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Channel Combining and Splitting for
Cutoff Rate Improvement
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Abstract—The cutoff rate 0( ) of a discrete memoryless
channel (DMC) is often used as a figure of merit alongside the
channel capacity ( ). If a channel is split into two possibly
correlated subchannels 1, 2, the capacity function always
satisfies ( 1) + ( 2) ( ), while there are examples
for which 0( 1) + 0( 2) 0( ). The fact that cutoff
rate can be “created” by channel splitting was noticed by Massey
in his study of an optical modulation system. This paper gives a
general framework for achieving similar gains in the cutoff rate of
arbitrary DMCs by methods of channel combining and splitting.
The emphasis is on simple schemes that can be implemented in
practice. We give several examples that achieve significant gains
in cutoff rate at little extra system complexity. Theoretically, as
the complexity grows without bound, the proposed framework
is capable of boosting the cutoff rate of a channel to arbitrarily
close to its capacity in a sense made precise in the paper. Apart
from Massey’s work, the methods studied here have elements in
common with Forney’s concatenated coding idea, a method by
Pinsker for cutoff rate improvement, and certain coded-modula-
tion techniques, namely, Ungerboeck’s set-partitioning idea and
Imai–Hirakawa multilevel coding; these connections are discussed
in the paper.

Index Terms—Channel combining, channel splitting, coded
modulation, concatenated coding, cutoff rate, error exponent,
multilevel coding, random-coding exponent, reliability exponent,
set partitioning, successive cancellation decoding.

I. INTRODUCTION

THE cutoff rate function for any pair of discrete random
variables with a joint distribution (denoted

in the sequel) is defined as

and for any three random variables , as

(All logarithms are to the base throughout.) The function
shares many properties of the mutual information

listed as follows.
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1) Nonnegativity. with equality if and only
if (iff) and are conditionally independent given ,
i.e.,

2) Monotonicity in the first ensemble.
with equality iff and are conditionally

independent given , i.e.,

3) Monotonicity in the second ensemble.
with equality iff and are conditionally in-

dependent given , i.e.,

4) If

i.e., and are independent, then

Mutual information has two other important properties: sym-
metry, , and chain rule (additivity),

. For the function, nei-
ther holds in general. Lack of additivity means that for either
inequality

(1)

there exists an example satisfying that inequality strictly. We
will give such examples in the next subsection. The main moti-
vation for this paper is to demonstrate that the possibility of

can be used to gain significant advantages in coding and modu-
lation.

For the most part, we will consider discrete memoryless chan-
nels. We write to denote a discrete memoryless
channel (DMC) with input alphabet , output alphabet , and
transition probability that output is received
given that input is sent. For such a DMC , let be a
probability distribution on , and let .
The cutoff rate of under input distribution is defined as

. The cutoff rate of is defined as

A. Lack of Chain Rule for the Cutoff Rate

We give two examples showing that no general inequality ex-
ists between the left- and right-hand sides of (1). The first ex-
ample is derived from Massey’s work [1] and illustrates in a
simple fashion the main goals of the present paper. In a study of
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Fig. 1. Relabeling and splitting of a QEC into two correlated BECs.

Fig. 2. Two coding alternatives over the QEC.

coding and modulation for an optical communication system,
Massey showed that splitting a given channel into correlated
subchannels may lead to an improvement in the sum cutoff rate.
He modeled the optical communication channel as an -ary
erasure channel and considered splitting the -ary channel into
binary erasure channels (BECs). The following example shows
Massey’s idea for . This same example was also dis-
cussed in [2] to illustrate some unexpected behavior of cutoff
rates.

Example 1 (Massey [1]): Consider the quaternary erasure
channel (QEC), shown on the left in Fig. 1, and relabel its in-
puts and outputs to obtain the channel
where , , and

where is the erasure probability. The QEC can
be decomposed into two BECs: , , as
shown on the right in Fig. 1. In this decomposition, a transition

over the QEC is viewed as two transitions,
and , taking place on the respective compo-

nent channels, with

These BECs are fully correlated in the sense that an erasure
occurs either in both or in none.

