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Rate-Distortion Efficient Piecewise Planar 3-D Scene
Representation From 2-D Images

Evren Imre, A. Aydin Alatan, Member, IEEE, and Ugur Giidiikbay, Senior Member, IEEE

Abstract—In any practical application of the 2-D-to-3-D con-
version that involves storage and transmission, representation effi-
ciency has an undisputable importance that is not reflected in the
attention the topic received. In order to address this problem, a
novel algorithm, which yields efficient 3-D representations in the
rate distortion sense, is proposed. The algorithm utilizes two views
of a scene to build a mesh-based representation incrementally, via
adding new vertices, while minimizing a distortion measure. The
experimental results indicate that, in scenes that can be approxi-
mated by planes, the proposed algorithm is superior to the dense
depth map and, in some practical situations, to the block motion
vector-based representations in the rate-distortion sense.

Index Terms—Mesh generation, 3-D scene reconstruction, 3-D
scene representation.

I. INTRODUCTION

UILDING 3-D scene representations from 2-D images
B is an active topic due to the prospect of high-profile ap-
plications, such as automatic model building, multiview video
compression, and 3-D TV. There are already several end-to-end
systems that obtain a 3-D model of the imaged scene from a
2-D image sequence through structure-from-motion (StM) tech-
niques [1]-[4]. Typically, an SfM algorithm recovers the 3-D lo-
cations of the salient point features in a scene, i.e., a sparse point
cloud. This point cloud can be considered as samples from the
surface of the scene [5]. These samples may also contain infor-
mation about the scene texture.

The sampling interpretation raises two important issues:

* Sampling density: The sampling density should adapt to
the surface complexity, as undersampling leads to distor-
tion, and oversampling is a hazard to efficiency. The latter
is important for the storage and the transmission of the 3-D
scene model.
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* Interpolation function: The interpolant should approxi-
mate the dominant structural features on the scene surface
adequately. Since a single continuous function can repre-
sent only the simplest scenes, the interpolation should be
performed with a piecewise function, i.e., patches (usually,
a triangular mesh). However, a patch-based parameteriza-
tion requires the assignment of each sample to a patch,
which is a problem complicated by the absence of a unique
neighborhood relation for 3-D points.

In the literature, the first issue is addressed usually by oper-
ating in a fine-to-coarse fashion, i.e., by removing vertices as
long as the distortion between the original and simplified mesh
remains below a certain threshold [5]. However, the mesh dis-
tortion, alone, is an inadequate error metric when building a
3-D scene model from 2-D images, as it ignores another im-
portant measure of error: the corresponding visual distortion on
the available images of the scene.

As for interpolant, there exists a wide range of alternatives
from nonuniform rational B-splines (NURBS) to radial basis
functions [6]. However, for many real world scenes, planes pro-
vide a sufficiently accurate approximation with the additional
benefit of compact parameterization. A noteworthy example for
piecewise planar scene reconstruction from a point cloud is [7],
in which a point cloud is divided into cells, and a plane is fit to
the points in each cell. In [8], a similar approach is employed
to recover the collection of homographies, or equivalently, the
scene planes, describing the feature correspondences in two im-
ages.

Modern graphics hardware can render triangular patches;
therefore, it is a good choice as interpolant. Moreover, when
Delaunay triangulation [9] is employed, the vertices alone are
sufficient to represent a mesh; thus, no additional resources for
representing the plane boundaries is needed, unlike the image
[8], [10] or space segmentation [7] based methods.

The sampling interpretation of the problem highlights the
conflicting requirements on the size and the quality of a scene
representation, hence, implies that the problem should be
studied in a rate-distortion framework. Reference [11] is among
the first attempts to achieve a rate-distortion efficient solution,
by using a Markov random field formulation to minimize an
objective function, which consists of terms corresponding to the
image distortion, and the rate of a dense depth map representing
the scene. On the other hand, image-based triangulation (IBT)
is another powerful technique to achieve the same goal with
triangular meshes [12].

The basic IBT algorithm [12] refines an initial mesh via edge
swaps to minimize the error between an image and its prediction
from a reference image. In [13], the method is robustified against
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local minima through a simulated annealing procedure that is re-
inforced with a rich arsenal of tools involving adding, removing
and perturbing vertices, and modifying the mesh edges. Finally,
in [14], IBT is applied to stereo image coding, to represent a
disparity map, by adding new vertices to the places where the
distortion is largest.

The work presented in this paper employs an IBT approach,
enhanced with the features presented in Section IIL. It has two
main contributions: a rate-distortion efficient algorithm that
builds a mesh-based representation from two images of a scene,
and an experimental comparison of various dominant scene
representation techniques within the context of 3-D scene mod-
eling from 2-D images. To the best of the authors’ knowledge,
there is no prior work addressing any of these issues in the
literature.

The organization of the paper is as follows: In the next sec-
tion, some design considerations for a generic rate-distortion ef-
ficient scene reconstruction algorithm, and the extent to which
the existing IBT algorithms fulfill them are discussed. The gen-
eration of the mesh and its refinement through nonlinear min-
imization are explained in Sections III and IV, respectively. In
Section V, various aspects of the algorithm are studied via ex-
periments, and a comparison of the rate-distortion performance
with dense depth map and block motion vector representations
is presented. Section VI concludes the paper.

