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Corollary 4: At any SNR, for the scalar MAC withK users the sum
capacity improvement due to feedback can not be more than 1

2
log(K)

bits/channel use.
Notice that this bound is valid for any SNR. In [9], it has been shown

that feedbackcannot increase thesumcapacityof theK user scalarMAC
by more than a multiplicative factor ofK . In other words,Cfb

� � C� �

(K � 1)C�. Note that at high SNR,C� is unbounded and therefore our
bound of 1

2
log(K) is stronger. In fact, in the previous section, we have

shown directly that the bound is in fact tight for K = 2. At low SNR
on the other hand, the multiplicative bound may be stronger.

VI. EXTENSIONS TO VECTOR BROADCAST CHANNELS

While our focus in this work is the vector MAC, the topological du-
ality of the multiple access and the broadcast channels allows some
results to be directly extended from the multiple access channel to the
broadcast channel. In this section we point out examples of such di-
rect extensions. First, in the preceding sections, we have shown that
the vector MAC with single antenna at the base station and multiple
antennas at the users is equivalent to a scalar MAC obtained by a uni-
tary transformation at each users’ input. The same argument can be
used to show that a vector BC with a single antenna at the base sta-
tion and multiple antennas at each user is also equivalent to a scalar
BC with maximum ratio combining (which corresponds to a unitary
transformation as well) at each user. Second, we showed that on the
vector MAC there is no sum capacity benefit of feedback at high SNR
if the number of antennas at the base station is at least as large as the
number of single antenna users. For the BC, the same argument can be
made as follows. Allowing the receivers in a BC to cooperate we again
have a point-to-point MIMO channel whose capacity can not be fur-
ther improved by feedback. However, it is known that for a vector BC,
there exists a noise correlation (worst case noise correlation) for which
cooperation between users does not increase sum capacity. Therefore,
there is always a noise correlation structure for the BC for which feed-
back does not increase sum capacity. In particular, it can be shown that
for the two user nondegenerate vector BC, the worst case noise is also
uncorrelated at high SNR. Therefore, for users with uncorrelated noise
terms, feedback does not improve capacity at high SNR.

VII. CONCLUSION

We explore the feedback capacity region of the vector Gaussian mul-
tiple-access channel (MAC) with either multiple antennas at the base
station and a single antenna at each user or multiple antennas at each
user and a single antenna at the base station. We show that the vector
MAC (and BC) with a single antenna at the base station and multiple
antennas at each user are degenerate vector channels as they are equiv-
alent to a scalar MAC (and BC). In the limit of high signal-to-noise
ratio (SNR), we show that for the scalar Gaussian MAC (and for the
degenerate vector Gaussian MAC), the difference between the sum ca-
pacity with and without feedback approaches a positive constant. We
explicitly calculate this constant and show that it is no more than 1

2

bit/channel use. For the nondegenerate two user vector Gaussian MAC
we apply the Kailath Schalkwijk coding scheme to determine the ca-
pacity region with feedback. Unlike the scalar Gaussian MAC, we show
that for a nondegenerate vector Gaussian MAC the entire capacity re-
gion with feedback becomes the same as the capacity region without
feedback in the limit of high SNR.
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Abstract—Scaling results for the sum capacity of the multiple access,
uplink channel are provided for a flat-fading environment, with mul-
tiple-input–multiple-output (MIMO) links, when there is interference
from other cells. The classical MIMO scaling regime is considered in
which the number of antennas per user and per base station grow large
together. Utilizing the known characterizations of the limiting eigenvalue
distributions of large random matrices, the asymptotic behavior of the
sum capacity of the system is characterized for an architecture in which
the base stations cooperate in the joint decoding process of all users
(macrodiversity). This asymptotic sum capacity is compared with that
of the conventional scenario in which the base stations only decode the
users in their cells. For the case of base station cooperation, an interesting
“resource pooling” phenomenon is observed: in some cases, the limiting
performance of a macrodiversity multiuser network has the same asymp-
totic behavior as that of a single-user MIMO link with an equivalent
amount of pooled received power. This resource pooling phenomenon
allows us to derive an elegant closed-form expression for the sum capacity
of a new version of Wyner’s classical model of a cellular network, in which
MIMO links are incorporated into the model.