We now compare the two coding alternatives for the QEC that
are shown in Fig. 2 in terms of their respective capacities and

cutoff rates. The first alternative is the ordinary coding of the
QEC as a single-user channel. The second is the independent
coding of the component BECs and , ignoring the corre-
lation between the two subchannels. The capacity and cutoff rate
of an -ary erasure channel are given by and

, respectively, for any . It
follows that , i.e., the capacity of the
QEC is not degraded by splitting it into two BECs. On the other
hand, it is easily verified and shown in Fig. 3 that the cutoff rate
is improved by splitting, i.e., .

Massey’s example shows that the left-hand side in (1) may be
strictly smaller than the right-hand side. To see this, define an
ensemble

where is the uniform distribution on , and verify that

and

Implications of the possibility that cutoff rate can be “created”
will be discussed shortly. We complete this subsection by giving
an example for the reverse inequality in (1).

Example 2: Let where
, , and

or
otherwise.
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Fig. 3. Capacity and cutoff rate for the splitting of a QEC.

The channel may be thought of as consisting of two BECs
, , where each has erasure

probability . Subchannels and are correlated
since an erasure occurs either in one or the other but never in
both.

is achieved by the uniform distribution on
and . On the other hand, we have

Thus, this is an example where the sum cutoff rate is worsened
by splitting, . This example also
shows that the left-hand side in (1) may be strictly greater than
the right-hand side. This can be seen by considering the en-
semble where

is the uniform distribution on , and verifying that

and

In both of the above examples, the erasure events in the sub-
channels and are fully cor-
related; the correlation is positive in the first, negative in the
second. This vaguely suggests that, in order to obtain cutoff rate
gains, one should seek to split a given channel into subchannels
in such a way that the noise levels in subchannels are positively
correlated.

B. Significance of the Cutoff Rate

Channel cutoff rate has long been used as a figure of merit
for coding and modulation systems and this has been justified
in well-known works, such as [3] and [4]. Here, we summarize
the argument in favor of using as a figure of merit.

One reason for the significance of stems from its role in
connection with sequential decoding, which is a decoding algo-
rithm for tree codes invented by Wozencraft [5], with important
later contributions by Fano [6]. Sequential decoding can be used

to achieve arbitrarily reliable communication on any DMC
at rates arbitrarily close to the cutoff rate while keeping
the average computation per decoded digit bounded by a con-
stant that depends on the code rate, the channel , but not on
the desired level of reliability. If the desired rate is between

and channel capacity , sequential decoding can
still achieve arbitrarily reliable communication but the average
computation becomes arbitrarily large as well. Proofs of these
results can be found in the textbooks [7]–[9].

If we consider using sequential decoders in the two coding al-
ternatives in Fig. 2, the achievable sum cutoff rate by the second
alternative exceeds that by the first, since

BEC QEC for all

This improvement comes at negligible extra system complexity,
if any.

Apart from its significance in sequential decoding, ap-
pears in the union bound on the probability of error for coding
and modulation systems [7, p. 396], and hence, serves as a
simple measure of reliability. This issue is connected to the
relation of to the channel reliability exponent, and will be
discussed in detail in Section VII.

C. Outline

This paper addresses the following questions raised by
Massey’s example. Can any DMC be split in some way to
achieve coding gains as measured by improvements in the
cutoff rate? And, if so, what are the limits of such gains?

We address these questions in a framework where channel
combining prior to splitting is allowed. In Massey’s example
there is no channel combining; a given channel is simply split
into two subchannels. In general, however, it may not be pos-
sible to split a given channel into subchannels so as to obtain
a gain in the cutoff rate. By applying channel combining prior
to splitting, we manufacture large channels which can be more
readily split to yield cutoff rate gains. In fact, we show that the
cutoff rate of a given DMC can be improved all the way to
its capacity in the limit of combining an arbitrarily large
number of independent copies of .

