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On the Reliability Exponent of the Exponential
Timing Channel
Erdal Arikan, Senior Member, IEEE

Abstract—We determine the reliability exponent ( ) of
the Anantharam–Verdú exponential server timing channel with
service rate for all rates between a critical rate =
( 4) log 2 and the channel capacity = 1 . For rates
between 0 and , we provide a random-coding lower bound

( ) and a sphere-packing upper bound ( ) on ( ).
We also determine that the cutoff rate 0 for this channel equals

4, thus answering a question posed by Sundaresan and Verdú.
An interesting aspect of our results is that the lower bound ( )
for the reliability exponent of the timing channel coincides with
Wyner’s reliability exponent for the photon-counting channel
with no dark current and with peak power constraint . Whether
the reliability exponents of the two channels are actually equal
everywhere remains open. This shows that the exponential server
timing channel is at least as reliable as this type of a photon-
counting channel for all rates.

Index Terms—Cutoff rate, photon-counting channel, point
process channel, Poisson channel, reliability exponent, sphere-
packing exponent, timing channel.

I. INTRODUCTION

NANTHARAM and Verdú [1] introduced the exponential
server timing channel and determined that its capacity equals

nats per second. More recently, Sundaresan and Verdú
[10] considered sequential decoding for this channel and found
that its cutoff rate is at least , half the capacity. They
posed the determination of the exact value of the cutoff rate as
an open problem. In this paper, we show that the cutoff rate
equals . The main contribution of this paper, however, is
the more comprehensive result about the reliability exponent
of the channel. We begin by giving a precise statement of the
problem.

The exponential server timing channel consists of a
queue with a first-in first-out service discipline. Service times
are independent and exponentially distributed with mean.
Information transmission begins at timewith the queue con-
taining a possibly nonzero amount of unfinished work. The
model allows to be chosen from a probability distribution

, but , as a random variable, must be independent of
the message transmitted. The information to be transmitted is
encoded into the arrival process, represented by the interarrival
times of customers to the queue. The receiver makes
its decisions about the transmitted messages based on its obser-
vation of the interdeparture times of customers from
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the queue, and also its noiseless observation of the ini-
tial unfinished work.

Given the interarrival times for the first
customers, and the initial load , the conditional probability

density of observing and is specified as

(1)

where is the delta function, , , is
the exponential density with mean , and

(2)

is the server’s idling time before the arrival of theth customer.
The quantity is the service time for customerand is
exponential with parameter.

There is more than one reasonable definition of a block code
for the timing channel, leading to different capacity results, as
explained in [1]. In this paper, we consider only the type of block
codes termedwindow codein [9]. By a block code with param-
eters we shall mean a collection of vectors of
length , , . The
components of codewords are nonnegative numbers that cor-
respond to customer interarrival times. Transmitting codeword

means sending customers to the queue with the arrival
time of the th customer given by , . The
parameter denotes the deadline for sending theth customer,
thus, for every . The rate of such a code is
defined as nats per second. (Throughout, we
use natural logarithms.)

A decoder for such a code consists of a collection of disjoint
decoding regions , , such that the decoder
decides that message was sent when the observed channel
output falls in . The probability of decoding error
when message is transmitted is given by

(3)

The average probability of error for the decoder is defined by

(4)

In [9], it is observed that a maximum-likelihood (ML) decoder
for an code on an exponential timing channel may,
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Fig. 1. Random-coding and sphere-packing exponents.

without loss of optimality, restrict its observation of the channel
output to the time window .

A rate nats per second is said to be achievable on the
channel with service rate if for any given and
there exists an code with rate greater than and
probability of ML decoding error less than. The supremum of
achievable rates is called the capacity of the channel and is given
by [1], [9].

While the capacity results tell us the highest achievable rates,
they do not say much about how fast the probability of ML de-
coding error can be made to approach zero. To achieve smaller
error probabilities at a fixed rate , one needs to use longer
codes as measured by the parameter. This leads to the fol-
lowing definition. Given a channel, its reliability expo-
nent at rate is defined as

(5)

where is the minimum value of the ML decoding error
over all codes for the given channel such that

and is arbitrary. The zero-rate exponent is
defined as

(6)

The main result of this paper is the following.

