cp(t) = i
and Sp(t) = H is denoted by rg),O < ¢ < K. Note that
should be proportional with 7; i /7 and moreover it

0
H :
should hold that pyry = S5 pigr.

From these two
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Fig. 2. The transition diagram of the Markov chain governing the behavior
of the bi-variate process X (t).

observations, we conclude that

Py = P (1)

THPi,H
Similarly, if we define r(Li),O < 1 < K, to be the rate of
repeated arrivals when Cp(t) =4 and Sp(t) = L, we obtain

ri) = p PETRL )
TLPi,L
Assuming that retrials at a given state of X (¢) are of Poisson
nature, we have a continuous-time Markov chain of size
2(K + 1) whose transition diagram is given in Fig. 2 which
approximates the behavior of the occupancy process of the
port, called hereafter the port process.

By definition, the probabilities we defined p; g and p; 1,
for 0 < i < K are the steady-state probabilities of the port
process described by its state-transition diagram in Fig. 2. Let
P denote the infinitesimal generator of this Markov chain with
the states enumerated as

{(0,H),(1,H),...,(K,H),(0,L),...,(K,L)}.

Packets are blocked and directed to the FDL buffer only in
the two states (K, H) and (K, L). In particular, the rate of
traffic directed to the FDL buffer is A+ TET{K)K at state (K, H)
and \ + T(LK)F; at state (K, L). Assuming an MMPP model,
the traffic comprising packets directed to the FDL buffer
can be modeled with an MMPP with 2(K + 1) states with
infinitesimal generator P and rate matrix

(K)

R =diag{[0,...,0, A+ k,0,...,0, A+ )R]} 3)

Although a large-scale MMPP model with 2(K + 1) states is
now at hand, we propose to further use the model reduction
algorithm of [26] to reduce this MMPP characterized with
the pair (P,R) to a two-state MMPP denoted by Y. The
algorithm proposed in [26] for model reduction matches the
first three marginal moments and the area under the auto-
covariance function of the original process to those of the
two-state approximating MMPP Y. This particular algorithm
is given in Appendix A for the sake of completeness. The
MMPP Y is assumed to be characterized with the quadruple
(r1,r2, M1, ).

We have now obtained a stochastic characterization of the
traffic appearing at the input of the FDL buffers. However,
some of the packets directed to the FDL buffer will not be
admitted due to the lack of an idle FDL. In order to find
a characterization for the actual traffic carried through the
FDL buffer, we define another bi-variate process J(t) =
{(CFr(t),Sr(t));t > 0}, where 0 < Cp(t) < B denotes the
number of busy FDLs in the FDL buffer and Sr(t) € {1, 2}
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Fig. 3. The transition diagram of the Markov chain governing the behavior
of the bi-variate process Y(t).

denotes the state of the two-state MMPP Y at time ¢. We
then have a continuous-time Markov chain of size 2(B + 1)
whose transition diagram is given in Fig. 3 which hereafter is
referred to as the buffer process. Let ) denote the infinitesimal
generator of this buffer process with the states enumerated as
{(0,0),(1,1),...,(B,1),(0,2),...,(B,2)}. Packets are not
admitted into the buffer only in the two states (B,1) and
(B,2). In particular, the rate of traffic using the FDL buffer
is 1 at state (i,1) and ro at state (i,2) for all 7 such that
0 <17 < B. Assuming an MMPP model, the traffic comprising
packets using the FDL buffer can be modeled with an MMPP
with 2(B + 1) states with infinitesimal generator () and rate
matrix

A:diag{[rl,...,7‘1,0,7‘2,...,1"2,0}}. (4)

We again use the procedure of [26] for reducing this MMPP
to a two-state MMPP say Z which is characterized by the
quadruple (g, 7,,m,7) such that 7y > 71,. Moreover, let g
denote the steady-state vector of Q:

&)

Let us now revisit the port process whose transition diagram
was given in Fig. 2. Blocking arises when an arriving packet
finds the system in one of the two states (K, H) and (K, L).
A blocked packet should have visited the state (K, H) with
probability gy and state (K, L) with probability a,:

q= [QO,17~-~aQB,1aQO,2a .- -’QB,Q}-

A+ T(HK)H)pK,H
A+ T‘;IK)FL)p}gH + A+ TiK)K)pKL

7OtL:l—OzH.