An outline of the rest of the paper follows. In Section II, we
describe the general framework for cutoff rate improvement.
Section III demonstrates the effectiveness of the proposed
framework by giving two very simple examples in which the
cutoff rates of BECs and BSCs are improved significantly.
Section IV explores the limits of practically achievable cutoff
rate gains by combining a moderately large number of BSCs
based on some ad hoc channel combining methods. Sec-
tion V exhibits Pinsker’s method [10] as a special case of
the method presented in Section II, thus establishing that the
cutoff rate of any DMC can be boosted to as close to channel
capacity as desired. (Unfortunately, this is an asymptotic result
with no immediate practical significance.) In Section VI, we
give an example that illustrates the common elements of the
channel splitting method and coded-modulation schemes. In
Section VII, we show that channel splitting may be used to
improve the reliability–complexity tradeoff in maximum-like-
lihood (ML) decoding. Section VIII concludes the paper with a
summary and discussion.
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The present work is tied to previous work along many
threads. We have already mentioned Massey’s work [1] as the
main starting point. There is also a close similarity to tech-
niques employed in coded modulation and multilevel coding as
represented by the pioneering works of Ungerboeck [11], [12]
and Imai–Hirakawa [13]. Finally, the present work is connected
through Pinsker’s serial concatenation approach [10] to itera-
tive coding methods that date back to Elias [14]. Concatenated
coding in general is a well-known technique for improving the
reliability–complexity tradeoff in coding, and it is pertinent to
cite Forney’s seminal work on the subject [15] and important
later works [16], [17] as part of the broader background for the
present paper.

Notation: We write to denote the vector for
any . If , denotes a void vector.

II. CHANNEL COMBINING AND SPLITTING

In order to seek coding gains in the spirit of Massey’s ex-
ample, we will consider DMCs of the form for
some integer . Such a channel may have been obtained
by labeling the input and output symbols of a given channel
by vectors, as in Massey’s example. Typically, such a channel
will be obtained by combining independent copies of a given
DMC , as shown in Fig. 4. We incorporate into the
channel combining procedure a bijective label mapping func-
tion . Relabeling of the inputs of (the
channel that consists of independent uses of ) is an es-
sential ingredient of the proposed method; without such a rela-
beling, there would be no gain. The resulting channel is a DMC

such that

where .
Whatever the origin of the channel , we regard
as a channel with input terminals where each terminal is

encoded by a different user. We will consider splitting into
subchannels by using the coding system shown in Fig. 5 where
a type of decoder known variously as a successive cancellation
decoder or a multilevel decoder is employed. The latter term is
more common in the coded-modulation literature [13]. We will
adopt the former term in the sequel since the context here is
broader than modulation.

The decoder in a successive cancellation system is designed
around a random code ensemble for channel , specified by a
random vector , where is a prob-
ability distribution on , . Roughly, corresponds
to the input random variable that is transmitted at the th input
terminal. Given such a reference ensemble, we define DMCs

, , so that

The th decoder in the system will use as its channel model
in carrying out the decoding task.

The precise operation of the successive cancellation system
is as follows. User encodes a message into a vector

Fig. 4. Channel combining and input relabeling.

, which it transmits at input
terminal , . The codeword length is assumed to
be the same for all users to simplify the description; in general,
each user may have a different codeword length. The messages

are assumed independent. Decoder 1 observes the
channel output vector
where is the output of the th copy of at time ,
and generates its estimate of , and also an estimate

of . It puts out as its decision,
and feeds to all succeeding decoders to help them with
their decoding tasks. This first decoder knows only the code
used by encoder 1 and uses the channel model , in effect,
modeling the inputs at time at other input
terminals as generated by a memoryless source from the
distribution , . (In case the
users employ tree coding with certain truncation periods, each
user is assumed to be aware of the position and identity of the
truncation symbols used by each succeeding user and to modify
the channel model accordingly.) In general, decoder observes

and proceeds to generate an estimate
of and an estimate of using the
channel model . The
estimate is sent out, while is passed to the succeeding
decoders.