Proposition 1: The reliability exponent of the exponential
timing channel with service rate is bounded, for every

, by

(7)

where the functions and are defined as follows.

Random-Coding Exponent:For , . For

, where , is given by the
pair of parametric equations

(8)

(9)

where ranges in the interval . For ,
.

Sphere-Packing Exponent:For , . For
, is given by

(10)

(11)

where ranges in the interval . Finally, .
We observe that, for rates ,

and is completely determined. For rates ,
remains unknown. A sketch of the functions and

is given in Fig. 1.
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One of our motivations for studying the reliability exponent of
this channel was to determine itscutoff rate, which is defined as
the largest rateatwhichsequentialdecodingcanbeusedwithin fi-
niteexpectedcomputationperdecodeddigit.Asshown in [2], the
cutoff rate parameter coincides with the parameter which is
the vertical axis intercept of the supporting line of slopeto the
curve , and for the channel here is given by

. This answers a question raised in [10] about the exact value
of the cutoff rate of sequential decoding on this channel.

We finally wish to discuss our results with regard to the
analogy, first mentioned in [1], between the exponential timing
channel (ETC) and the direct-detection photon channel (also
known as the Poisson channel, point process channel, etc.). The
input to the photon channel is a waveform which modulates
the power of a transmitted optical field. A photon detector at
the receiver produces counts that are modeled as a Poisson
process with rate , where corresponds to inherent
background noise (dark current). In general, a photon channel is
characterized by its dark-current intensityand constraints on
peak and average values of . We shall refer to the special case
ofaphotonchannelwithzerodarkcurrent andonlyapeak
power constraint as anidealphotonchannel (IPC).

The capacity of an IPC is given by [6], [4], which co-
incides with the capacity of an ETC with service rate. It is
interesting that the IPC capacity is achieved by using wave-
forms with average power , analogous to the fact that the
capacity-achieving arrival rate for the ETC is . This
analogy carries further to the reliability exponents of the two
channels, as we discuss next.

In a seminal work [11], [12], Wyner determined the reliability
exponent of the photon channel for all rates between zero and
channel capacity. Wyner’s result is fully general, covering arbi-
trary and arbitrary peak and average power constraints. It is
interesting to note that, as Wyner noted, the photon channel is
one of a select few nontrivial channels, such as the infinite-band-
width additive Gaussian noise channel, whose reliability expo-
nent is known exactly for all rates below capacity.

Wyner’s exponent for the special case of an IPC coincides
with the random-coding exponent of an ETC, as given
by (8), (9). Thus, the reliability exponents for the two channels
are identical for the range of rates . Whether the
two exponents are everywhere identical remains an interesting
open question.

We should mention in this connection that, for the case of
an IPC with noiseless feedback, Lapidoth [7] obtained a lower
bound on the reliability exponent which coincides with the
sphere-packing exponent of an ETC, as given by (10),
(11). (He also showed that if the average power is constrained
to , then this lower bound is tight.)

Lapidoth’s result is particularly relevant here in that an IPC
with feedback is equivalent to a “telephone signaling channel”
(TSC) with customer recall, another timing channel model dis-
cussed in [1]. The basic TSC (without customer recall) is an
ETC with feedback. A TSC with customer-recall capability is
an ETC with feedback and with the option of recalling a cus-
tomer in service any time the encoder wishes.

All variants of the timing channel and the ideal photon channel
previouslymentionedhave the samevalue forcapacity.Ex-

planations for the insensitivity of the capacity under variations
including feedback and customer recall have been given in [1],
[9], and [8]. Except for the IPC (without feedback), the reliability
exponents of these channels are not known fully.

This completes the summary of our results. In Sections II
and III, we derive the random-coding exponent and the
sphere-packing exponent , respectively. Section IV is a
discussion of results.