II. DESIGN CONSIDERATIONS

In order to design an algorithm that yields both accurate and
rate-distortion efficient representations, the following features
are identified as desirable.

* Piecewise planar reconstruction with triangular
patches: Triangular patches provide an efficient and
sufficiently accurate approximation for most real-world
scenes [17] and offer computational advantages [15].

* Coarse-to-fine operation: The best-known algorithms
in the literature, such as [5], [12], and [13], operate in a
fine-to-coarse fashion. The disadvantages of this approach
are twofold. First, for the equivalent problem of finding a
minimal set of vertices that describes a scene at a given
distortion level, more vertices imply a more complex
error surface. Second, it is computationally inefficient to
estimate some entities to be discarded later. Operating in
a coarse-to-fine fashion avoids both of these problems.

¢ Feedback from representation to feature extraction:
Coarse-to-fine operation requires a feedback path from
representation back to feature extraction, to convey the
directives of the representation block regarding to which
parts of the structure require refinement. This mechanism
adapts the sampling density to the surface complexity.
Only in [14] is such a mechanism considered.

e Capability to update both structure and camera: The
methods in the literature assume that the true values of the
internal and external calibration parameters for the cameras
are available and attribute any error to insufficient number
of vertices [14], incorrect connections in the mesh [12],
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Fig. 1. Framework for rate-distortion efficient piecewise planar 3-D recon-
struction.

and sometimes to errors in the vertex positions [13]. How-
ever, when building a 3-D scene model from 2-D images,
both the cameras and the point cloud are estimated from the
input data. It is possible to eliminate any sensitivity to in-
ternal calibration errors by operating in a projective frame.
However, the algorithm should be able to cope with the er-
rors in the camera matrix estimates, as well.

The operation of a rate-distortion efficient algorithm that ad-
heres to the above specifications is illustrated in Fig. 1 for a
coding application. The feature extraction and sparse structure
estimation block computes a point cloud as a sparse representa-
tion of the scene, which is upgraded to a piecewise planar recon-
struction in the representation module. Then, the compression
block encodes the representation, and returns the coding error
and the remaining bit budget. The representation block deter-
mines the patches that require further refinement and sends a
request to the feature extraction block for new scene features in
these regions. Among these new features, the one that is in least
agreement with the current scene representation is added to the
point cloud, which is, in turn, used to update and refine the rep-
resentation. The feedback path ensures that an increase in the
rate is accompanied by an increase in the representation quality,
i.e., the algorithm operates in a rate-distortion efficient fashion.

III. PIECEWISE PLANAR RATE-DISTORTION EFFICIENT 3-D
SCENE RECONSTRUCTION

A. Scene and Image Model

The 3-D scene is modeled as a connected surface, S, which
is composed of a union of disjoint triangular patches Q, i.e.,

S:UQk. )
k

The projection of @y, from R3 to R? via the projection op-
erator P is defined as

o = J{xIX € Qrx~ PX,v(X,x,P) =1} (2

where ¢, denotes the projection, X represents a 3-D scene point
and x is its projection to 2-D by P. Both X and x are repre-
sented by homogeneous coordinates, and the symbol ~ denotes
homogeneous equivalence. v(X, x, P) is defined as

1, d(X,P) < d(X,,P)
V{Xn|Xn € S,x =~ PX,} 3)
0, otherwise

v(X,x,P) =

for an ordering function d, a point X on S and its projection
x. When rendering a view of a scene, the projection operator
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P is defined by the camera acquiring the view, and is known as
the camera matrix. In this case, d is specified as the distance of
a point in R3 to the image plane of the camera, which is also
defined by P. Equation (3) states that among all points which
are on S and projected to x, only the one closest to the image
plane is an element of gj,. In other words, v is 1 when X is visible
to the camera.

A discrete image I can be expressed as a sampling of the
projection of S by a regular integer grid, i.e.,

s=Un
k

/s(u,’u)é(u —z,v—y)dudv Y(x,y) € Z* (5)

s

“)

I(xy) =

where ¢ denotes the Dirac delta function.
Finally, the points in any two projections of Qp, g, and qfc
are related by [15]
x ~ Hgx (6)
where x is an element of g; and x’ is its correspondence in gj.
Hy, is defined as [15]

+
Hk - P <P+ _ Cﬂ)
l’lkC

N
where P and P’ are the camera matrices of the cameras imaging
qr and qj,, respectively. C is the null vector of P, and ny is
the vector denoting the plane equation of (). The symbol “+”
stands for the pseudo-inverse operation.

B. Rate and Distortion

In this work, rate is defined as the number of vertices. Al-
though this quantity and the size of the compressed mesh are
not exactly equivalent, for the meshes produced by the proposed
system, there exists an almost linear relation, as observed in
Fig. 9.

