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On the Reliability Exponent of the Exponential
Timing Channel

Erdal Arikan Senior Member, IEEE

Abstract—\We determine the reliability exponent E(R) of the queue, and also its noiseless observajior v, of the ini-
the Anantharam-Verdl exponential server timing channel with tja| unfinished work.

service rate i for all rates R between a critical rate R, = ; ; ; i n o— ]

(1/4) log 2 and the channel capacityC = e~'u. For rates Given the |nterarrlv§tl _tl'me$ (21, U Q.U") for the f|r.s.t
between0 and R., we provide a random-coding lower bound ™ customers, and the initial loag), the conditional probability
E,(R) and a sphere-packing upper boundE,,(R) on E(R). density of observingo andy™ = (y1, ..., u,) is specified as

We also determine that the cutoff rate R, for this channel equals

/4, thus answering a question posed by Sundaresan and Verdu. " " L

An interesting aspect of our results is that the lower boundE,.( R) p(y"™, yolz™, uo) = 6(yo — uo) H eu(yi — wi) 1)
for the reliability exponent of the timing channel coincides with i=1

Wyner's reliability exponent for the photon-counting channel i i .
with no dark current and with peak power constraint x. Whether Wheres(-) is the delta functiong,,(s) = pexp(—ps), s > 0,is
the reliability exponents of the two channels are actually equal the exponential density with medri., and

everywhere remains open. This shows that the exponential server

timing channel is at least as reliable as this type of a photon- i—1

counting channel for all rates. w; = max Z Tj— Z Y 2)
Index Terms—Cutoff rate, photon-counting channel, point =0

process channel, Poisson channel, reliability exponent, sphere- o .

packing exponent, timing channel. is the server’s idling time before the arrival of tite customer.

The quantityy; — w; is the service time for customerand is
exponential with parameter.
There is more than one reasonable definition of a block code
NANTHARAM and Verdd [1] introduced the exponentialfor the timing channel, leading to different capacity results, as
server timing channel and determined that its capacity equadglained in[1]. Inthis paper, we consider only the type of block
¢~ 1u nats per second. More recently, Sundaresan and Verhies termedindow coden [9]. By a block code with param-
[10] considered sequential decoding for this channel and fouatérs(n, M, T)) we shall mean a collection a¥/ vectors of
that its cutoff rate is at least~'4./2, half the capacity. They lengthn, 2" (m) = (z1(m), ..., z,(m)), 1 < m < M. The
posed the determination of the exact value of the cutoff rate @smponents of codewords are nonnegative numbers that cor-
an open problem. In this paper, we show that the cutoff ratespond to customer interarrival times. Transmitting codeword
equalsp/4. The main contribution of this paper, however, is™(m) means sending customers to the queue with the arrival
the more comprehensive result about the reliability exponeihe of thekth customer given biji;l x;(m),1 <k <n.The
of the channel. We begin by giving a precise statement of tharametefl” denotes the deadline for sending tith customer,
problem. thus,>"""_; #;(m) < T for everym. The rate of such a code is
The exponential server timing channel consists of/d/1  defined ask = (log M) /T nats per second. (Throughout, we
queue with a first-in first-out service discipline. Service timease natural logarithms.)
are independent and exponentially distributed with megn A decoder for such a code consists of a collection of disjoint
Information transmission begins at tiievith the queue con- decoding regiondD,,,, 1 < m < M, such that the decoder
taining a possibly nonzero amoum of unfinished work. The decides that message was sent when the observed channel
model allowsug to be chosen from a probability distributionoutput(y™, ) falls in D,,,. The probability of decoding error
r(ug), but ug, as a random variable, must be independent athen message: is transmitted is given by
the message transmitted. The information to be transmitted is
gncoded into the arrival process, represented by thg interarrival Pom= / ply™ =™ (m), yolr(yo) dy™ dyo. ©)
timeszy, x2, ... of customers to the queue. The receiver makes <
its decisions about the transmitted messages based on its o
vation of the interdeparture times, -, . .. of customers from

. INTRODUCTION

bFﬁ(ra_average probability of error for the decoder is defined by

. . . P, 4
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Fig. 1. Random-coding and sphere-packing exponents.

without loss of optimality, restrict its observation of the channel Proposition 1: The reliability exponent of the exponential

output to the time windov0, 7). timing channel with service rate is bounded, for everp <
Arate R nats per second is said to be achievable onthg/1 R < C = e tp, by

channel with service ratg if for any giveny > 0 ande > 0

there exists an, M, T) code with rate greater tha®—~v and E(R) < B(R) < Exp(R) (7)

probability of ML decoding error less thanThe supremum of where the function&,.(R) andE,,(R) are defined as follows.