(6)
Assume that the initial distribution of the Markov chain in
Fig. 2 is given by the row vector

mo =10,...,0,am,0,...,0,ar]. (7)
Then, it is clear that the vector defined by
7 = me9P ®)
gives the conditional probabilities 7; i and 7; 1, such that
T = [T0,H, s TK,H,TO,L -+, TK,L]- 9)

We now have to link the two-state MMPP Z to the MMPP
X. Let us consider the two extreme cases as the FDL delay
D — coand D — 0. As D — oo, the traffic coming out
of the FDL buffer should be independent of the port process.
Note that 7 — p as D — oo where

= [po,H,--- DKL (10)

and therefore TEH) — ry and T‘EL) — 7. Consequently, as

D — oo, vy and 7, should be chosen so that rgy = 7y and

yPK,H,PO,L; - -
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TABLE I
ITERATIVE ALGORITHM FOR FINDING VARIOUS PERFORMANCE
MEASURES OF THE FDL BUFFERING SYSTEM

Input: K, B, D, k

1.  First start with arbitrary probability vectors p and 7 as well as the
two-state MMPP X with zero rates in each state with arbitrary 7
and .

2.  Given the vectors p and 7 and the parameters rg, 71, 1, and -,
construct the Markov chain depicted in Fig. 2 with generator P and
solve for its steady-state probability vector p which in turn gives
the probabilities p; g and p; r for 0 <7 < K.

3.  Find the vector 7 from (8) and define the rate matrix R as in (3).

4. Use the procedure in Appendix A to obtain the two-state MMPP
model Y characterized by the quadruple (r1,72,71,71) from the
2(K 4 1)— dimensional MMPP characterized with the pair (P, R).

5. Given the parameters 71, 2, 11, and 71, construct the Markov chain
depicted in Fig. 3 with generator () and solve for its steady-state
probability vector g.

6.  First define the rate matrix A as in (4) and use the procedure in
Appendix A to obtain the two-state MMPP model Z given from the
2(B +1)— dimensional MMPP characterized with the pair (Q, A).

7. Employ (11) to update rz and r7, which completes the character-
ization of the MMPP X since the parameters n and -y are already
obtained in the previous step.

8.  If the normalized difference between two successive values of the
vector p is less than a tolerance parameter &, then exit the loop.

9. Go to step 2.

Output: loss probability Pr,, expected delay E[W], etc.

rr, = 7. Consequently, the Markov chain in Fig. 2 reduces
to the modeling of a K -server system fed with Poisson traffic
with rate A\ and independent MMPP Z traffic coming out of
the FDL buffer. The situation is different as D — 0 since
the traffic retrying to join the port is completely dependent on
the port process and the burstiness of this stream should not
play any additional role. Therefore, as D — 0, we propose
to replace the MMPP Z with a pure Poisson process with the
same average rate, i.e., Ty = rp = THZM ‘We now have a
way of characterizing the traffic coming out of the FDL buffer
in the two extreme scenarios. For arbitrary values of D, we
propose the following adjustment:

P+ (P — 7)) (1= B) + (Pr _fL)/BL

rH = )
n+
rp = o+ (Fa—7)B——, (1D
n+y
where 3 = |7 — p||2/||mo — pl|2, where ||z||2 is the 2-norm

of the vector z, i.e., square root of the sum of the squares
of the entries of the vector x. It is also well-known that
approaches zero exponentially fast as D — oo . This method
ensures that the average rate of the MMPP X matches the
average rate of MMPP Z for all choices of 5 whereas the two
MMPPs are exactly the same as D — oo as desired but the
approximate MMPP is replaced with a Poisson process with
the same average rate as D — 0. The method described above
leads us to a fixed-point iterative procedure which is provided
in Table I.