II. RANDOM-CODING BOUND

This section is based on Gallager’s results on computing the
reliability exponent for channels with continuous inputs and
outputs [5, Ch. 7]. We regard as a fixed parameter
throughout. Initially, we also fix and
and for each consider an ensemble of codes
with , . A code in the ensemble
with codewords is assigned the probability

where

(12)

with

for

otherwise.

(13)

The term is the normalizing factor and it equals the prob-
ability that a codeword chosen at random from the distribu-
tion satisfies the “shell constraint” . A
straightforward application of the central limit theorem shows
that .1

Gallager’s bound [5, Ch. 7] on the ensemble average of the
probability of ML decoding error, when the th codeword is
transmitted, is given by

(14)

where is an arbitrary parameter within the interval .
The choice of does not affect the bound asymptotically
but a convenient choice facilitates its evaluation.

For our purposes, it turns out that a weaker version of this
bound (which amounts to assuming that the observation of
is unavailable to the decoder) is sufficient. Using Minkowsky’s
inequality [5, p. 523], we obtain from (14)

(15)

1We writeo (1) to denote an unspecified positive-valued function ofz that
goes to zero asz goes to infinity. We writeo(z) to denote a function such that
o(z)=z = o (1).
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Next, we note that for any

and also observe that

(16)
Substituting these into (15), we obtain

(17)

where for shorthand we put

The bracketed integral in (17) gives the distribution of the
departure times in an queue with service rate

, arrival rate , and initial load . We now specify
as the exponential density with parameter ,
and restrict and further so that .
The queue now starts in equilibrium, and by Burke’s
theorem, the interdeparture times are independent,
exponential random variables with parameter (see [1] for
a discussion of this point). Hence, (17) can be rewritten in this
case as

(18)

where .
We now put (this choice minimizes the bound

(18) if we ignore the term) to obtain

(19)

which is valid for any . In writing (19), we defined

(20)

and made use of the facts that and .
We now set equal to

(21)

(this choice maximizes the function over for a
fixed ) and define

(22)

to conclude that for the ensemble with , (19) holds with
in place of .

To obtain the tightest possible bound for a fixed, a further
maximization is required over . So, we define

(23)

It is straightforward to check that the function is
a differentiable concave function of for any given
. Following the method in [5, Sec. 5.6], the value of

is determined as stated in Proposition 1. In particular, we note
that the right-hand side of (9) equals . Now, for the
ensemble with

(24)

The next step is to convert this bound on an ensemble average
to a bound that applies to a specific code. For this one considers
an ensemble of codes with codewords and uses expurgation
(see, e.g., [5, Sec. 5.6]). The final result is as follows.

Proposition 2: Let and be given numbers. For
any , there exists an code with
such that the probability of ML decoding error on a
channel with service rate satisfies

(25)

for each message , .

III. SPHERE-PACKING BOUND

The sphere-packing bound on the probability of ML decoding
error for a given code on a timing channel is obtained by
considering the use of the same code on an alternate “noisier”
channel. Although the underlying idea of the proof to be pre-
sented in this section is standard, the continuous and nonmem-
oryless nature of the channel presents some special difficulties;
so, we give a detailed proof.

Proposition 3: Let be fixed. Let ,
be a sequence of codes for the timing channel with ser-
vice rate . Let denote the parameter of, its
rate, and the probability of ML decoding error starting
with initial load . Suppose the code lengths increase
to infinity and that the rates converge to . Then

(26)

where is given by (10), (11).

The initial load has no effect on asymptotic probabilities;
it is taken equal to zero here to simplify calculations. The rest
of this section consists of the proof of Proposition 3. We fix a
sequence of codes satisfying the hypothesis. We break the
proof into several steps.
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A. Converse Coding Theorem

For the proof, we require a converse coding theorem. The ap-
propriate form of the converse is given by [1, Theorem 4] which
states that the capacity of a channel with service rate
and departure rate is given by . To in-
terpret this result for our purposes, fix any . Consider an

code with rate . Let be the average departure rate
of customers, observed over the interval . The theorem
states that if , then the probability of ML de-
coding error based on observation of the time window
is bounded away from zero by a function which is
independent of the code length. For the types of codes under
consideration (window codes), this statement remains true even
if the decoder is allowed to observe the channel output after time

, because as we noted earlier, such observations do not provide
any relevant information to an ML decoder. For a uniform lower
bound on the probability of error, we define

This function is strictly positive for any .
An initial use of this converse will be to dispose of a simple

special case of Proposition 3 in which operate above
channel capacity. To be precise, letdenote the departure rate
of code under service rate. Suppose the code sequence is
such that, for some , for infinitely many
. Then, is bounded away from zero,

and . In this case, (26) holds
trivially since is a nonnegative function by definition.
This completes the proof for such sequences of codes.