achievable rates is called the capacity of the channel and is given ) _
by C = et [1], [9]. Random-Coding Exponenfor R > C, E,.(R) = 0. For

A . .
While the capacity results tell us the highest achievable ratdt, < £ < €, whereR. = (n/4)log 2, E,(R) is given by the
they do not say much about how fast the probability of ML dd?@Ir Of parametric equations

coding error can be made to approach zero. To achieve smaller I )

! w(R) = —————[p— log(1 8
error probabilities at a fixed rat&, one needs to use longer () (14 p)Ate)/re [p = log(1 + )] ®)
codes as measured by the paraméteirhis leads to the fol- ©w 1p
lowing definition. Given a/M /1 channel, its reliability expo- k= 4(1 ¥ p)+077 log(1 + p) 9)

nent at rate? > 0 is defined as ) )
wherep rangesintheintervdD, 1]. For0 < R < R, E.(R) =

) w/4 — R.
E(R) = thup_w (5) Sphere-Packing Exponentor R > C, E;,(R) = 0. For
T—oo T 0 < R < C, E,,(R) is given by
_ H ao
whereP, (R, T) is the minimum value of the ML decoding error Esp(R) = (1+ p)+r)/re [o —log(1 + p)] (10)
P, over all (n, M, T) codes for the given channel such that " .
M = [¢"R] andn > 1 is arbitrary. The zero-rate exponent is R= A )7 log(1 + p)*/” (11)

defined as
wherep ranges in the interval < p < co. Finally, E,,(0) = p.

We observe that, for rate8. < R < C, E,.(R) = E,,(R)
and E(R) is completely determined. For ratés< R < R,
E(R) remains unknown. A sketch of the functios% (R) and
The main result of this paper is the following. E,,(R)is givenin Fig. 1.

E(0) = 21;{()) E(R). (6)
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One of our motivations for studying the reliability exponent oplanations for the insensitivity of the capacity under variations
this channel was to determine dstoff rate which is defined as including feedback and customer recall have been given in [1],
thelargestrate atwhich sequential decoding can be used withifidil; and [8]. Except for the IPC (without feedback), the reliability
nite expected computation per decoded digit. As shownin [2], te&ponents of these channels are not known fully.
cutoff rate parameter coincides with tlg parameter whichis  This completes the summary of our results. In Sections Il
the vertical axis intercept of the supporting line of slegito the  and Ill, we derive the random-coding exponé#t R) and the
curveE(R), andforthe channelhereis givenBy = E.(0) = sphere-packing exponeht,(R), respectively. Section IV is a
w/4. This answers a question raised in [10] about the exact valdiscussion of results.
of the cutoff rate of sequential decoding on this channel.

We finally wish to discuss our results with regard to the [I. RANDOM-CODING BOUND

analogy, first mentioned in [1], between the exponential timing This section is based on Gallager’s results on computing the

channel (ETC) and the direct-detection photon channel (al§giapility exponent for channels with continuous inputs and
known as the Poisson channel, point process channel, etc.). Bl]ﬁ)uts [5, Ch. 7]. We regarg > 0 as a fixed parameter
input to the photon channel is a wavefoigt) which modulates throughout’. Initially, we also fix0 < A < pandR > 0
the power of a transmitted optical field. A photon detector &l for each: > 1 c’onsider an ensemble 6f, M, T) codes

the receiver produces counts that are modeled as a Poisggp 7 — n/\ +/n, M = [¢TR]. A code in the ensemble
process with rate, 4 A(t), where), corresponds to inherent,,;i, codewordse™(1), ..., (M) is assigned the probability
background noise (dark current). In general, a photon channe}is/ L q(z"(m)) where

characterized by its dark-current intensityand constraintson =~~~ ”
peak and average values'dt). We shall refer to the special case a(z™) = a~tp(z™) H ex(@s) (12)
ofaphoton channelwith zero dark currégt= 0 and only apeak
power constrairt < A(t) < pasaridealphotonchannel (IPC). |,
The capacity of an IPC is given by ! [6], [4], which co- n

incides with the capacity of an ETC with service ratelt is $(z") = 1, for % - ﬁ < % Z z; < % + ﬁ (13)
interesting that the IPC capacity is achieved by using wave- o 0 otherwise =t

forms with average power—!;:, analogous to the fact that the : o _
capacity-achieving arrival rate for the ETCls= e~!p. This The terma is the normalizing factor and it equals the prob-
analogy carries further to the reliability exponents of the tw@Pllity that a codeword chosen at random from the distribu-
channels. as we discuss next. tion [ [, ea(x;) satisfies the “shell constraintf(z") = 1. A