The most important performance measure of interest is the
loss probability Pr, which is the probability that a packet is
dropped by the system. Upon convergence of the algorithm
given in Table I, we write P, as follows:

K
(rjy”

PK,H + T(LK)PK,L)(I —K)+7T1gB1 +T2¢B2

P =

12)
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On the other hand, the mean waiting time in the system
is given by E[W] where W denotes the waiting time of a
successfully transmitted packet. It is not difficult to show that
EW] = (171,3:)%7 where 7 is the probability that a fresh
arrival uses the FDL buffer, i.e., packet retries at least once,
s, is the probability that a retrial attempt is successful, and 7,
is the probability that a retrial attempt leads to another retrial,
i.e., retrying packet finds all channels occupied, therefore gets
directed to the FDL buffer, and finds one idle FDL. We write

these probabilities below:

(pK,H +pK,L) Ziol(’f‘qul + T‘gqig)
re = r1y1+ram ’
m-+y1
— 1 (3
. S (5P + i)
o THY+TLY ’
n+~y

e o4

THY+HTLY
n+y

DL,H) ZiB;Bl(Tl(Ii,l +ragi2)
rivi+ram !
m+v

T =

Another performance measure we are interested in is the
probability of strictly more than IV circulations for a successful
packet which is denoted by Pr(N) = P[W > ND]. We
can write this probability as Pr(N) = %. Finally,
the computational complexity of the proposed method per
iteration is O(M?3) where M = max(K, B) which is quite
reasonable when compared to traditional multi-dimensional
retrial queues.

III. NUMERICAL RESULTS

We validate the accuracy of the proposed approach by
comparing them against simulations. The iteration tolerance
parameter is set to € = 0.000001 throughout all the numerical
examples. As a first example, we fix K = 16, p = 0.6 and
k = 0 (i.e., only one FDL circulation is allowed). We then
plot the loss probability Pr, as a function of the FDL delay
D in Fig. 4 obtained through simulations and the approach
proposed in this article. For comparison purposes, we also
test three other methods:

e Method A: This method is the same as the proposed
algorithm except that the adjustment proposed in (11)
is not made and we therefore set rg = 7y and rp, = 7,
irrespective of the FDL delay D.

e Method B: Instead of modeling the traffic directed to
the FDL buffer as a two-state MMPP, we use a Poisson
process with the same average rate and therefore ignore
the burstiness of this traffic stream.

e Method C: This method is the M/M/K/K+B traditional
queuing model also described in [14] in the context of
FDL buffers.

The results are depicted in Fig. 4. We have several observa-
tions:

o For this example, the loss probability P; appears to
saturate beyond D = 2 and there appears to be minimal
need to further increase FDL lengths since the loss
probability would not reduce much. This observation is
consistent with the observation of [12] on required FDL
delays based on simulation only.
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Fig. 4. Loss probability Pj, as a function of the FDL delay D for the
particular case K = 16, p = 0.6, K = 0.

« MMPP-based models accurately estimate the loss prob-
ability in the asymptotic regime of D — oo as opposed
to Poisson process-based models, i.e., Method B, that
come short of capturing the burstiness of the traffic stream
associated with retrials.

« Method C provides very loose lower bounds on the loss
probability especially for larger B and it is evident that
the traditional M/M/K/K+B based queuing models can
not effectively be used for dimensioning FDL buffers.

e The adjustment of MMPP parameters proposed in (11)
is especially useful for relatively small FDL delays and
improves accuracy with respect to Method A that does
not employ this adjustment procedure.

In the next example, we fix K = 16 and D = 2, and
we plot the loss probability P;, and expected delay E[W] for
two different values of B in Fig. 5a and Fig. 5b, respectively,
for p = 0.7 and p = 0.9, as a function of the re-circulation
parameter x. It is clear that the proposed analysis method
accurately captures the behavior of the system as a function of
the re-circulation parameter ~ as well as the other parameters
such as p and B although we note the existence of a slight
discrepancy between the results of simulations and analysis.
The major factors for this discrepancy are the reduced order
MMPP modeling of the actual traffic directed to the FDL
buffer for computational feasibility and the inter-dependence
between the port and buffer processes that is ignored.

In the current example, we compare two policies of re-
circulation control; Policy Fixed allowing a fixed number of
circulations (N circulations at most) as in [15] and Policy
Prob using probabilistic re-circulation as proposed and studied
in the current article. Policy Fixed is commonly proposed in
the literature since a limit is placed on the number of FDL
circulations in order not to require signal regeneration. In order
to compare against Policy Fixed with N allowable circulations,
we choose the re-circulation parameter x(N) for Policy Prob



2838

a) Loss Probability b) Expected Delay

~ X - simulation B=4 /
07} |- * — simulation B=16
—6— analysis B=4
—&— analysis B=16

0.09¢

X m ¥ = — % —
0.08 e

007, 08
006

0.05

— % — simulation B=4
— * — simulation B=16
—o— analysis B=4
—&— analysis B=16

0.04

Loss Probability PL

Expected Delay E[W]