The distortion is measured by the sum of squared intensity
differences (SSD) between a target image, I, and its predic-
tion, Ip. This can be expressed as the sum of distortions of the
projections of the individual scene planes, i.e.,

A:ZA,“
k

®

where

Ap =Y (Ir(x) - Ip(x))*, VX € gy )

Assuming an independent zero mean Gaussian noise process
affecting the intensity values of each pixel, a Lambertian re-
flectance model, constant lighting, and given the true 3-D point
coordinates and the camera matrices, the triangulation with the
minimum SSD is the maximum-likelihood solution for the IBT
problem [12], [13]. However, SSD is disproportionately sensi-
tive to geometric errors [26], i.e., a small error in the 3-D co-

ordinates of a point, or in the camera matrix may cause a large

increase in SSD, and in certain situations, it is poorly related
to the perceived distortion (e.g., a 1-pixel shift). Despite these
drawbacks, due to the lack of a better and equally widely ac-
cepted alternative [27], SSD is adopted as the distortion metric.
The effects of this choice on the 3-D model estimation are fur-
ther discussed in Section V. However, the algorithm itself is in-
dependent of the choice of distortion metric, therefore, different
image distortion metrics can be employed depending on the ap-
plication.

C. Proposed Method

The algorithm requires two images as input: a farget and a
reference image. The reference image and the current scene rep-
resentation are used to compute a prediction of the target image.
The scene representation is built incrementally through the ad-
dition of new vertices in a way to reduce the distortion defined in
the previous section. Given the assumptions in Section III-B and
the further assumption that (6) is sufficient to construct the target
image from the reference image and the true scene model, the
procedure should terminate when the distortion reaches to zero.
However, in practice, the assumptions about lighting and illumi-
nation are commonly violated and the true values of the struc-
ture and the camera parameters are not available. Moreover, the
reflections, occlusions, disocclusions [12], and the performance
of the intensity interpolation algorithm (in this work, bilinear
interpolation [30]) limit the usefulness of (6). All these factors
give rise to an irreducible error.

The initial scene representation and the camera matrices
can be computed from the reference and the target images via
conventional structure-from-motion (SfM) techniques [4], [15].
However, it is also possible to use any initial structure and
camera estimates from other sources.

The 2-D triangular mesh representing the scene is constructed
by performing a Delaunay triangulation on the projection of the
point cloud to the image plane of the target image. This mesh
is then lifted to 3-D [17]. This operation may compromise cer-
tain optimality properties of Delaunay triangulation [18], specif-
ically, those that guarantee the maximization of the minimum
angle of the mesh. Delaunay triangulation owes its popularity to
this property, as in practice, the closer the members of a triangu-
lation to equilateral triangles are, the more accurate the surface
models tend to be [17]. However, lifting may transform a 2-D
equilateral triangle to a 3-D “sliver,” a structure that is seldom
encountered in real world scenes and, thus, is unlikely to model
the corresponding portion of the surface correctly. On the other
hand, the scene representation obtained in this fashion is pro-
jective invariant; hence, invulnerable to the errors in the internal
camera parameters.

The proposed representation seemingly has an important lim-
itation: if a low-texture portion of the scene is not surrounded
by a set of salient features (e.g., the sea in Fig. 6), it is not fully
contained within the projection of the point cloud, and the cor-
responding triangulation. However, regardless of the represen-
tation, the only clue to the 3-D position of such a region is the
smoothness of the depth field. Therefore, this problem can be
solved by propagating the depth values obtained from the mesh
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representation into these regions via an iterative-diffusion type
dense depth estimation algorithm [29].

The most important stage of the proposed algorithm is vertex
selection. Ideally, the chosen vertex X should be the one, whose
addition to the existing representation minimizes the distortion
(which is measured by SSD), i.e., the solution of the following
minimization
vX € R?

win A (5(1), X) (10)

where A(S(7), X) denotes the distortion for the surface formed
by the addition of X to the surface formed by all of the ¢ vertices
currently in the representation, S(7).

An optimal solution to (10) is often computationally unfea-
sible. The proposed method employs a suboptimal solution that
relies on the following assumptions.

1) The projection of X to the target frame lies within the re-

gion ¢y, that satisfies the condition

Ar > Ay,

VIl # k. (11)

2) X projects to a discernible feature in both images.
3) X that minimizes (10) also minimizes the symmetric
transfer error (STE) defined as [15]
_ -1 2 2
e = |XT_Hk XR| —|—|XR—HkXT| (12)
where xg and xT correspond to the projections of X to
the reference and the target images. Hy is the homography
for the scene plane which satisfies the first assumption, and
is defined in (7), with P’ being the camera matrix of the
reference, and P being that of the target camera.

The first assumption can be easily justified, as the triangular
patch @y, that corresponds to the region with the largest distor-
tion, is likely to be the one whose refinement will improve the
representation most [14].

The second assumption allows the reduction of the search
space for X to a finite set of vertices, therefore, provides im-
mense computational savings. It is justifiable, as the discernible
features on the images often correspond to the scene corners,
which may be residing on scene plane boundaries [28], and
whose omission in the representation is likely to contribute to
the distortion significantly.

The last assumption stems from the fact that, for a correct
match, STE in (12) evaluates the conformity of a vertex to the
local planar model, Q1. The implication is that the vertex that is
in least agreement with the local planar model causes the most
distortion. It is possible to achieve a reduction in the compu-
tational cost by several orders of magnitude, by choosing this
vertex, instead of the one whose inclusion minimizes (8). A sim-
ilar assumption is employed in [14], with regard to maximum
disparity error.