In a seminal work [11], [12], Wyner determined the re|iabi|ity%traightforwarg)application of the central limit theorem shows
exponent of the photon channel for all rates between zero la = e i e
channel capacity. Wyner’s result is fully general, covering arbi- Gballt?lger sfboun(;:i [5,dC_:h. 7lon thﬁ ens:)erlnlr:)]le ac\j/eragg .Of the
trary Ao and arbitrary peak and average power constraints. 1thEoha ."ty do' Ml.‘ ect? Ing error, when thexth codeword is
interesting to note that, as Wyner noted, the photon channelf@NSmitted, is given by
one ofasc_al_ectfew no_ntrivial_channels, such as the?nfi_n_ite-barp;m < Mp/dyn dyo
width additive Gaussian noise channel, whose reliability expo-
nent is known exactly for all rates below capacity. 1 Lo

. o n ny,.. n n /(14p)
Wyner's exponent for the special case of an IPC coincide$ [/dx duog(x” )r{uo)p(y™, yolz™, uo) r (14)

with the random-coding expones.(K) of an ETC, as given \here ) is an arbitrary parameter within the interéak p < 1.

by (S), (9). Thus, the reliability exponents for the two channel§, o choice ofr(uo) does not affect the bound asymptotically
are identical for the range of raté&. < R < C. Whether the ;¢ 5 convenient choice facilitates its evaluation.

two exponents are everywhere identical remains an interesting:q, oyr purposes, it turns out that a weaker version of this

open question. bound (which amounts to assuming that the observatiam, of

We should mention in this connection that, for the case gf ynavailable to the decoder) is sufficient. Using Minkowsky’s
an IPC with noiseless feedback, Lapidoth [7] obtained a lowgfequality [5, p. 523], we obtain from (14)

bound on the reliability exponent which coincides with the
sphere-packing exponeft,,,(R) of an ETC, as given by (10), P. ., < M”/dy" Uda:" duog(xz™)r(up)
(11). (He also showed that if the average power is constrained

to <e !y, then this lower bound is tight.) B . L @tp)] 1
Lapidoth’s result is particularly relevant here in that an IPC x /dyop(y Yol 10)

with feedback is equivalent to a “telephone signaling channel”

(TSC) wjth customer repall, anoth.er timing channel mode! dis- :Mﬂ/dyn [/dxn duoq(z™)r(uo)

cussed in [1]. The basic TSC (without customer recall) is an

ETC with feedback. A TSC with customer-recall capability is
an ETC with feedback and with the option of recalling a cus-
tomer in service any time the encoder wishes. ) o o )
. . . Iwe writeo_ (1) to denote an unspecified positive-valued function dhat
Al! variants of .the timing channel andthe ideal phOtO_n channgles 1o zero as goes to infinity. We write(=) to denote a function such that
previously mentioned have the same valuéy: for capacity. Ex- o(z)/z = o0.(1).

14+p
x ply™|z", uo)l/(l""’)} . (15)
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Next, we note that for ang < s < A (this choice maximizes the functidiy(p, A) over A > 0 for a
fixed p > 0) and define

q(xn) SO(_ICS(Z?' xi—n/A+y/n) H 6)\(37

_ _ PH
i=1 EO(p) - Eo(p, )‘/7) - (1 I p)(1+p)/p (22)
= LTS/ AtV <%) H ex_s ;) to conclude that for the ensemble with= ), (19) holds with
A Eo(p) in place of Eq(p, \).
and also observe that To obtain the tightest possible bound for a fix&da further
n maximization is required ovér < p < 1. So, we define
1+p 17
n|.n 1/(14p) _ .
P"le", wo) B mem} Ul Cuf (8 = ). E(R) = tmax [Eo(p) = pH]. (23)
(16) o

Substituting these into (15), we obtain It is straightforward to check that the functidiy(p) — pR is

a differentiable concave function of > 0 for any givenRk >

= " " ~ 0. Following the method in [5, Sec. 5.6], the value Bf(R)

< P . .