The rest of the proof is devoted to the complementary case,
namely, the case for which the code sequence is such that

for all sufficiently large. To develop the de-
sired results, we shall consider a generic codewith parame-
ters and rate . We let denote the departure rate
of under service rate and assume that . The
asymptotic nature of (26) allows us to assume thatis as large
as we please as we go through the proof.

B. Departure Rates of Codewords

Here, we consider the mean departure ratefor an indi-
vidual codeword as a function of the service rate, which we
regard as variable. For this it will be convenient to think of the
work brought to the queue by each customer as exponentially
distributed with mean 1 s. The service time distribution under
service rate (customers per second) will then be exponential
with mean seconds, as desired.

Fix a codeword in the code . Let denote the expected
number of customer departures in the time interval under
service rate . The departure rate (under service rate) is de-
fined as . Let us note the obvious fact that ,
as the departure rate cannot exceed the service rate.

Let denote the average work done by a rate-server on
the codeword in the time interval . Clearly,

. Dividing by , we have .
Consider another server at rate . Let , ,

be the corresponding quantities for the rate-server. Clearly,
and, equivalently, . This is because for any

given realization of the service times of customers brought by
, the faster server will serve at least as many customers as the

slower one.
For a converse inequality, we begin with .

This can be seen by interpreting as the length of time that
the server with rate is busy in the interval . Since the
faster server is never busy when the slower one is idle for any
realization of the service times, the inequality follows. Com-
bining this with the previous inequality, we have

. In particular, if , we obtain

(27)

This fact will be used in the sequel.

C. Selecting a Subcode

We now seek to find a subcode of such that has es-
sentially the same rate but for which each codeword has ap-
proximately the same departure rateas a function of , for

. This step of the proof is the counterpart of finding
a fixed-composition subcode in the case of discrete channels.

The service rate–departure rate pairs of interest here lie in
the triangle , . We visualize this tri-
angle in a Cartesian coordinate system withmarking the hori-
zontal axis, and the vertical. We place a grid on the triangle by
subdividing its horizontal and vertical sides intointervals of
length , so that the endpoints of the intervals are,

. By bin of this grid, we shall mean the set
of pairs such that and ,

.
We measure the departure rate of each codeword inunder

service rate , and assign a codeword with departure
rate to bin if . After assigning
all codewords into the appropriate bins in theth column of
the grid, we pick the bin in that column with the largest number
of codewords. We denote this bin by . Clearly, bin

contains at least codewords.
We discard all codewords other than the ones in bin

and repeat the above procedure this time with ser-
vice rate . We obtain another bin
with at least codewords. This procedure is continued
for each from to and in the end we obtain a code with
at least codewords. (For all codewords go into
bin .) We let denote the code obtained at the end of
this procedure.

is an code with rate in the interval

To be specific, for the rest of the proof we take , so
that we may write . This choice allows the grid
resolution to become finer and finer as increases
and at the same time ensures thathas rate close to .

In the rest of the proof we focus on obtaining a lower bound on
, the probability of ML decoding error for (regarded

not as a subcode but as a code in its own right) on the channel
with rate . Any lower bound on gives a lower bound
on through the inequality

(28)
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Since does not alter the exponential order of the
bounds as a function of , it will be sufficient to lower-bound

.
For brevity, we put . We define as the average

departure rate for at service rate ; this is computed by
taking the average of the departure rates of all codewords in.
Clearly, the rate pair falls in the same bin as
individual codewords. Finally, we let .