Index Terms—Asymptotic sum capacity, base station cooperation, large
system analysis, multiple-access channel (MAC), multiple-input–multiple-
output (MIMO) channel, random matrices.

Manuscript received June 18, 2004; revised June 22, 2005. This work was
supported by the Australian Research Council (ARC). The material in this cor-
respondence was presented in part at the 2004 International Symposium on In-
formation Theory and Its Applications, Parma, Italy, October 2004. CUBIN is
an affiliated program of National ICT Australia (NICTA).

D. Aktas is with the Department of Electrical and Electronics Engi-
neering, Bilkent University, Bilkent, Ankara TR-06800, Turkey (e-mail:
daktas@ee.bilkent.edu.tr).

M. N. Bacha, J. S. Evans, and S. V. Hanly are with the Australian Research
Council (ARC) Special Research Center for Ultra-Broadband Information Net-
works (CUBIN), Department of Electrical and Electronic Engineering, The Uni-
versity of Melbourne, Victoria 3010, Australia (e-mail: m.bacha@ee.unimelb.
edu.au; jse@ee.unimelb.edu.au; s.hanly@ee.unimelb.edu.au).

Communicated by M. Médard, Associate Editor for Communications.
Digital Object Identifier 10.1109/TIT.2006.876241

0018-9448/$20.00 © 2006 IEEE



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 7, JULY 2006 3265

I. INTRODUCTION

Information theoretic studies in [1] and [2] have demonstrated the
remarkable capacity gains of single-link multiple-input–multiple-
output (MIMO) systems (microdiversity) and ignited enormous in-
terest in multiple antenna systems for wireless applications and the
design of low-complexity transmission and reception schemes (such
as space–time coding) that achieve these promised gains. Compared
to a single antenna system with the same transmit power, the capacity
of a single-link MIMO system is shown to scale linearly with the
minimum of the numbers of transmit and receive antennas assuming
an independent and identically distributed (i.i.d.) flat-fading channel
between each transmit and receive antenna. Thus, in theory, arbitrarily
large capacities are possible.

Until recently, analyses of MIMO systems until recently have mainly
focused on the single point-to-point link scenario where the interfer-
ence from other users is ignored. In practice, the dominant impairment
in a multiuser wireless system is typically the cochannel interference
from other users. Thus, the potential gains of a multiple antenna system
in a multiuser setting need to be reevaluated. Recently, there have been
efforts to characterize the capacity of a MIMO single-cell system with
many users. A review of results on the capacity of single-cell multiuser
MIMO channels can be found in the paper by Goldsmith et al. in [3].
Attention has now shifted to characterizing the capacity of MIMO cel-
lular networks, where there are many cell sites and mobiles, each of
which may be equipped with an antenna array. Antenna arrays can be
used in beamforming from the transmitting node, and in interference
suppression at the receiving node.

In this correspondence, we consider the issue of interference in the
uplink of a cellular network in two different ways: 1) where the base
stations can cooperate to jointly decode all the users’ data (macrodi-
versity); and 2) the more traditional architecture where base stations do
not cooperate and only decode the users in their respective cells. Thus,
in the first case, we dispense with the cellular structure altogether and
consider the entire network of base stations and users as a multiple-ac-
cess channel (MAC). Each user has a link to each base station and the
base stations cooperate to jointly decode all users’ data. Since base
stations are typically not mobile, base stations can share information
using high speed reliable connections over wireline (e.g., optical fiber)
links or wireless (e.g., line-of-sight microwave) links. Such links exist
in current systems in order to handle the control and signaling required
between base stations.