Pe,m < M /dy [/ da” duor (o) 21:[1 ex~s (i) is determined as stated in Proposition 1. In particular, we note

n 14p that the right-hand side of (9) equal¥,(p)/9p. Now, for the
x 11 e @i — wi)] (17) ensemble with\ = X,

P, < exp[-TE,.(R)+ o(T)]. (24)
where for shorthand we put ) )
The next step is to convert this bound on an ensemble average

() 501 e A1 + p) n(1+p) to a bound that applies to a specific code. For this one considers
c=a Pestpvn | = A T F ) ) i
(A — s)pur/@+p) an ensemble of codes witd/ codewords and uses expurgation

(see, e.g., [5, Sec. 5.6]). The final result is as follows.
The bracketed integral in (17) gives the distribution of the

departure timeg” in anM/M/1 queue with service raje/(1+  Proposition 2: Let . > 0 andR > 0 be given numbers. For
p), arrival ratex — s, and initial loaduo. We now specify-(ug) anyn > 1, there exists aiin, M, T) code withM = [eFF]
as the exponential density with parameigf1 + p) — (A —s), such that .the pro.bablhty of .MI__ decoding error on-AV//1
and restricts and A further so that./(1 + p) — (A — s) > 0. channel with service rate satisfies

The M /M /1 queue now starts in equilibrium, and by Burke’s

theorem, the interdeparture timgs . .., v, are independent, Pe.m < exp[=TE(R) + o(T)] (25)
exponential random variables with parameter s (see [1] for for each message, 1 < m < M.

a discussion of this point). Hence, (17) can be rewritten in this

case as
Ill. SPHEREPACKING BOUND

14p
P < cM/’/dy [H ex—s(ui ] The sphere-packing bound on the probability of ML decoding
error for a given code on-gA{ /1 timing channel is obtained by

considering the use of the same code on an alternate “noisier”

channel. Although the underlying idea of the proof to be pre-

e s/ ANA+0) (1 4 p)p " sented in this section is standard, the continuous and nhonmem-
O — s)ur } oryless nature of the channel presents some special difficulties;

S0, we give a detailed proof.

Proposition 3: Let R > 0 be fixed. Let{C;},i =1, 2, ...,
be a sequence of codes for thd//1 timing channel with ser-
vice rateu. Let (n;, M;, T;) denote the parameter 6f, R; its
ePAP(1+ p)1+”:| " rate, andP.(C;) the probability of ML decoding error starting

=cM? [(1+p) (A= s5)r]"

_ o g [
whereco™ — o—1+p) os(1+p)Vn
We now puts = Ap/(1+p) (this choice minimizes the bound
(18) if we ignore the=*("™) term) to obtain

Fe,m S eo(n)Mp |:

P with initial load 1, = 0. Suppose the code lengtlisincrease
to infinity and that the rate&; converge tak. Then
= exp{—T[Eo(p, \) — pR]+o(T)}  (19)
which is valid for any0 < A < . In writing (19), we defined hfg sup —f log F.(Ci) < E,p(R) (26)

TN )1t
4

Eo(p, \) = —Alog (20) whereE,,(R) is given by (10), (11).

The initial loadw has no effect on asymptotic probabilities;
and made use of the facts that= \T'— \/n ando(n) = o(T'). it is taken equal to zero here to simplify calculations. The rest
We now setA equal to of this section consists of the proof of Proposition 3. We fix a

\ = u 21 sequence of coddg’; } satisfying the hypothesis. We break the
P (14 p)AER/e (21) proof into several steps.
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A. Converse Coding Theorem given realization of the service times of customers brought by

. . n 1
For the proof, we require a converse coding theorem. The dp- the faster server will serve at least as many customers as the

propriate form of the converse is given by [1, Theorem 4] whicHOWer one. , , _ . o
states that the capacity of 41/ /1 channel with service ratg For a converse inequality, we be/gm with' /' = W [
and departure rate is given byC(y:, A) = Alog(u/X). Toin-  This canbe seen by 5n_terpretm_7@ /1" as the length of time that
terpret this result for our purposes, fix any> 0. Consider an the server with ratg’ is busy in the interval0, 77. Since the
(n, M, T') code with ratez. Let \ be the average departure ratéastt_er server is never k_)usy_when the_slower one is idle for any
of customers, observed over the interj@l 7]. The theorem '€alization of the service times, the inequality follows. Com-
states that iR > C(u, A) + ¢, then the probability of ML de- b|r)|ng this "/V'th//th‘?/ previous meqqalllsy, we hawe+ (1/T) >
coding errorP, based on observation of the time windgw 7] "V'/7" 2 (#'/1")X". In particular, ify” = ' + A, we obtain

is bounded away from zero by a functiefe, 1, A) which is 0< N =N <WV/hA+(1)T) < A+ (1/T).  (27)
independent of the code lendth For the types of codes under

consideration (window codes), this statement remains true evtis fact will be used in the sequel.