The vertex selection procedure is as follows. First, the re-
gion with the largest distortion in the target frame is determined.
This region and the corresponding region in the reference frame
are declared as the search regions. Within these regions, the
salient features are extracted by a corner detection algorithm,
and matched by guided matching [15]. If no reliable matches
are available, the feature extraction step is reattempted with
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progressively lower thresholds. If the threshold drops below a
minimum beyond which corner detection becomes unreliable,
the patch is skipped and the algorithm continues with the patch
which has the second largest distortion. Finally, these matches
are evaluated by (12), and the pair with the largest STE is used
to instantiate the new vertex. Since a false match can also yield
a high STE, only the reliable matches should be used in the pro-
cedure.

The scene representation, i.e. the current mesh, is updated
with the new vertex by using the dynamic Delaunay triangula-
tion technique described in [9]. Then, a prediction of the target
image is rendered by warping the reference image to the image
plane of the camera of the target image, via bilinear interpola-
tion. If the addition of the vertex indeed improves the represen-
tation quality, it is accepted; otherwise, it is rejected.

The algorithm is summarized as follows.

Algorithm: Rate-Distortion Efficient
Piecewise Planar Scene Reconstruction

Input: A reference image, a target image, optionally, the initial
structure and camera matrix estimates

Output: A piecewise planar representation of the scene

Until the distortion converges or the bit budget is depleted
1. Determine the patch with the largest distortion via (9).
2. Establish correspondences in the search regions associated
with the patch.
3. Find the feature pair with the least conformance to the
patch via (12).
4. Add the corresponding vertex to the representation.
If the representation error is reduced, update the mapping,
the collection of homographies, between the target and
the reference frame, by (7). Use this mapping to compute
a prediction of the target frame via (6), with x being a
point in the target image, and x’ its correspondence in the
reference image. Return to step 1.
6. If the representation error is not reduced, find the feature
pair with the next least conformance to the patch via (12).
Return to step 4.

e

IV. MESH REFINEMENT VIA NONLINEAR MINIMIZATION

The scene representation of the previous section can be im-
proved by minimizing (8) with respect to the vertices and the
camera parameters. The inclusion of the camera parameters pre-
vents the minimization procedure from introducing errors to the
structure, to compensate for any inaccuracies in the camera ma-
trices.

The minimization problem is formally defined as

>

(z,y)€s(V,K)

(IT($7y) _IP(V7K7x7y))2 (13)

where It and I, denote the target image, and its computed via
(6) and (7), respectively. V represents the vertices of the mesh
and, K denotes the camera parameters. s(V, K) is the projec-
tion of the scene surface to the image plane of the target camera,
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DISTORTION WITHOUT NONLINEAR MINIMIZATION, WITH E?I?EI;ESIT DESCENT (SD) AND WITH SIMULATED ANNEALING (SA)
Data None SD SA
MSE/PSNR(dB) MSE/PSNR(dB)  MSE/PSNR(dB)

Peter (V 2.5%) 216.69/24.77 212.53/24.86 1.63/46.01

Peter (V 7.5% C 2.5%) 1231.36/17.23 1228.01/17.24 124.99/27.16

Breakdancers 61.68/30.23 61.23/30.26 43.46/31.75

Venus 34.72/32.73 32.81/32.97 29.38/33.45

Cliff 161.55/26.05 138.07/26.73 119.51/27.36

Castle 187.41/25.40 186.94/25.41 175.82/25.41

Palace 145.02/26.51 134.03/26.86 133.02/26.89

and is dependent on V and K. The minimization is subject to
the constraint that the area of s(V, K) cannot be decreased.

In order to avoid local minima, (13) is minimized via sim-
ulated annealing [19]. Simulated annealing tries to improve a
solution through random perturbations. In the proposed algo-
rithm, the following perturbation mechanisms are employed.

* Move vertex: All vertex locations are perturbed randomly.

* Move camera: Camera parameters are perturbed ran-

domly.

* Add vertex: A new vertex is randomly added to the recon-

struction.

* Remove vertex: A vertex is randomly removed from the

reconstruction.

The probability of accepting a solution is given as

B 1, f(u) < f(us)
p(f(u)) = {exp (L (f(us) — f(u))), else "

where f is the cost function, which is defined as the operand
of the minimization in (13). In (14), us denotes the current so-
lution, i.e., the current vertex and the camera parameters, and
u, the tested solution, which is a perturbation of ug. If u is ac-
cepted, ug and 7', the temperature parameter, are updated. The
update rule for 7" is [19]

m+1

m 15)
where m is the update counter, and Tj is the initial value of
T'. Equation (14) implies that a solution with a higher cost still
has a certain chance of being accepted; hence, the algorithm can
move out of a local minimum.

An accepted solution is further refined via steepest descent
[25] with respect to the camera parameters and the vertices. The
steepest descent algorithm moves towards the local minimum
of the basin in which u resides, i.e., in the opposite direction of
the gradient of the error surface with respect to u. The gradient
is approximated by forward differencing. The step size adapts
to the local characteristics of the error surface: An improvement
in the cost encourages the algorithm to take larger steps. Other-
wise, the algorithm reattempts to move from the current solution
with a smaller step. Each iteration is composed of two phases:
one for optimization with respect to V, and the other with re-
spect to K.