Alternatively, one can consider the sum capacity (strictly speaking,
achievable sum rate) under the more traditional cellular approach,
where each user and base station is equipped with an antenna array
(microdiversity) and a base station only decodes the users in its cell.
The base station can attempt suppression of cochannel interference,
but only using the known or measurable statistical structure of the
interference from other cells.

One difficulty in making meaningful, or insightful, comparisons be-
tween these two architectures is the complexity of the capacity for-
mulas, and the large number of random parameters that need to be real-
ized to numerically compute the associated capacities via Monte Carlo
simulation of the random parameters. This is particularly problematic
when one considers that the capacities themselves will depend on many
design variables, such as the transmit powers used by the mobiles, the
choice of base stations that they can connect to, or the relative sizes of
antenna arrays in different parts of the network, and these parameters
need to be optimized in order to provide the fairest comparisons be-
tween different architectures.

Fortunately, a large body of work on the limiting eigenvalue distri-
butions of large random matrices now exists, and has been applied in a
variety of different scenarios involving wireless multiple antenna sys-
tems [4]. We find this theory a useful way to provide capacity formulas

that can be computed numerically relatively quickly, and used in further
network optimization and simulation. Thus, we take the large system
point of view. Most of the mathematical results we need are already
in the literature; our purpose is to show how these results apply to the
given problem, to show that the results do indeed apply in nonasymp-
totic settings, and to make some preliminary conclusions concerning
the issue of base station cooperation.

Our main new result, from a theoretical point of view, is the identifi-
cation of a resource pooling phenomenon for the macrodiversity archi-
tecture that occurs when certain symmetry conditions in the network
are met. In this case, the formulas for sum capacity have a closed form,
identical to that in the single point to point MIMO link studied in [1].

The macrodiversity architecture has been studied in a number of
works, beginning with [5]–[8]. Both [5] and [6] compute the Shannon
capacities of particularly simple, yet insightful, cellular network
models under the macrodiversity assumption, in which base stations
are uniformly distributed along a line. In [6], this example is shown to
have an elegant capacity formula, which can be studied to determine
the effect of different levels of intercell interference. The original work
on cellular capacity in [6] was extended in [7] to include fading, but
the macrodiversity assumption was dropped. MIMO is not considered
there, and the focus is on the capacity of single antenna cell sites,
under the architecture 2).

We consider the circular version of Wyner’s cellular model, as pro-
posed in [5], (i.e., Wyner’s linear cellular array wrapped into a circle),
but the new feature in the present work is the MIMO aspect, and the
modeling of flat, multipath fading between each transmit and receive
antenna element. This example exhibits resource pooling, as the an-
tenna arrays at each user and cell site grow large, and hence its asymp-
totic sum capacity can be expressed in closed form.

The characterization of the asymptotic sum capacity for architecture
2), when the base stations do not cooperate, under the scaling of antenna
arrays at each mobile and cell site, can be obtained directly from the
results in [9]. We apply these results, and hence compare and contrast
the two different architectures.

There have been several other recent papers to address the capaci-
ties of cellular systems with MIMO links, under various scenarios and
assumptions that differentiate these results from those in the present
correspondence. The potential of using antenna arrays to enhance the
system capacity of the downlink of a multicell system was first demon-
strated in [10], where the sum capacity of a system in which the users
utilize single user detection treating interference from other users as
additional noise, is evaluated through simulations. In [11], these nu-
merical studies are extended to other multiuser receiver structures. Dai
and Poor [12] have studied the large system asymptotic sum capacities
of multicell MIMO systems with different multiuser detectors and ver-
ified the numerical results in [11]. In [9], [13]–[16], the capacity of a
multiuser MIMO system in the presence of cochannel interference is
analyzed, in which the base station utilizes single user detection.