D. Selecting a Critical Channel

Fix such that . Let be the largest integer
such that

(29)

There exists such an integer because at , we have
. Also, since and

by assumption. We define , , and .
The service rate defines the “critical channel.”

We need to establish for later use two technical points,
namely, that

(30)

and that is bounded away from zero for large enough. We
begin with the latter.

Clearly, . Let
denote the smallest number such that

. Then, and is bounded away
from zero by a quantity that depends only on. On the other
hand, since , we may use (27) to write

which bounds away from zero for large enough.
To establish (30), it suffices to show that

(31)

as we have by definition and
by construction. Since and

, the distance between the points
and is , and both points are

bounded away from the origin for large enough. Since the
function is analytic away from the origin, (31) follows.
This completes the proof of (30).

We shall also need the observation that, for each codeword in
, the average number of departuresfor that codeword under

service rate satisfies . This is because the
average departure rate for any codeword and the departure
rate for the entire code both lie in the same bin
of size .

E. Sphere-Packing Argument

The remaining part of the proof consists of the standard steps
of the sphere-packing bound. We begin by computing the diver-
gence between the transition probabilities of the actual channel
with service rate and an imaginary alternate channel. Here,
we take the alternate channel also as a channel but with

a service rate as found in the previous subsection. We actu-
ally assume that the alternate channel gives service at rateto
those customers who enter service in the interval and at
rate to those who enter after time. The reason for switching
the service rate from to is to keep the divergence between
the actual and alternate channels as small as possible. This point
will be clear in the following development.

To be precise, the transition probability density function for
the alternate channel is defined as

(32)

where if and otherwise.
For a given channel input , we define thedivergence

random variable by

(33)

where is regarded as a random vector with distribution
. It is easy to see that we can write

(34)

where

(35)

The increment is conditionally independent of previous
increments , , given . The increments
become zero after the service rate is switched fromto .
Using these observations, we calculate the expectation of the
increment as

(36)

where we have defined

(37)

and

(38)
is the probability that customerenters service before time
and receives service at rate, conditional on being trans-
mitted.

The expectation of the sum is then given by

(39)

It is straightforward to see that the above sum equals the ex-
pected number of customers who enter service before time
on the alternate channel, given that is transmitted and the
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service rate is . Denoting this number by , we
have

(40)

The variance of is also needed in the following. This
variance turns out to be the sum of the variances of the incre-
ments because of the conditional independence property
mentioned above. By a similar calculation, we obtain that

(41)

Now, fix and define

(42)

By Chebyshev’s inequality, we have the bound

(43)

Following these preliminary calculations, we are now ready
to compute the sphere-packing bound. Let , ,
denote the ML decoding regions for with respect to the actual
channel that has service rate. Put and

. Then, the probability of decoding error for theth
codeword is bounded as follows:

where is the probability of decoding error on the alternate
channel using decoding region .

Since for each codeword of we have

we can write

(44)

where and we assume is large
enough so that (recall that is bounded away from
zero for large). Averaging over all codewords, we obtain

(45)

where denotes the probability of decoding error on the
alternate channel.

Let . Then, is since
. Also note that .

So, we may write

(46)

where the term in the exponent in (45) has been absorbed
into the term.

The choice of and in the bound has been dictated
by the procedure of selecting . These parameters depend,
among other things, on the internal composition of the code.
This makes the computation of the term practically
impossible. However, the lower bound (46) would remain valid
if were replaced by a more readily computable
upper bound on it. Such an upper bound is given by

(47)

such that

(48)

where we put . The constraint (48) corre-
sponds to the condition (30) which holds true due to the way the
critical channel has been selected.

To carry out this optimization, we find it convenient to elim-
inate in favor of a new parameter by setting

. The desired upper bound now becomes

(49)

such that

(50)

We find that at a stationary point of the Lagrangian for this op-
timization problem, the following relation must hold:

(51)

which is a necessary condition for optimality. Substituting this
into the objective function, the problem is reduced to a one-
dimensional search

(52)

Setting the derivative with respect toequal to zero, we obtain
that the supremum is given by the parametric equations (10),
(11), and equals .