Simulated annealing is a capable, yet computationally in-
tensive, procedure. In case of limited computational resources,

steepest descent can be applied directly to the output of the al-
gorithm in Section III, without any prior or posterior simulated
annealing stage. The extent to which the final representation
quality is affected depends on the characteristics of the error
surface around the solution. The results in Table I do not
identify any of the methods as entirely redundant, therefore,
suggest that it is advisable to apply simulated annealing, when
it is computationally feasible.

V. EXPERIMENTAL RESULTS

The performance and the properties of the proposed algo-
rithm are studied by two sets of experiments. In the first set,
the algorithm is run on synthetic and real data, in order to study
the convergence behavior, and the effects of incorrect vertex and
camera parameter estimates. The second set aims to compare the
rate-distortion efficiency of the representation produced by the
proposed algorithm with that of the dense depth map, and block
motion vector-based representations. The section is concluded
by an empirical justification of the use of number of vertices as
a measure of rate.

A. Piecewise Planar Scene Reconstruction

The piecewise planar reconstruction experiments are per-
formed on the following data sets: Peter is a synthetic data
with ground-truth camera and structure available. The imaged
scene has nine surfaces and 12 vertices. For Venus [20] and
Breakdancers [21], only the camera parameters are known.
Palace and Cliff are acquired from TV broadcast; hence, neither
the camera nor the structure is known. Finally, Castle belongs
to a collection of photographs of a mostly planar scene taken
from various poses.

The first experiment aims to explore the effect of noisy ver-
tices and camera parameters. The results, presented in Fig. 2,
indicate a serious degradation for Peter in the presence of noise,
especially when the noise affects the camera parameters. How-
ever, as observed in Table I, the nonlinear minimization stage
significantly improves the results.

The second experiment seeks to assess the performance of the
proposed method when only the camera parameters are known.
For Breakdancers, the ground truth camera matrices are avail-
able, and for Venus, the optical axes of the cameras are parallel,
and the motion is a horizontal translation, therefore, it is pos-
sible to compute the exact projective camera pair. The results are
presented in Figs. 3 and 4. The black regions correspond to the
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MSE vs. # Vertices
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Fig. 2. Experimental results for Peter. Left, top row (left to right): reference, target, and predicted images for 7.5% vertex and 2.5% camera noise case. Left, bottom
row (left to right): prediction error at the beginning, before nonlinear optimization, and after nonlinear optimization. Right: representation quality versus # vertices

for various noise levels on the vertices and the camera parameters.

MSE vs. # Vertices
300
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Fig. 3. Experimental results for Breakdancers. Left, top row (left to right): reference, target, and predicted images. Left, bottom row (left to right): prediction error
at the beginning, before nonlinear optimization, and after nonlinear optimization. Right: representation quality versus # vertices.

parts of the scene that cannot be represented due to lack of fea-
tures. The results indicate that Breakdancers and Venus scenes
can be represented with approximately 30 vertices at qualities
exceeding 30 and 32 dB, respectively. Considering the discus-
sion in Sections III-B and III-C, the residual error observed in
Table I and Figs. 3 and 4 is expected: The practical limitations
of the feature localization, in turn, limit the accuracy of the 3-D
points in the point cloud; hence, introduce a base error level that
cannot be reduced. The estimates are further degraded by the
relatively poor performance of the image rendering procedure
at the edges. And finally, the violation of the connected surface
assumption has an impact on the performance, as observed at
the plane borders in Venus.

The final experiment of the set evaluates the algorithm in the
case when both the vertices, and the camera matrices are esti-
mated from the data. In MSE calculations, in Palace and CIiff,
the parts of the scenes corresponding to TV station logos are not
taken into account. Besides, since the inclusion of Castle into

the data set serves to study the performance of the algorithm in
mostly planar scenes, the contribution of the trees, a region that
cannot be reliably approximated by planes, and the sky to the
distortion are also discarded. The experimental results are pre-
sented in Figs. 5-7 and Table I.

In case of unknown camera and structure, the algorithm still
converges, albeit at a slower rate and to a higher residual error.
These observations can be attributed primarily to the inaccura-
cies in the estimation of the camera and vertex positions. The
upwards trend in the residual errors from the “known camera
and vertices” to the “unknown camera and vertices” case lends
support to this interpretation. It is also the best addressed one, as
unreliable vertices are eliminated during the construction of the
representation, and the nonlinear minimization stage attempts to
improve the vertex positions and cameras by random displace-
ments.