0 o1 02 03 04 05 06 07 08 0 01 02 03 04 05 06 07 08
K K

Fig. 5. Loss probability Py, and expected delay E[W] as a function of the
re-circulation parameter < for K = 16, D = 2, and for two different values
of B and p.

by analysis (using binary search) such that Pr(N) is small
enough. In this example, we set Pr(N) = 0.001. In case
this identity can not be satisfied, we set x(N) = 1. In this
way, we place a statistical limit on the maximum number of
FDL circulations with Policy Prob. We report our findings in
Table II for the case K = 16, D = 2, p = 0.8, and for various
values of the buffer size B. Note that only simulation results
are reported for Policy Fixed whereas we have both analysis
and simulation results for Policy Prob. We have the following
observations:

o Table II clearly demonstrates that the analysis method is
able to capture the performance measure Pr(N); note the
last column obtained via simulations with Pr (V) values
very close to 0.001 as desired when x < 1.

e For k(IN) < 0.9, the analysis method gives quite accurate
results when compared to simulations for all three perfor-
mance measures we studied. However, accuracy appears
to be reduced when x(N) is closer to unity.

o Although policies Fixed and Prob present comparable
Pr(N), the way we select x(N) leads to slightly larger
loss probability P, but slightly lower delay E[W] for
Policy Prob when compared to Policy Fixed for a given
N for k(N) < 1. This situation appears to be slightly
reversed when x(N) = 1. When x(N) < 1, in order to
reduce the loss probability for Policy Prob, one needs
to further increase x(IN) which however also increases
Pgr(N). The results show that Policy Fixed outperforms
Policy Prob if a delay constraint is given in terms of
Pr(N) only but there are scenarios for which Policy
Prob may outperform Policy Fixed when there are further
constraints on delay for example in terms of E[W].
Another advantage of probabilistic circulation is the
existence of infinitely many choices for x as opposed to
a few values for NV to choose from, to optimize system
behavior in terms of Pr, E[W], and Pr(N).

In the next example, for a given parameter set (K, D, B, k),
we find the maximum load p,,, (K, D, B, k), so-called through-
put, on the associated system that meets the specific QoS
requirements, i.e., P, < kL,PI(%N) < kgr(N),E[W] < kw.
To obtain the quantity p,,(K,D, B, k), we iteratively vary
the load on the system and use the proposed analysis method
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Fig. 6. The throughput of the system as a function of B for the case K = 32
and for three different values of x and D

until all QoS requirements are just met. The low computational
complexity of the analysis method allows us to obtain the
quantity p,,, (K, D, B, k) for a wide range of problem param-
eters in acceptable time. For this example, we fix K = 32,
kr, = 0.001, N = 3, kr(3) = 0.001, and ky = 0.02.
Note that the expected delay requirement is relatively strict
for this example. We then plot the throughput of the system
as a function of B for k = 0,0.5,0.9 and for D = 0.5,1,2 in
Fig. 6. If no buffers are used, we obtain the throughput of the
system as 0.5689 using the Erlang-B formula which is also
plotted in Fig. 6 as a lower bound. Our goal in this example
is to quantify the gain in throughput by using FDL buffers
but still meeting the QoS requirements of the system. If there
are no delay or re-circulation constraints, one can increase B
and k together to arbitrarily increase the throughput but at the
expense of very high expected delays. In this example, delay
and re-circulation constraints are also taken into account. For
small D, the throughput increases monotonically with respect
to B and « since the delay and re-circulation constraints are
not violated for all parameters we tried. However, for larger
values of D, the throughput increases until a certain value of B
and then starts to decrease for fixed . A similar argument can
be made for larger values of s for which throughput is reduced
beyond a certain value of « for large D. This observation leads
us to the conclusion that provisioning optical buffers requires
analysis and optimization on provisioning parameters such as
B,k, and D.

In our final example, we fix K = 32 and x = 0.9 and
searched for the optimum value of D, say D, in the interval
0.2 < D < 4 that yields the maximum throughput denoted
by popt as a function of the delay requirement ky. For this
example, we set k, = 0.001, N = 3, and kr(3) = 0.001. The
results are given for three different choices of B in Table III.
The results show that increasing the buffer size B beyond K is
not very helpful. The maximum throughput strictly depends
on the delay requirement whereas the optimum delay D,
increases with increasing delay requirement ky as expected
but decreases with buffer size B.