if the decoder is allowed to observe the channel output after time i

T, because as we noted earlier, such observations do not profde>€lecting a Subcode

any relevant information to an ML decoder. For a uniform lower We now seek to find a subcodg of C such thaC; has es-

bound on the probability of error, we define sentially the same rat& but for which each codeword has ap-
. proximately the same departure rafeas a function of.’, for
ale, p) = 0SAe, ale, pis A). 0 < 4/ < p. This step of the proof is the counterpart of finding

his f L - itive f a fixed-composition subcode in the case of discrete channels.
This F”?C_“O” IS stnct_y positive or any > 0'_ ) The service rate—departure rate pairs of interest here lie in

An initial use of this converse will be to dispose ofalslmplf?ne triangled < 1/ < 11,0 < N < 1. We visualize this tri-
special case of Proposition 3 in whicft;} operate above ;.6 in 5 Cartesian coordinate system witarking the hori-
channel capacity. To _be precise, Jetdenote the departure rate; ontal axis, and’ the vertical. We place a grid on the triangle by
of codeC; under service ratp. Suppose the code sequence ig,ividing its horizontal and vertical sides inintervals of

such that, for some>0, R; > C(y, Ai)+e forinfinitely many onqim A — ), /K, s0 that the endpoints of the intervals &,

i. Then limsup; F:(C;) 2 a(e, i) is bounded away from zero, ;- g "k By bin (k, ;) of this grid, we shall mean the set

andlimsup,[—~7; " log P.(C;)] = 0. In this case, (26) holds 7 AN i i i P
trivially sinpc(£, E,(R) gfs a(no)r]megative function by( de)finition.?fiuk’_)\ ) pairs such that’ = kA and(j — )A < X' < jA,
This completes the proqf for such sequences of codes. " We measure the departure rate of each codewofdtinder
The rest of the proof is devoted to the complementary cag@yjice ratekk A = 1, and assign a codeword with departure
namely, the case for vyhmh_the code sequeft@ is such that i v/ 5 pin (K, j)if ( — DA < X < jA. After assigning
B; < C(p, A for all < sufficiently large. To develop the de'aII codewords into the appropriate bins in thgh column of

sired results, we shall consider a generic c6deith parame- o orig e pick the bin in that column with the largest number
ters(n, M, T') and rateR. We letA denote the departure ratey; .qewords. We denote this bin 6%, j(K)). Clearly, bin

of C under service ratg and assume tha < C(u, A). The (K, 5(K)) contains at least//K codewords.
asymptotic nature of (26) allows us to assume & as large  \ye giscard all codewords other than the ones in bin

as we please as we go through the proof. (K, j(K)) and repeat the above procedure this time with ser-

vice rate(K — 1)A. We obtain another bitk — 1, j(K — 1))

with at leastM /K? codewords. This procedure is continued
Here, we consider the mean departure r&tdor an indi-  for eachk from K to 0 and in the end we obtain a codg with

vidual codeword as a function of the service ratewhich we gt leastM /K codewords. (Fok = 0 all codewords go into

regard as variable. For this it will be convenient to think of thgin (0, 0).) We letC; denote the code obtained at the end of
work brought to the queue by each customer as exponentigliys procedure.

distributed with mean 1 s. The service time distribution under Cyis an(n, My, T) code with rateR; in the interval
service ratg’ (customers per second) will then be exponential
with mean1/;/ seconds, as desired. R> Ry > R— (K/T)log(K).

Fix a codeword:™ in the codeC. Letn’ denote the expected 1, o specific, for the rest of the proof we také = /T, so
numper of customer departures in the time mtg[&alf] gnder that we may writeR; = R — o;-(1). This choice allows the grid
Service ralltep’. '/I'he departure rate (undgr service ratpis d?' resolutionA = ./+/T to become finer and finer & increases
fined as\’ = n'/T'. Let us note the obvious fa_ct that < 4/, and at the same time ensures iahas rate close té&.
as the dr;:parture rate cannot exceed the service rate. Inthe rest of the proof we focus on obtaining a lower bound on

LetW denorfe. the average work done by a rﬁte;farver ON p.(c;), the probability of ML decoding error fa, (regarded
the codeword:™ in the time interva(0, 7]. Clearly,n’ +1 > o4 253 subcode but as a code in its own right) on the channel