Another source of error stems from the violation of one of
the fundamental assumptions in this study: the intensity values
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MSE vs. # Vertices
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Fig. 4. Experimental results for Venus. Left, top row (left to right): reference, target, and predicted images. Left, bottom row (left to right): prediction error at the
beginning, before nonlinear optimization, and after nonlinear optimization. Right: representation quality versus # vertices.
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Fig. 5. Experimental results for Castle. Left, top row (left to right): reference, target, and predicted images. Left, bottom row (left to right): prediction error at the
beginning, before nonlinear optimization, and after nonlinear optimization. Right: representation quality versus # vertices.

of the target image can be computed from those of the refer-
ence image perfectly, given the correct geometry and camera
positions; thus, the minimization of (8) leads to better estimates
of these parameters. The assumption generally holds for the
parts of the scene with low intensity variation, or that are dis-
tant from the camera. However, when the images are taken from
considerably different positions, as discussed in Section III-C,
occlusions, disocclusions and reflections on the reflective sur-
faces, such as windows, weaken this assumption, cause a larger
residual error (but, not necessarily a worse result, if SSD is
ill-suited as a distortion metric for the target application) and
give rise to local minima, in which the optimization process may
be trapped, despite the use of simulated annealing. The proposed
algorithm cannot avoid this problem: it is not equipped with any
tools to deal with the errors not caused by the camera and the
vertex parameters, except for significant structure deformations,
which are likely to degrade the representation. Therefore, the re-
sult is one of the plausible, but erroneous, interpretations of the
information contained in the 2-D image pair [13].

A simple indicator of the validity the “computability” as-
sumption is the difference of the mean intensities of the target
and the reference frames, i.e.,

=y | X - ¥ ey 0

P \zyelr z,y€lR

where I and I are reference and target images, respectively,
and N, is the number of pixels in an image. In Castle, the reflec-
tions on the windows, and the change in illumination cause a ji4
of 7, whereas in Cliff and Palace, j14 is below 1, a rather small
value. Therefore, the predictability of the intensity values of the
target frame from the reference frame in Castle is less than that
in Cliff and Palace; hence, the residual error should be higher.
The experiments confirm this hypothesis.

A related problem is the limitations of the simple image ren-
dering method (i.e., warping and bilinear interpolation) utilized
in the experiments. This method has no special provisions for



490

< P\
= T

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 18, NO. 3, MARCH 2009

MSE vs. # Vertices

400

350

300

250

150

100

50

0 T T T T T T T T T
0 50 100 150 200 250 300 350 400 450
# Vertices

Fig. 6. Experimental results for Cliff. Left, top row (left to right): reference, target, and predicted images. Left, bottom row (left to right): prediction error at the
beginning, before nonlinear optimization, and after nonlinear optimization. Right: representation quality versus # vertices.

the edges, at which the distortion is concentrated due to the over-
sensitivity of SSD to minor errors in the vertex coordinates and
camera matrix errors. Moreover, it also blurs the highly tex-
tured regions. However, if the distortion levels achieved with
this basic rendering method are inadequate for the target ap-
plications, it is possible to replace it with a more sophisticated
method, such as [31].

The final major source of error is the incorrect connections
between the vertices, leading to instantiation of planes nonex-
istent in the scene. These planes model the local structure erro-
neously, and introduce artifacts, such as bending of planar sur-
faces, an effect that can be detected by its action on straight
lines. Two causes for such erroneous models are identified as
mesh construction in 2-D, and missing vertices. The former is
the price paid for projective invariance: since the mesh is con-
structed in 2-D, it is possible that two far-away and unrelated
vertices in 3-D might be projected to nearby locations. In that
case, these points are connected, forming one edge of a plane
nonexistent in the scene. The latter is caused by the limita-
tions of the feature extraction and matching procedures, as it is
not always possible to recover a corresponding feature pair set
both sufficiently dense enough to describe the boundary of the
scene planes correctly, and accurate enough for reliable 3-D po-
sition estimation. The lack of features degrades the results in two
ways: the estimated plane boundaries might not coincide with
the actual boundaries, and the vertices belonging to the interior
of a plane might be connected to the vertices of other planes,
and give rise to planes nonexistent in the scene.

The influence of these artifacts on the distortion depends on
the size of the afflicted patches and the texture they contain.
As long as there is a strong intensity variation, such a group of
patches causes a high SSD, therefore, is selected for refinement
and broken down into smaller patches through the addition of
new vertices. The increased level of detail reduces the size of
the region affected by the artifact, or removes the artifact com-
pletely. However, in case of flat patches, despite the high error
at the boundaries, the total distortion of the patch may be rel-
atively low. In this case, the nonlinear minimization stage may
be able to reduce the distortion more, by moving a vertex of a

smaller, yet highly textured region, at the expense of a large but
flat patch. Although this behavior reduces the overall distortion,
it does not necessarily yield a more accurate scene representa-
tion.

B. Rate-Distortion Performance

In the second experiment set, the rate-distortion performance
of the proposed algorithm is compared with that of the block
motion vector (BMV) and dense depth map (DDM) representa-
tions. A DDM representation describes a scene by the distance
of each scene point corresponding to a pixel in the reference
image, from the image plane of the reference camera. A BMV
representation tiles the reference frame into blocks, and assigns
a2-D motion vector to each block. Since each 2-D motion vector
defines a mapping between a block in the reference frame and
its correspondence in the target frame, the BMV representation
can be considered as a kind of 3-D scene representation. This
mapping can be expressed as

10
X'~ |0 1 (17)
0 0

— e 2
»

where x is a pixel in the target block and x’ is a pixel in the refer-
ence block. u and v stand for the block motion vector. Equation
(17) is a special case of (6), i.e., the mapping relating the blocks
in both images is a homography, hence, the part of the 3-D scene
projecting to the block is approximated as a plane. Therefore,
the BMV representation models the 3-D scene as a collection of
planes. Besides, BMV-based prediction plays an important role
in state-of-the-art stereo and multiview image and video com-
pression algorithms; thus, comparing its performance to that of
the proposed algorithm serves to assess the suitability of piece-
wise planar scene models for such applications.