This successive cancellation system provides the general
framework in which we will consider channel combining
and splitting methods. We will assume that the decoders in
the system are sequential decoders and use the sum cutoff
rate as the criterion for measuring coding gains. By stan-
dard random-coding arguments for tree codes and sequential
decoding, one may show that an ensemble average error proba-
bility

as small as desired can be achieved while still ensuring that the
average decoding complexity per decoded symbol is bounded
by a constant provided that encoder operates at a rate

, . Thus, the sum rate achievable by such
a scheme is given by .
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Fig. 5. Channel splitting by successive cancellation.

Note that equals , which in
turn equals since and are inde-
pendent. So, the sum cutoff rate for the preceding scheme
normalized by the number of channels is

We will speak of a coding gain if is greater than
, the ordinary cutoff rate of the elementary channel .

It may be of interest to consider also the cutoff rate for the
channel , namely

where the maximum is over all , not necessarily in
product form. The rate is the supremum of achievable
rates by a single sequential decoder that decodes all inputs

jointly, with no restriction that different inputs of are
encoded independently. Gallager’s “parallel channels theorem”
[8, p. 149] ensures that with equality iff
the label map is bijective. Thus, the only possible method
of achieving a coding gain as measured by the sum cutoff
rate is to split the decoding function into multiple sequential
decoders. The splitting of the encoder plays an incidental role in
improving the sum cutoff rate by facilitating the use of multiple
sequential decoders in a successive cancellation configuration.

III. BEC AND BSC EXAMPLES

In this section, we give an immediate application of the
method outlined in the preceding section to the BEC and BSC.
The main point of this section is to illustrate that by combining
just two copies of these channels one can obtain significant
improvements in the cutoff rate.

Example 3 (BEC): Let be the BEC with al-
phabets , , and erasure probability
. Consider combining two copies of to obtain a channel

as shown in Fig. 6. The label map is given
by

Fig. 6. Synthesis of a quaternary input channel from two binary-input
channels.

where denotes modulo- addition. Let the input variables be
specified as where , are uniform
on . Then

A heuristic interpretation of these cutoff rates can be given by
observing that user 1’s channel is effectively
a BEC with erasure probability ; an
erasure occurs in this channel when either or is erased.
On the other hand, given that decoder 2 is supplied with the
correct value of , the channel seen by user 2 is a BEC with
erasure probability ; an erasure occurs only when both and

are erased. The normalized sum cutoff rate under this scheme
is given by

which is to be be compared with the ordinary cutoff rate of the
BEC, . These cutoff rates are shown in
Fig. 7. The figure shows and it can be verified analytically that
the above method improves the cutoff rate for all .

We note that the distribution of and the labeling given
above are optimal in the sense that it maximizes .
This can be verified by exhaustively trying all possibilities for

. In order to achieve higher coding gains, one needs to combine
a larger number of copies of the BEC.
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Fig. 7. Cutoff rates for the splitting of BEC.

Example 4 (BSC): Let be a BSC with
and

for all , . Assume . The cutoff rate of
the BSC is given by

where for .
Combine two copies of the BSC as in Fig. 6 to obtain the

channel and define the input variables
where , are uniform on . The cutoff rates

and can be obtained by direct
calculation; however, it is instructive to obtain them by the
following argument. The input and output variables of the
channel are related by

where and are independent noise terms taking the values
and with probabilities and , respectively. Notice that

is a sufficient statistic for decoder 1, whose goal is to
estimate . Thus, the channel that decoder 1 sees is, in effect,

, which is a BSC with crossover probability
and has cutoff rate

Next, note that the channel , given the knowledge
of , is equivalent to the channel

which is a BSC with diversity order and has cutoff rate

Thus, the normalized sum cutoff rate with this splitting scheme
is given by

which is larger than for all , as shown in
Fig. 8.

Fig. 8. Cutoff rates for the splitting of BSC.

IV. LINEAR LABEL MAPS

In the previous section, we have shown that there exist linear
label maps of order that improve the sum cutoff rate. In
this section, we give higher order linear label maps that attain
further improvements. Throughout the section, we restrict atten-
tion to a BSC with a crossover probability .