IV. CONCLUSION

We propose a retrial-queuing model along with fixed-point
iterations to evaluate the performance of multi-wavelength
feedback FDL optical buffers. Simulation results show that
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TABLE I
COMPARISON OF POLICIES Fixed AND Prob FOR THE CASE K = 16, D = 2, p = 0.8, AND FOR VARIOUS VALUES OF THE BUFFER SIZE B = 8,16, 64.
BOTH ANALYSIS AND SIMULATION RESULTS ARE REPORTED FOR POLICY Prob.

B Policy Fixed Policy Prob
N Pr, EW] | k(N) Pr (analy.) E[W] (analy) Pr (sim.) E[W] (sim.) Pgr(N) (sim.)
8 2 0.0189  0.2768 0.438 0.0278 0.2238 0.0236 0.2343 0.0008
3 0.0168  0.3019 0.938 0.0226 0.2751 0.0175 0.3037 0.0010
4 00159 0.3070 1 0.0220 0.2806 0.0159 0.3103 0.0003
5 0.0159  0.3100 1 0.0220 0.2806 0.0159 0.3103 0.0001
16 2 0.0128  0.3221 0.361 0.0247 0.2401 0.0223 0.2451 0.0009
3 0.0068 0.3862 | 0.675 0.0177 0.3071 0.0155 03114 0.0009
4 0.0044 0.4194 | 0.909 0.0109 0.3805 0.0073 0.3957 0.0012
5 0.0037  0.4387 1 0.0085 0.4027 0.0029 0.4470 0.0009
64 2 0.0126  0.3237 0.360 0.0246 0.2403 0.0221 0.2440 0.0009
3 0.0061 0.3942 | 0.664 0.0177 0.3082 0.0154 0.3092 0.0009
4 0.0031 0.4369 0.844 0.0112 0.3848 0.0093 0.3771 0.0010
5 0.0017  0.4620 0.938 0.0058 0.4620 0.0045 0.4396 0.0010
TABLE III

THE VALUES Dopt AND popt AS A FUNCTION OF THE DELAY
REQUIREMENT ky FOR K = 32 AND k = 0.9 AND FOR THREE VALUES

OF B.
B Delay Requirement kyy Dopt Popt
16 0.005 0.28 0.6774
0.01 0.73 0.6881
0.02 1.00 0.7118
0.05 1.68 0.7397
0.1 2.93 0.7509
0.2 4.00 0.7527
32 0.005 0.30 0.6933
0.01 0.53 0.7039
0.02 0.72 0.7251
0.05 1.18 0.7562
0.1 2.05 0.7702
0.2 3.92 0.7766
64 0.005 0.20 0.7095
0.01 0.40 0.7188
0.02 0.62 0.7324
0.05 1.15 0.7574
0.1 2.03 0.7706
0.2 3.89 0.7750

the proposed model allows one to accurately estimate the loss
probabilities, expected delays, and re-circulation probabilities
in this system. Provisioning procedures based on the analytical
model we develop are also presented to validate the effective-
ness of the proposed approach. We leave the queuing modeling
of shared FDL feedback buffers and the alternative scenario
of employing a fixed limit on the number of FDL circulations
for future research.

APPENDIX A
TwO-STATE MMPP APPROXIMATION

One of the crucial components of the proposed method in
this article is a two-state MMPP approximation characterized
with the pair (A, A) to an original MMPP characterized with
the pair (Q, R) with n > 2 states. Let

—01 g1 )\1 0

A: 7A:
0 A

02  —02
Also let z denote the steady-state vector of the modulating
Markov chain such that x@QQ = 0,ze = 1 where e denotes
a column vector of ones of appropriate size. The rth central
moment of the arrival rate of the original MMPP is denoted

by m, and is given by m, = xR"e,r > 1. Let v denote the
variance of the original MMPP that is given by v = mgy —m?.
The time constant 7. of the original MMPP is expressed as
Te = L [ r(t)dt, where r(t) is the covariance function of
the arrival rate. The reference [27] gives an expression for 7,:

T, = %[mR(em — Q)flRe — mQ].