Substituting this upper bound into (46), we obtain

(53)

Applying this result to the sequence of codes , we have

(54)

The bound (26) is obtained by taking the infimum of
over . This completes the proof of Proposition 3.
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Fig. 2. The function� versusR.

IV. DISCUSSION OFRESULTS

We conclude the paper by discussing some issues related to
the above results.

A. Coding Implications

The calculations that lead to the random-coding and sphere-
packing exponents provide some insight on composition of op-
timal codes and dominant error events. To discuss this, letbe
the function of , , defined parametrically
by

(55)

(56)

This function is depicted in Fig. 2.
The function appears in Section II as the arrival rate that

achieves the random-coding exponent for .
It also appears in Section III as the critical departure rate that
yields the sphere-packing exponent for .
These results together imply that for rates , is
the optimal arrival–departure rate; i.e., any deviation from
results in an error exponent inferior to . For ,
the results in this paper provide no basis to claim thatis
optimal in this sense.

Notice that the ratio , which
represents the average fraction of time the server is busy, ranges
from to as goes from to . Also notice that

for a code operating at arrival rate , the fraction of available
channel capacity that is being used is given by

.
Another conclusion we can draw is the following. Consider a

code with rate and arrival rate . The derivation
of the sphere-packing bound shows that, for any such code, a
decoding error is most likely to occur when the empirical mean
of the service time realization approximately equals

. Thus, when a decoding error occurs for a code
optimized for its arrival rate, the server should be expected to
be busy times more than usual.

B. Zero-Rate Exponent

The major open problem that this work brings forth is the de-
termination of for rates . It is, therefore,
of particular interest to find bounds on the zero-rate exponent

defined by (6), as this would give an indication on how
behaves at low rates. At present, the best bound that we

are aware of is , which is obtained in this
paper. The source of difficulty here appears to be the memory in
the channel which makes the evaluation of pairwise error prob-
abilities intractable. Some further observations related to this
problem are as follows.

We first observe that for any code, there is a prob-
ability that no customer departure occurs in the interval

. This gives the trivial upper bound on the re-
liability exponent, which holds even if there is instantaneous,
noiseless feedback from channel output to the transmitter. This
upper bound coincides with .
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We have defined as the supremum of over
, thus restricting attention to the best attainable perfor-

mance of code sequences for which the number of codewords
grows exponentially with . If we consider code sequences for
which the number of codewords is fixed or grows sufficiently
slowly with , then the exponent is achievable, as
we demonstrate next.

Let be an code such that the th code-
word brings customers at time and customers
at time , . Consider a decoder for this code that
decides that messagewas sent if it observes customer
departures in . Then, the probability of decoding error for
the th codeword is given by

(57)

where are the service times, which are independent
and identically distributed (i.i.d.) exponential with mean .
Clearly, is monotonically increasing in . So, the average
probability of error for the code satisfies .

A straightforward application of the Chernoff bound [5, p.
126] yields

(58)

for any . Thus,

(59)

It follows that if , then asymptotically as
, the right-hand side of (59) can be made as close toas

desired. Thus, the exponent can be achieved arbi-
trarily closely by such codes.

Next, we show that it is possible to havegrow linearly with
while still maintaining an error exponent better than

. For this, let and to write the
right-hand side of (59) as

(60)

A simple analysis shows that for any , (60) is maxi-
mized over by , yielding

(61)

Thus, for less than about , can grow as with a
resultant error exponent greater than .

This shows that the random-coding argument of Section II
fails to produce the best achievable exponent for the range of
code parameters just considered. It would be of interest, there-
fore, to study possible extensions of the above code construction
to nonzero rates by allowing multiple but discrete arrival points,
as in the models studied in [3].

As a final remark, we note that for the IPC considered in Sec-
tion I, the best attainable error exponent for codes with
codewords is , whereas for the ETC the same number is.
So, at least for codes with fixed number of codewords, a differ-
ence emerges between the relative error-correcting capabilities
of the two channels. Whether this is true at any nonzero rate re-
mains open.
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