We consider combining copies of a BSC as in Fig. 4 using
a label map that is linear. Thus, we set where
is a full-rank matrix of size . The output of the combined
channel has the form where is the channel
noise vector with independent and identically distributed (i.i.d.)
components.

For capacity and cutoff rate calculations, we use an input
ensemble consisting of i.i.d. components, each component
equally likely to take the values and . This defines a joint en-
semble where is the channel input and

the channel output.
We consider a successive cancellation decoder as in Fig. 5.

Note that each decoder observes the entire channel output vector
and can compute the vector .

We denote the th column of by , so we have ,
. For decoder 1, which is interested in recovering

only, a sufficient statistic is the first component of , namely

If the number of ’s in equals , then the channel
is the cascade of independent BSCs, and is itself a BSC with
a crossover probability

The cutoff rate of this channel equals
, and is given in in Fig. 9 as a function of

for various .
Supposing that the correct value of is supplied to de-

coder 2, that decoder in turn can compute the left-hand sides of
the two equations
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Fig. 9. Cutoff rate for the cascade of k = 1; . . . ; 10BSCs versus the crossover
probability per BSC.

which form sufficient statistics for estimating . This channel
has cutoff rate . In general,
supposing that have been supplied to decoder , ,
decoder computes the sufficient statistics

...

and estimates , achieving a cutoff rate

The following example illustrates the above method.

Example 5: Suppose

This matrix equals its inverse . Thus, the first decoder
has the channel

This is a BSC with crossover probability
and has cutoff rate

where is as defined before. Supposing that is decoded
correctly and passed to the second decoder, decoder 2 has the
channel

or, alternatively, by adding the second equation to the first

Fig. 10. Capacity and cutoff rates for Example 5.

from which it tries to decode . This is a channel where is
observed through two independent BSCs each with crossover
probability and has cutoff rate

Given that both and are available to decoder 3, it has
the channel

By adding the third equation to the first and second, we see that
this is a channel where the variable is observed through three
channels, each of which is a BSC with crossover probability ;
however, in this instance, the channels are not independent. The
cutoff rate can still be computed readily.

Finally, given , decoder 4 has the channel

or, equivalently

This is a channel where is observed through four independent
BSCs, and

The normalized sum cutoff rate is plotted in
Fig. 10 as a function of ; also shown in the figure are the cutoff
rate and capacity of the raw BSC. There is a visible
improvement in the sum cutoff rate compared to the scheme in
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Example 4 and the gap between and is roughly half-way
closed for .

This improvement in cutoff rate is achieved at the expense
of somewhat increased system complexity. One element of
complexity for a successive cancellation decoder is the size of
the transition probability matrices at each level. This matrix
is needed to compute the likelihood ratios in ML decoding or
the metric values in sequential decoding. In this example, the
channel at level , , has two inputs and outputs; the
corresponding transition probability matrix has entries.
In general, the storage complexity of these matrices grows
exponentially in the number of channels combined, and sets
a limit on practical applicability of the method for large .

A. Kronecker Powers of a Given Labeling

The linear map in the above example has the form
where

is the linear map used in Example 4. We have also carried out
cutoff rate calculations for linear maps of the form
for at a fixed raw error probability . The
resulting normalized sum cutoff rates are listed in the following
table. For comparison, the cutoff rate and capacity of the BSC
at are and .

The scheme with has subchannels. The
number of possible values of the output vector equals .
The rapid growth of this number prevented computing for

.

B. Label Maps From Block Codes

Let be the generator matrix, in systematic form,
of an linear binary block code . Here, is a
matrix and is the -dimensional identity matrix. A linear label
map is obtained by setting

(2)

Note that has full rank and . Also note that the
first columns of form the transpose of a parity-
check matrix for . Thus, when the receiver
computes the vector

the first coordinates of have the form

(3)

where is the th element of the syndrome vector

Fig. 11. Rate allocation for Example 6.

The th “syndrome subchannel” (3) is a BSC with crossover
probability where is the number of ’s in the th row of .
The remaining subchannels, which we call “information sub-
channels,” have the form

The motivation for the above method is to make use of linear
block codes with good distance properties to improve the sum
cutoff rate. The following example illustrates the method.