The rate of the proposed algorithm is obtained by com-
pressing the resulting mesh with fopological surgery [16], a
mesh encoder which is a part of the ISO MPEG-4 standard.
The vertices are compressed with 20 bits. The distortion is
measured by MSE. For a fair distortion comparison, only the
regions that could be represented by all three methods are
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Fig. 7. Experimental results for Palace. Left, top row (left to right): reference, target, and predicted images. Left, bottom row (left to right): prediction error at the
beginning, before nonlinear optimization, and after nonlinear optimization. Right: representation quality versus # vertices.

TABLE II
COMPARISON OF COVERAGE AND RATE-DISTORTION PERFORMANCES IN MUTUALLY COVERED REGIONS. A BOLD VALUE INDICATES A SUPERIOR
RATE-DISTORTION PERFORMANCE. Coverage 1S THE RATIO OF THE IMAGE THAT IS REPRESENTED BY THE BMV AND THE PROPOSED METHOD,
TO THE ENTIRE IMAGE, RESPECTIVELY

Data Block Motion Vectors (H.264) Proposed
Rate Distortion Coverage Rate Distortion Coverage

(Bytes)  MSE/PSNR(dB) (%) (Bytes)  MSE/PSNR(dB) (%)
Breakdancers 69 120.66/27.31 92.44 133 148.78/26.41 50.15
Venus 125 31.55/33.14 98.43 119 92.90/28.45 81.34
Cliff 204 251.56/23.95 83.31 227 132.21/26.92 43.83
Castle 337 217.83/24.75 72.18 329 175.84/25.14 62.28
Palace 317 265.44/23.89 97.53 330 156.57/26.18 73.69

included in the error calculations. Table II lists the coverage
ratio attained by the proposed and the BMV-based approaches.
The DDM representation can cover the entire image.

In order to generate a DDM, the algorithm described in [10]
is employed. This algorithm is a region-based global method,
that models a scene as a collection of planes. Being a global
method, the algorithm is superior to local methods [29], and the
use of image segmentation allows it to handle plane boundaries
and discontinuities more successfully [33], [34] than other al-
gorithms in this class. Moreover, the algorithm goes beyond the
conventional region-based plane sweeping methods [34]—[36]
by employing angle sweeping, a feature which makes it espe-
cially suitable for planar scenes. The algorithm is competitive
against the best 25 algorithms in the Middlebury benchmarks
[33].

The rate-distortion curve for the DDM-based approach is
obtained by compressing the DDM, which is stored as a bitmap
image, by the ITU-T H.264/ISO-IEC 14496-10 encoder [22],
[23], for different compression levels [24], [32]. The decom-
pressed depth map is used to construct the target image from
the reference image, by warping and bilinear interpolation, as
described in Section III-C. The rate-distortion curves of the
proposed method and the DDM representation are depicted in
Fig. 8. In order to provide an upper bound to the performance,

the distortion values for the lossless-compressed depth maps
are also presented in Table III.

For the computation of the rate-distortion performance of
the BMV representation, the ITU-T H.264/ISO-IEC 14496-10
encoder is employed, due to its advanced BMV estimation and
compression engine. Motion vectors are encoded in a lossless
fashion by using content-adaptive binary arithmetic coding
(CABAC) [22]. The encoder is configured to predict a target
frame from a reference frame, i.e., to encode only two frames.
In order to encourage the use of BMV, intraframe mode is
suppressed by setting its quantization parameter to 50 (i.e., the
intraframe predictions are degraded to increase the likelihood of
the selection of the interframe mode, at the inter/intraselection
step). For the rate and distortion calculations, only the blocks
encoded by the interframe mode, i.e., BMV, are taken into
account. These blocks are identified from the trace file. In the
experiments, the operational value of the rate is used loosely as
the bit budget. The results for 5 different data sets are presented
in Table II.

The dense depth map experiments clearly indicate the superi-
ority of the proposed mesh-based method: as observed in Fig. 8,
in all 4 experiments, the DDM method is outperformed by the
proposed method. Moreover, Tables III and IV indicate that, in
Venus and Cliff, this conclusion remains valid regardless of the
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Fig. 8. Comparison of rate-distortion performance of the proposed method, depth map and block motion vector representation (H.264). Top left: Venus. Top right:

Breakdancers. Bottom left: Cliff. Bottom right: Castle.