The following choices for the parameters of the approximating
MMPP are known to match the first three non-central moments
as well as the time constant [26]:

1 n

o= ———,00= ———,
)T )

A =my +\/v/n, A = my — /o,

where
3

5 — —
77:14_5(5_,/4_'_52)’5:1%3 377;/1211 my
v

ACKNOWLEDGMENT

This work is done when Nail Akar was visiting UMKC
as a Fulbright research scholar. The work of Nail Akar
was supported in part by the support of the BONE-project
(“Building the Future Optical Network in Europe™), a Network
of Excellence funded by the European Commission through
the 7th ICT-Framework Programme.

REFERENCES

[1] P. Gambini, M. Renaud, C. Guillemot, F. Callegati, I. Andonovic,
B. Bostica, D. Chiaroni, G. Corazza, S. L. Danielsen, P. Gravey,
P. B. Hansen, M. Henry, C. Janz, A. Kloch, R. Krahenbuhl, C. Raf-
faelli, M. Schilling, A. Talneau, and L. Zucchelli, “Transparent optical
packet switching: network architecture and demonstrators in the KEOPS
project," IEEE J. Sel. Areas Commun., vol. 16, pp. 1245-1259, 1998.

[2] C. Qiao and M. Yoo, “Optical burst switching (OBS)-a new paradigm
for an optical Internet," J. High Speed Netw., vol. 8, no. 1, pp. 69-84,
1999.

[3] F. Callegati, W. Cerroni, G. Corazza, C. Develder, M. Pickavet, and
P. Demeester, “Scheduling algorithms for a slotted packet switch with
either fixed or variable length packets," Photonic Netw. Commun., vol. 8,
no. 2, pp. 163-176, 2004.

[4] W. A. Vanderbauwhede and D. A. Harle, “Architecture, design, and
modeling of the OPSnet asynchronous optical packet switching node,"
J. Lightwave Technol., vol. 23, pp. 2215-2228, 2005.

[5] O. Ozturk, E. Karasan, and N. Akar, “Performance evaluation of slotted
optical burst switching systems with quality of service differentiation,"
J. Lightwave Technol., vol. 27, no. 14, pp. 2621-2633, 2009.



2840

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

R. Barry and P. Humblet, “Models of blocking probability in all-optical
networks with and without wavelength changers," IEEE J. Sel. Areas
Commun., vol. 14, no. 5, pp. 858-867, June 1996.

I. Chlamtac, A. Fumagalli, L. Kazovsky, P. Melman, W. Nelson,
P. Poggiolini, M. Cerisola, A. Choudhury, T. Fong, R. Hofmeister, C.-L.
Lu, A. Mekkittikul, I. Sabido, D. J. M., C.-J. Suh, and E. Wong, “Cord:
contention resolution by delay lines," IEEE J. Sel. Areas Commun.,
vol. 14, no. 5, pp. 1014-1029, June 1996.

R. S. Tucker, P.-C. Ku, and C. J. Chang-Hasnain, “Slow-light optical
buffers: capabilities and fundamental limitations," Lightwave Technol.,
J., vol. 23, no. 12, pp. 4046-4066, Dec. 2005.

D. Hunter, M. Chia, and I. Andonovic, “Buffering in optical packet
switches," J. Lightwave Technol., vol. 16, no. 12, pp. 2081-2094, Dec
1998.

W. D. Zhong and R. S. Tucker, “Wavelength routing-based photonic
packet buffers and their applications in photonic packet switching
systems," J. Lightwave Technol., vol. 16, no. 10, pp. 1737-1745, Oct.
1998.

L. Xu, H. Perros, and G. Rouskas, “Techniques for optical packet
switching and optical burst switching," IEEE Commun. Mag., vol. 39,
no. 1, pp. 136-142, Jan. 2001.

C. M. Gauger, “Dimensioning of FDL buffers for optical burst switching
nodes," in Proc. 6th IFIP Working Conference on Optical Network
Design and Modelling, Feb. 2002.

F. Callegati, “Optical buffers for variable length packets," IEEE Com-
mun. Lett., vol. 4, no. 9, pp. 292-294, Sep. 2000.

J. S. Turner, “Terabit burst switching," J. High Speed Netw. (JHSN),
vol. 8, no. 1, pp. 3-16, 1999.

A. Rostami and S. Chakraborty, “On performance of optical buffers with
specific number of circulations," IEEE Photonics Technol. Lett., vol. 17,
no. 7, pp. 1570-1572, 2005.