Example 6 (Dual of the Golay Code): Let be as in (2) with
, , and

The code with the generator matrix is the dual of
the Golay code [18], [19, p. 119]. We computed the normalized
sum cutoff rate at for this
scheme. The rate allocation vector

is shown in Fig. 11. There is a jump in the rate allocation
vector in going from the syndrome subchannels to informa-
tion subchannels, as may be expected. Finally, it may be of
interest that, for the Golay code with , we obtain

, which is worse than the performance
achieved by the dual code.

It is natural to ask at this point whether linear label maps can
achieve normalized sum cutoff rates arbitrarily close to channel
capacity in the limit as goes to infinity. The next section shows
that this is indeed possible.
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Fig. 12. Bit mapping for 4-PAM.

V. PINSKER’S SCHEME

In this section, we show that the general framework of Sec-
tion II admits Pinsker’s method as a special case. This section
will also help explain the relation of the present work to con-
catenated coding schemes in general.

In a theoretical study of coding complexity, Pinsker [10] com-
bined the idea of sequential decoding and Elias’ method of iter-
ative coding [14] to prove that the cutoff rate of any DMC could
be boosted to as close to channel capacity as desired. Pinsker’s
method is a form of serially concatenated coding where an inner
block code is combined with an outer sequential decoder.

For simplicity, we describe Pinsker’s method for the case of
a BSC with a crossover probability . Let
and denote, respectively, the cutoff rate and capacity of a
BSC with crossover probability , and note that
as .

The encoding in Pinsker’s scheme follows the method of Sec-
tion IV-B. A systematic block code with rate and a
generator matrix is chosen and a linear map is
formed as in (2). The decoder in Pinsker’s scheme is a simplified
form of the successive cancellation decoder where the decoders
work completely independently, with no exchange of decisions.
This is made possible by using a step-function-type rate allo-
cation vector such that
and where is to be specified.
Thus, and there is no need to decode the syndrome
channels. The decoder at stage , , com-
putes the vector as in (3), which directly reveals the syn-
drome vector since by construction. Thus, each
such decoder can independently implement the ML decoding
rule using a syndrome decoding table. This creates binary
channels , , where denotes
the estimate of obtained from the syndrome decoding table.
By well-known coding theorems, there are codes for which
the the probability of error can be made arbitrarily
small by using a sufficiently large , provided that
is kept bounded away from . (In fact, goes to
zero exponentially in for optimal codes.) Thus, the cutoff rate
of each information subchannel, given by under the
independent decoding scheme described here, goes to .

To summarize, asymptotically as , we can choose
arbitrarily close to and arbitrarily close to , resulting
in an overall coding rate arbitrarily close to . This
completes Pinsker’s argument for improving the cutoff rate to
channel capacity limit.

Clearly, Pinsker’s argument is designed to give the proof of
a theoretical point in the simplest possible form, with no atten-
tion to asymptotically insignificant details. In a nonasymptotic
setting, the performance of the sequential decoders in Pinsker’s
scheme can be improved if the decoder at stage ,

, calculates the soft-decision statistics

Fig. 13. Cutoff rates versus noise variance in 4-PAM.

instead of the hard decisions obtained from the syndrome de-
coder. The calculation of the soft-decision statistics may be per-
formed by applying the Bahl–Cocke–Jelinek–Raviv (BCJR) al-
gorithm [20] to a trellis description of the block code .

In closing this section, we would like to mention Falconer’s
work [21], where another method is given for boosting the sum
cutoff rate to near channel capacity. Falconer’s method uses
multiple inner sequential decoders and an outer Reed–Solomon
code, and it does not fit into the framework considered in
this paper. Neither Pinsker’s method nor Falconer’s appear
to have had much impact on coding practice because of their
complexity.

VI. RELATION TO CODED MODULATION

The channel combining and splitting method presented in
the preceding sections has common elements with well-known
coded-modulation techniques, namely, Imai and Hirakawa’s
[13] multilevel coding scheme and Ungerboeck’s [11], [12]
set-partitioning idea. To illustrate this connection, we give the
following example where the cutoff rate of a pulse-amplitude
modulation (PAM) scheme is improved through channel split-
ting.