W’ > /. Dividing by T, haveX + (1/T) > W'/T > X. ; ;
CanZi derlvfimlg'g]e?/ser\ilv; ;}[Vr até+>( / p )L>et n// W with rate z.. Any lower bound onP.(Cy) gives a lower bound
w P on P,.(C) through the inequality

be the corresponding quantities for the rateserver. Clearly,
n' < n' and, equivalently)’ < X’. This is because for any P.(C) > (My/M)P:(Cy). (28)

B. Departure Rates of Codewords
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Since (M, /M) does not alter the exponential order of the service ratg.. as found in the previous subsection. We actu-
bounds as a function @, it will be sufficient to lower-bound ally assume that the alternate channel gives service at.gdte
P.(Cy). those customers who enter service in the intef@al’] and at
For brevity, we putu;, = kA. We define), as the average ratey: to those who enter after tini€. The reason for switching
departure rate fo€; at service ratg;; this is computed by the service rate from. to p is to keep the divergence between
taking the average of the departure rates of all codewords.in the actual and alternate channels as small as possible. This point
Clearly, the rate paifu..x, Ax) falls in the same bidk, j(k)) as will be clear in the following development.
individual codewords. Finally, we l&ty, = C(uw, Ax). To be precise, the transition probability density function for
the alternate channel is defined as
D. Selecting a Critical Channel "
Fix e such thab < ¢ < R;/2. Letk be the largest integer P ") = [ e (i —wi) (32
k such that i=1
wherey; = pie if y1 4+ --- + ;-1 < T andyu; = p otherwise.
For a given channel input™, we define thedivergence

There exists such an integer becausk at 0, we haveR, > andom variable by
Co +¢ =¢. Also, ky < K sinceRy < Rand

R< O, A) = Cluk, Ak)

Ry > Cr+e (29)
n "o Py =)
2(y") = 2(z2", y") = log————=
(") == ) =los p(y"|zm)

where ¢ is regarded as a random vector with distribution
o' (y™|z™). Itis easy to see that we can write

(33)

by assumption. We defing. = i, Ae = Ax,, andC, = Cy,,.
The service rate.. defines the “critical channel.”

We need to establish for later use two technical points, . n ;
namely, that 2y =Y wy') (34)

=1

R=C.+¢+or(1) (30)  where

and that\. is bounded away from zero f@r large enough. We
begin with the latter.
Clearly, C(u, )\k0+1) > Ck0+1 > Rf — € > Rf/2. Let

; o P (il y'™1)
zi(y") = z(2", ') =log ————""—=. 35
(y") =z, y") = log e, =D (35)

The increment;(y") is conditionally independent of previous
)“}ﬁ“(R/) denote the smallest numba such thatC'(, A") = incrementsz;(y’), 1 < j < 4, giveny'~L. The increments
K. Then, A 41 > Amin(H7/2) and Ay, 41 is bounded away ocome zero after the service rate is switched franto .

from zero by a quantity that depends only 8. On the other i, these observations, we calculate the expectation of the
hand, sinci,+1 — . = A, we may use (27) to write incrementz; () as

Ae 2 Apgr1 — A = (1/T) > Apin(Ry/2) — or (1) 4
E[zi(y)] = /

which bounds\. away from zero fofl” large enough. "
To establish (30), it suffices to show that

i—1
Cro+1 — Cc = oz(1) (31) = D(uell )P’ 221 yj <Tlz" (36)
Jj=

as we have by definitiol”; + ¢ < Ry < Cy,41 + ¢ and
R; = R — or(1) by construction. Sincgs,+1 — 1. = A and
Akot1 — Ae < A+ (1/T), the distance between the points D(po||pe) = -1+ L 1Og& (37)
(Hko+1, Akot+1) @Nd (pie, Ae) is or(1), and both points are Pee w

bounded away from the origin f¢éF large enough. Since theand

functionC(y, A) is analytic away from the origin, (31) follows.