TABLE III
DISTORTION FOR DENSE DEPTH MAPS AFTER LOSSLESS COMPRESSION
Distortion Rate
Data
MSE/PSNR(dB) (Bytes)
Breakdancers 29.53/33.42 42621
Venus 56.98/30.57 14781
Cliff 212.58/24.86 20941
Castle 130.90/26.96 102160

rate, and in Castle, the dense depth map method can achieve
an equivalent distortion only at a much higher rate. Relatively
high-bit-rate of the DDM representation might be hinting that it
is a favorable trade-off to represent a planar scene with a small
number of high precision vertices, instead of a large number of
low-precision transform coefficients. As for the distortion, there
are two depth map-specific mechanisms in effect: compression
artifacts and quantization losses. The former smooths depth dis-
continuities, causing distortions that contribute significantly to

the final prediction error. The latter arises from the fact that the
value of a pixel comes from a discrete set of intensity levels;
thus, continuous depth values must be quantized. The quantiza-
tion errors become more dominant as the depth range increases.
In the experiments, uniform quantization is employed. These are
in addition to the image rendering method-related distortions
which are already discussed in Section V-A, and which can be
remedied through the use of more sophisticated rendering al-
gorithms [31]. However, as long as the same rendering mech-
anism is used for both dense-depth and the proposed methods,
the above discussion remains valid.

Block motion vector experiments present a more complex
picture, which makes sense once the strengths and weaknesses
of the BMV representation are considered. BMV provides a 2-D
scene representation, as it utilizes 2-D motion vectors to de-
scribe the scene. Therefore, the descriptive power of the BMV
representation degrades when the effect of depth is non-negli-
gible, e.g. in scenes with a large depth range. On the other hand,
the piecewise planar mesh representation proposed in this work
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TABLE 1V
RATE AT WHICH THE PROPOSED METHOD AND THE DENSE-DEPTH MAP
METHOD HAS THE SAME DISTORTION

Dat Distortion Rate
ata MSE/PSNR(dB) (Bytes)
Mesh Dense Depth

Map
Breakdancers 45.80/32.21 731 1600
Venus Never - Never
Cliff Never - Never
Castle 155.37/26.22 647 16536

is a 3-D scene representation; thus, it can successfully handle
such cases. Another effect of the depth range becomes evident
from its interpretation as disparity range. A large depth range
suggests a larger variation of the depth; hence, the disparity
values within a block, and a stronger violation of the uniform
disparity assumption of the BMV. A comparison of the perfor-
mance of the BMV and mesh-based representations in the large
depth-range data, such as Cliff and Palace, and the small-depth
range data, e.g., Venus and Breakdancers supports these conclu-
sions: the proposed algorithm outperforms the BMV approach
in the former case, and is inferior to it in the latter, especially in
Venus.

Another issue that should be considered is the case of scenes
with disconnected planes. The BMV representation successfully
handles such scenes, as each block is registered independently
from its neighbors; therefore, the scene is modeled as a collec-
tion of disjoint planes. On the other hand, the proposed algo-
rithm does not accommodate for such cases, which is another
factor that contributes to its inferior performance to the BMV
representation in Venus, which is a scene composed of disjoint
planes.

C. Relation Between the Number of Vertices and Rate

The rate of the representation is determined by the size of
the compressed mesh. The topological surgery method encodes
the mesh edges very efficiently. Therefore, it can be assumed
that only the number and the spatial distribution of the vertices
determine the rate. The influence of the latter stems from the
predictive coding scheme employed to encode the coordinates
of the vertices [16].

In order to explore the relation between the number of vertices
and the size of the compressed mesh, the number-size pairs for
each member of the sequence of increasingly complex meshes
generated by the algorithm for CIiff, Castle and Venus are plotted
in Fig. 9. The observed linear dependency to the number of ver-
tices suggests that similar distribution characteristics are pre-
served throughout a mesh sequence. Considering that the opti-
mization process is driven by SSD, this is expected: at each step,
the algorithm picks the vertex to be added from the patch with
the highest foral image error. Therefore, larger patches are more
likely to be selected. Since such patches are generated usually
in sparsely populated regions of the mesh, it can be argued that
the algorithm tends to maintain a spatially balanced vertex dis-
tribution.

# Bytes vs. # Vertices

6000
5000 /
»n 4000
8 /
& 3000
* /
2000 - Cliff-
1000 i / ...... Venus
. / = = Castle

0 50 100 150 200 250 300 350 400 450
# Vertices

Fig. 9. Relation between the number of vertices of a mesh and its size in bytes
after compression via topological surgery, for the sequences of meshes in the
experiments in Section V-B. Breakdancers is totally obscured by other plots;
hence, it is not included.

VI. CONCLUSION

In this paper, an algorithm that builds a piecewise planar
scene representation from 2-D images is proposed. The algo-
rithm seeks a favorable point on the rate-distortion curve by
refining an initial mesh through the addition of new vertices,
whose locations are determined by the representation error
measured by (8). The representation is further refined by non-
linear minimization via simulated annealing. The algorithm
itself is independent of the exact choice of distortion metric and
the image rendering method, so it can be customized to meet
the needs of different target applications. The experimental
results indicate that, in scenes that can be modeled by planes,
the algorithm is superior to the dense depth map representation
in rate-distortion sense. When compared to the BMV represen-
tation, the proposed method yields better results under certain
conditions, such as connected surfaces and large depth range.
Although the algorithm is a significant step towards rate-distor-
tion optimal 3-D scene representation, it suffers from inaccurate
vertex and camera estimates, illumination changes, and mesh
edges not coinciding with actual scene plane boundaries.
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