Example 7 (4-PAM): Consider a 4-PAM scheme over a
memoryless additive Gaussian noise channel so that in each
use of the channel a symbol is transmitted and

is received where is Gaussian with mean zero and
variance . In order to split this channel into two subchannels,
the channel input is relabeled by a pair of bits as in
Fig. 12 so that .

We consider an input ensemble so that , are indepen-
dent and each takes the values and with probability .
The channel input ensemble is then uniform over .
Fig. 13 shows the resulting cutoff rates , ,
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, and the normalized sum cutoff rate .
We observe that this simple scheme improves the the cutoff rate.

Note that there is no channel combining in this example; the
channel is split into two subchannels just by relabeling the input
symbols, as in Massey’s example. The assignment of bit strings
to modulation symbols corresponds to Ungerboeck’s set parti-
tioning idea. The successive cancellation decoder first decodes

, the variable that is the less well protected of and . In
fact, if one starts decoding starting with , the cutoff rate de-
teriorates: . To attain
further cutoff rate gains, one may try combining multiple copies
of the channel prior to splitting.

The preceding example illustrates the close connection be-
tween the present work and the coded-modulation subject. In-
deed, this connection is exploited in the paper by Wachsmann et
al. [22], where the authors give practical design rules for mul-
tilevel codes using various figures of merit, including the sum
cutoff rate. Persson [23] is credited in [22] for noticing that the
sum cutoff rate of a modulation scheme under multilevel coding
may exceed the ordinary cutoff rate. However, Massey’s work
[1] is clearly an earlier example of such “anomalous” cutoff rate
phenomenon in the context of modulation.

VII. RELIABILITY–COMPLEXITY TRADEOFF

In this section, we show that the channel combining and
splitting method discussed above can also improve the relia-
bility–complexity tradeoff in channel coding. For background
on the topic of reliability–complexity tradeoff in ML decoding,
we refer to [24] and [9, Sec. 6.6].

The formulation in this section is based on the following func-
tions. For and , define

and for , define

These functions appear in random-coding exponents for block
coding on both single- and multiuser channels [8, Ch. 5], [25],
[2]. They equal the function when . Also, for any fixed
ensemble , is a monotonically non-
increasing function of , and it tends to the mutual informa-
tion as . Given this limit relation, it is not sur-
prising that the function possesses many prop-
erties of the mutual information. However, unlike mutual infor-
mation, the function is not additive; i.e., there are examples
for which . In this
section, we show by an example that we may take advantage of
the lack of additivity of to improve the reliability–com-
plexity tradeoff in ML decoding. We begin by defining the reli-
ability–complexity exponent.

Fig. 14. Typical random-coding exponent.

A. Reliability–Complexity Exponent

Consider a DMC and let be a probability
distribution on . For , define

where . Also define

The function is called the random-coding exponent
[8, p. 143]. Fig. 14 shows a typical random-coding exponent.
The exponent is positive for all rates between zero and channel
capacity . The slope of the exponent equals for a range
of rates where is called the critical rate.
The slope increases monotonically for and ap-
proaches as approaches . The vertical axis intercept of the
random-coding exponent is given by the cutoff rate .

Gallager [26], [8, Theorem 5.6.2] shows that , the prob-
ability of ML decoding error averaged over an
block code ensemble, is upper-bounded by

An block code ensemble consists of the set of all
block codes of length and codewords where
we assign the probability to the code

, , .
Gallager [27] also shows that the exponent is tight
in the sense that goes to as in-
creases. We write to express this type of
asymptotic equality.

The complexity of ML decoding of a code from ensemble
is given by . So, the reliability–com-

plexity tradeoff under ML decoding of codes from this ensemble
may be expressed as . Thus, the param-
eter emerges as the reliability–complexity ex-
ponent for ML decoding of a typical code from the ensemble

. Maximizing over , we obtain
as the best attainable reliability–complexity expo-

nent at rate .
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B. Improvement of the Reliability–Complexity Exponent

We now show that under certain conditions, the relia-
bility–complexity tradeoff of a given DMC may be improved.
Consider a DMC , and fix a rate .
Let and be such that .