P lylat, Y

/ n n
p'(y"|z") log ———= dy
P p(yilz’, =)

where we have defined

1—1
This completes the proof of (30). P Z y; < Tla™| = / Py ety dyi !
We shall also need the observation that, for each codeword in | 5=~ ’ > usT ’ ’
Cy, the average number of departuné$or that codeword under N (38)

service ratqu. satisfiesln’/T — A.| < A. This is because the js the probability that customérenters service before ting
average departure rate/7" for any codeword and the departuresnd receives service at rate, conditional onz™ being trans-
rate A for the entire code both lie in the same By, j(ko)) mitted.

of size A. The expectation of the sua{y™) is then given by

E. Sphere-Packing Argument

n 1—1
The remaining part of the proof consists of the standard steps E'Tz(y™)] = Dlpeln) Z P’ Z yp <Tla™] . (39)
of the sphere-packing bound. We begin by computing the diver- =t =t
gence between the transition probabilities of the actual chanitels straightforward to see that the above sum equals the ex-
with service rateu and an imaginary alternate channel. Hergaected number of customers who enter service before Time
we take the alternate channel also agld /1 channel but with on the alternate channel, given thdt is transmitted and the
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service rate ig:.. Denoting this number by’ = »’(z™), we Let § = T2, Then,1/[T(\. — A)&?] is or(1) since
have Ae > Amin(Ry/2) — or(1). Also note thatP/(Cy) > (e, pe).

So, we may write
! mn !
E'[2(y")] = 7' D(pellp)- (40)

The variance of(y") is also needed in the following. This
variance turns out to be the sum of the variances of the incighere theZ's term in the exponent in (45) has been absorbed
mentsz;(y*) because of the conditional independence propefiyo theo(T) term.
mentioned above. By a similar calculation, we obtain that The choice ofu. and ). in the bound has been dictated
" p 2 by the procedure of selecting;. These parameters depend,
varlz(y")] = n'(1 = p/pe)”. (41) among other things, on the in{ernal composition of the code.
Now, fix § > 0 and define This makes the computation of the tedmD(..||+) practically
impossible. However, the lower bound (46) would remain valid
Apn = {y"t [2(y") — ' D(pellw)| <08} (42) it \.D(pu.||1x) were replaced by a more readily computable
upper bound on it. Such an upper bound is given by

P.(Cy) z 7Pl Mla(e, o) —or(1)]  (46)

By Chebyshev’s inequality, we have the bound

1— i/ pie)? ax{ A D(pacl|10): 0 < pre < 1, 0< Ao < e 47
Plan)>1- ( I;L(S/?u ? 43) max{A.D(pel[1): 0 < pre < o pet  (47)
n
) e ) dsuch that
Following these preliminary calculations, we are now ready
to compute the sphere-packing bound. Lgf, 1 < m < My, R = . log(pe/Ae) (48)
denote the ML decoding regions 10§ with respect to the actual '
channel that has service ratePutn’,, = n/(z™(m)) andA,, = Where we put®’ = R — ¢ — or(1). The constraint (48) corre-
A, (my- Then, the probability of decoding error for theth sponds to the condition (30) which holds true due to the way the
codeword is bounded as follows: critical channel has been selected.
To carry out this optimization, we find it convenient to elim-
P. .= / p(y"™|z" (m)) dy™ inate j1. in favor of a new parameter > 0 by settingu,. =
Dz, 1/(1 4+ p). The desired upper bound now becomes
> p(y" 2™ (m)) dy™
/DmAm " (m)) dy sup{Aclp —log(1+p)]: p2 0, 0< Ao < /(14 )} (49)
> e~ [D(ptell 1) +6] / (" =" (m)) dy™ such that
Ds NA,,. L
, I R =) log ———. 50
> D (pell ) +6] / (" |z (m)) dy” 8 (1+p)A (50)
L/ A,
) We find that at a stationary point of the Lagrangian for this op-
- / Py =" (m)) dyn} timization problem, the following relation must hold:
o Gt [ (L= ) Y
> e rilPlclitel g — 2 — (1= P ) A= A )T (51)
whereP, . is the probability of decoding error on the alternat@hich is a necessary condition for optimality. Substituting this
channel using decoding regidn,,. into the objective function, the problem is reduced to a one-
Since for each codeword 6f; we have dimensional search
T(Ae—A)<np, ST(A+ A) sup S o pR'|. (52)

. pz0 [(1+p) A7)0
we can write N

that the supremum is given by the parametric equations (10),
(11), and equald,,(R’).
Substituting this upper bound into (46), we obtain

P, > e TAelPlpcllm)+é]=o(T) | pr - P/Ie)
m = © “m T T\, — A)6?
(44)

(1 — p/pe)? } Setting the derivative with respect jcequal to zero, we obtain

whereo(T) = TA[D(u.||pr) + 6] and we assum& is large 1

enough so that, — A > 0 (recall that\. is bounded away from —7 log P.(Cy) < Ep[R — e — op(1)] + o (1). (53)

zero forT large). Averaging over all codewords, we obtain

1 5 Applying this result to the sequence of cod€s}, we have

P.(Cy) > o= TAAD (el 1) 48] —o(T) |:Pé(cf) _ (1= p/pe) }
T = a)e limsup —— log P.(C:) < Esp(R — €) (54)