W. Rogiest, J. Lambert, D. Fiems, B. van Houdt, H. Bruneel, and
C. Blondia, “A unified model for synchronous and asynchronous FDL
buffers allowing closed-form solution," Performance Evaluation, vol. 66,
no. 7, pp. 343-355, 2009.

W. Rogiest and H. Bruneel, “Exact optimization method for an FDL
buffer with variable packet length," IEEE Photon. Technol. Lett., vol. 22,
no. 4, pp. 242-244, 2011.

J. Almeida, J. Pelegrini, and H. Waldman, “A generic-traffic optical
buffer modeling for asynchronous optical switching networks," IEEE
Commun. Lett., vol. 9, no. 2, pp. 175-177, Feb. 2005.

H. Kankaya and N. Akar, “Exact analysis of single-wavelength optical
buffers with feedback Markov fluid queues," IEEE/OSA J. Optical
Commun. Netw., vol. 1, no. 6, pp. 530-542, Nov. 2009.

M. Yoo, C. Qiao, and S. Dixit, “QoS performance of optical burst
switching in IP-over-WDM networks," IEEE J. Sel. Areas Commun.,
vol. 18, pp. 2062-2071, Oct. 2000.

X. Lu and B. Mark, “Performance modeling of optical-burst switching
with fiber delay lines," IEEE Trans. Commun., vol. 52, no. 12, pp. 2175—
2183, Dec. 2004.

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 59, NO. 10, OCTOBER 2011

(22]
(23]
[24]

[25]

[26]

[27]
(28]

[29]

J. R. Artalejo and A. Gomez-Corral, Retrial Queueing Systems. Springer,
2008.

T. Yang and J. G. C. Templeton, “A survey on retrial queues," Queueing
Systems, vol. 2, no. 3, pp. 201-233, 1987.

R. W. Wolff, Stochastic Modeling and the Theory of Queues. Prentice-
Hall, 1988.

A. A. Fredericks and G. A. Reisner, “Approximations to stochastic
service systems with application to a retrial model," Bell Syst. Tech.
J., vol. 58, pp. 557-576, 1979.

H. Heffes, “A class of data traffic processes-covariance function charac-
terization and related queuing results," Bell Syst. Tech. J., vol. 59, no. 6,
pp. 897-929, 1980.

K. S. Meier-Hellstern, “The analysis of a queue arising in overflow
models," IEEE Trans. Commun., vol. 37, no. 4, pp. 367-372, 1989.
M. F. Neuts, Structured Stochastic Matrices of M/G/I Type and Their
Applications. Marcel Dekker, 1989.

W. Fischer and K. Meier-Hellstern, “The Markov-modulated Poisson
process (MMPP) cookbook," Performance Evaluation, vol. 18, no. 2,
pp. 149-171, 1993.

Nail Akar received his B.S. degree from Middle
East Technical University, Turkey, in 1987 and M.S.
and Ph.D. degrees from Bilkent University, Turkey,
in 1989 and 1994, respectively, all in electrical and
electronics engineering. From 1994 to 1996, he was
a visiting scholar and a visiting assistant professor in
the Computer Science Telecommunications program
at the University of Missouri-Kansas City (UMKC).
In 1996, he joined the Technology Planning and
Integration group at the Long Distance Division,
Sprint, where he held a senior member of technical

staff position from 1999 to 2000. Since 2000, he has been a faculty member
at Bilkent University, currently as an associate professor. He spent six months
in 2010 at the School of Computing and Engineering, UMKC, as a Fulbright
scholar. His current research interests include performance evaluation of
computer and communication networks, optical packet/burst switching, and
network engineering. Dr. Akar is an active participant of the European
Commission FP7 Network of Excellence project BONE.

Khosrow Sohraby is currently the Curators’ Profes-
sor of Computer Science and Electrical Engineer-
ing at the University of Missouri-Kansas City. He
received B.Eng and M.Eng degrees from McGill
University, Montreal, Canada in 1979 and 1981,
respectively, and Ph.D. degree in 1985 from the
University of Toronto, Canada, all in Electrical
Engineering. His current research interests include
design and analysis of high speed computer and
communications networks, traffic management and
analysis, modern queuing theory, large-scale com-

putations in performance analysis, and networking aspects of wireless and
mobile communications.