Suppose that two copies of can be combined in accordance
with the general method in Fig. 4 to yield a channel

such that

(4)

for some probability assignment . Let ,
be defined so that and

(5)

Due to (4), it is easy to show that the ratios in (5) are greater
than .

The significance of these ratios become evident when we con-
sider a successive cancellation scheme as in Fig. 5, where the
two inputs of are encoded at rates and using the en-
semble . Then, the reliability–complexity
exponents for decoders 1 and 2 are given, respectively, by

and

both of which are greater than . Thus, when-
ever (4) is satisfied, using ML decoders in a successive cancella-
tion configuration offers a better reliability–complexity tradeoff
compared to ordinary ML decoding.

The preceding argument clearly generalizes to the case where
an arbitrary number of copies of a given DMC are combined.
In the next subsection, we revisit Massey’s example to illus-
trate the improvement of the reliability–complexity exponent by
channel splitting.

C. Reliability Versus Complexity in Massey’s Example

We consider the two coding alternatives for a QEC as shown
in Fig. 2. For the first alternative, the reliability–complexity ex-
ponent is QEC . For the second alternative, the expo-
nent for each decoder is BEC . Thus, we will
have an improvement in the reliability–complexity tradeoff if

BEC QEC (6)

Humblet [28] gives the random-coding exponent for the
-ary erasure channel (MEC) as follows:

MEC (7)

where .
The other parameters in (7) are given by ,

, and ;
these are the capacity, critical rate, and cutoff rate, respectively,
of the MEC. Evaluating (7) for and , we obtain
the random-coding exponents for the QEC and BEC, respec-
tively. Fig. 15 is a plot of QEC and BEC

Fig. 15. Random-coding exponents for QEC and BEC.

for . It is seen from the figure and can be verified di-
rectly that (6) is satisfied for all QEC . In fact, for
rates QEC QEC , we have BEC

QEC ; so, the reliability–complexity exponent is dou-
bled by splitting. Thus, for the same order of decoder com-
plexity, splitting the QEC into two BECs offers significantly
higher reliability, especially at high rates.

D. Improving Other Exponents

We should mention that the channel combining and splitting
method can also be used to improve the reliability–complexity
tradeoff in convolutional coding, for which ML decoding
(Viterbi decoding) is a widely used technique. The only dif-
ference then is that one needs to consider the Yudkin–Viterbi
exponent [29], [30], which is the ML decoding exponent for
(time-varying) convolutional codes.

We also mention that channel splitting may improve the re-
liability–complexity tradeoff as computed by the expurgated
exponent (see [8, p. 153] for definition), which improves the
random-coding exponent at rates below the critical rate .

VIII. CONCLUDING REMARKS

We have discussed a method for improving the sum cutoff rate
of a given DMC. Although the method has been presented for
some binary-input channels, it is readily applicable to a wider
class of channels. The method is based on combining a number
of independent copies of a given channel into a number of corre-
lated parallel channels through input relabeling. Encoding of the
subchannels is carried out independently but decoding is done
using a successive cancellation-type decoder. Some elements of
this method may be traced back to Elias’ iterative coding idea,
some to concatenated coding, coded modulation, and multilevel
decoding. These connections have also been discussed.

Some important questions have not been addressed in this
study. We have illustrated through several examples the effec-
tiveness of the method in improving the sum cutoff rate. How-
ever, we have not addressed theoretical questions of why the
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cutoff rate is improved. More fundamental questions of this na-
ture are left for future study.

Our main aim has been to explore the existence of practical
schemes that boost the sum cutoff rate to near channel capacity.
This goal remains far from being achieved. The main obstacle
in this respect is the complexity of successive cancellation
decoding which grows exponentially with , the number of
channels combined. However, it is conceivable that decoding
schemes that approximate successive cancellation decoding
exist that overcome this difficulty. This is another issue that
may be studied further.
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