(45) im0 Ly = '
whereP./(C;) denotes the probability of decoding error on th&he bound (26) is obtained by taking the infimuméf, (R —¢)
alternate channel. overe > 0. This completes the proof of Proposition 3.
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IV. DISCUSSION OFRESULTS for a code operating at arrival radg;, the fraction of available
We conclude the paper by discussing some issues relateq%n:el cz;\pamty that is being used is givenihhC(y, Ar) =
PR)-

the above results. . . . .
Another conclusion we can draw is the following. Consider a

code with rateR, < R < C and arrival rate\g. The derivation

of the sphere-packing bound shows that, for any such code, a
The calculations that lead to the random-coding and spheggscoding error is most likely to occur when the empirical mean

packing exponents provide some insight on composition of gt the service time realization approximately equilg,. =

timal codes and dominant error events. To discuss thidddte (1 4 ,.)/,. Thus, when a decoding error occurs for a code

the function ofR, 0 < R < C = ™'y, defined parametrically optimized for its arrival rate, the server should be expected to

A. Coding Implications

by be busy(1 + pr) times more than usual.

12

AR = T @l (55) B. Zero-Rate Exponent
w The major open problem that this work brings forth is the de-
R=—" " log(1+p)/” (56) ot :
(14 p)+0)/r S Py termination of E(R) for ratesO0 < R < R.. It is, therefore,
of particular interest to find bounds on the zero-rate exponent

This function is depicted in Fig. 2. E(0) defined by (6), as this would give an indication on how

The functionAr appears in Section Il as the arrival rate thak'( R) behaves at low rates. At present, the best bound that we
achieves the random-coding exponéhtR) for R, < R < C. are aware of igt/4 < F(0) < p, which is obtained in this
It also appears in Section Il as the critical departure rate thadper. The source of difficulty here appears to be the memory in
yields the sphere-packing expondiif,(R) for 0 < R < €. the channel which makes the evaluation of pairwise error prob-
These results together imply that for rafes < R < C, Ag is  abilities intractable. Some further observations related to this
the optimal arrival-departure rate; i.e., any deviation frtom  problem are as follows.

results in an error exponent inferior & R). For0 < R < R., We first observe that for any:, M, T') code, there is a prob-
the results in this paper provide no basis to claim thatis ability > ¢~#7 that no customer departure occurs in the interval
optimal in this sense. [0, T7. This gives the trivial upper bounB(R) < 1 on the re-

Notice that the ratio\g /i = 1/(1 + pgr)t*Tr=)/Pe which liability exponent, which holds even if there is instantaneous,
represents the average fraction of time the server is busy, rangesseless feedback from channel output to the transmitter. This
from 1/4 to ¢! as R goes fromR, to C. Also notice that upper bound coincides witH,,(0) = .
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We have definedE(0) as the supremum of(R) over Thus, for3 less than aboui.382, M can grow asiu1” with a
R > 0, thus restricting attention to the best attainable perforesultant error exponent greater thap(0).
mance of code sequences for which the number of codewordd his shows that the random-coding argument of Section Il
grows exponentially witl’. If we consider code sequences fofails to produce the best achievable exponent for the range of
which the number of codewords is fixed or grows sufficientlgode parameters just considered. It would be of interest, there-
slowly with 7, then the exponert,,(0) = . is achievable, as fore, to study possible extensions of the above code construction
we demonstrate next. to nonzero rates by allowing multiple but discrete arrival points,
LetCp be an(M — 1, M, T') code such that thexth code- as in the models studied in [3].
word bringsm — 1 customers at timé andA{ — m customers  As a final remark, we note that for the IPC considered in Sec-
attime?l’, 1 < m < M. Consider a decoder for this code thation I, the best attainable error exponent for codes With= 3
decides that messagewas sent if it observes. — 1 customer codewords ig:/2, whereas for the ETC the same numbet.is
departures if0, T']. Then, the probability of decoding error forSo, at least for codes with fixed number of codewords, a differ-

themth codeword is given by ence emerges between the relative error-correcting capabilities
of the two channels. Whether this is true at any nonzero rate re-
Pe,rn = P(Sl + -+ S > T) (57) mains open.

where {s;} are the service times, which are independent
and identically distributed (i.i.d.) exponential with me&fy.. _ _
C|ear|y'P€7m is monotonica”y increasing im. So, the average The author would like to thank the anonymous reviewers for
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