The resource pooling effect observed in the present correspondence
is related to a resource pooling effect observed in [17] for a multiple an-
tenna CDMA single-input–multiple-output (SIMO) link. In that case,
the resources pooled were the antennas in a microdiversity antenna
array at the receiver, and symmetry across antennas was a critical fea-
ture of the result. In the present correpsondence, we extend the concept
to macrodiversity: the resources pooled in this correspondence are the
(nonidentical) base stations, and only a weaker form of symmetry is
required, as discussed in Section IV.

The correspondence is organized as follows. Section II introduces
the system model. The sum capacity of the network of base stations and
users is derived in Section III using random matrix theory. Section IV
provides the resource pooling result. Numerical results for a special
system construction where resource pooling is observed is presented
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in Section V. In Section VI, application of the sum capacity results to
the design of practical cellular systems is demonstrated. Finally, some
concluding remarks are offered in Section VII.

In the correspondence, we use boldface letters to denote vectors and
matrices and for the field of complex numbers. X [�] denotes ex-
pectation with respect to the distribution of random variable X; log(�)
denotes logarithm base e; j � j denotes absolute value and =(�) denotes
the imaginary part of the argument. For a matrix A; det(A) denotes
the determinant, tr(A) denotes the trace, AT denotes the transpose
and Ay denotes the complex conjugate transpose. We denote an iden-
tity matrix of size M as IM .

II. SYSTEM MODEL

We consider the uplink of a multiuser MIMO system where K in-
dependent users communicate to M base stations. Base station j is
equipped with N
j antennas and user k is equipped with N�k an-
tennas. The parameter N controls the simultaneous growth of the size
of antenna arrays at the users and the base stations. In this correspon-
dence, we are interested in large system analysis where N ! 1 and

j and �k are fixed. The vector of baseband received signals at base
station j is given by

yj =

K

k=1

�jkHjkxk + nj (1)

where xk 2 N� is the vector of symbols transmitted by user k;Hjk

is the matrix of channel gains from user k to base station j and nj is the
additive white Gaussian noise vector at this base station. The channels
between users and base stations are modeled as frequency flat Rayleigh
fading processes and the antennas at the base stations (and respectively,
users) are located far enough apart such that the fading coefficients
are independent . The entries of Hjk are independent and identically
distributed circularly symmetric complex Gaussian random variables
with zero mean and unit variance and �jk denotes the average channel
gain from user k to base station j. The average channel gain may in-
clude channel effects such as path loss, antenna gain and lognormal
shadowing. The vectors x1; . . . ;xK ;n1; . . . ;nM and the channel ma-
tricesH11; . . . ;HMK are independent. The noise vector has indepen-
dent circularly symmetric zero mean complex Gaussian entries with
unit variance. The covariance of the signal transmitted by user k is
Sk = [xkx

y
k] with a total power constraint of Pk , i.e., tr(Sk) � Pk .

We assume that base stations have perfect channel state informa-
tion, whereas the users have no knowledge of the channel realizations.
We are interested in the scenario where the base stations can cooperate
to jointly decode the transmitting users’ data. The system can thus be
modeled as a MIMO MAC with macrodiversity where some of the an-
tenna elements of the hyper-receiver are widely separated. The system
model can be represented in vector form as

y = Hx+ n (2)

where

H =

�11H11 � � � �1KH1K

...
. . .

...
�M1HM1 � � � �MKHMK

(3)

is the overall channel matrix, y = [yT1 . . .yTM ]T is the received signal
vector, x = [xT1 . . .xTK ]T is the transmitted signal vector and n =
[nT1 . . .nTM ]T is the noise vector.

In this correspondence, we are interested in characterizing the
scaling of the ergodic sum capacity of this system as the size of the

antenna arrays at the users and base stations grows asymptotically
large (i.e., as N ! 1). In practice, the sizes of antenna arrays at
the nodes of the network are limited. However, as in the single link
MIMO case, the convergence to the asymptotic results is observed to
be fast as the array size grows large (see Figs. 5 and 6), and therefore,
the asymptotic results can be used in the design of practical systems.

III. ASYMPTOTIC SUM CAPACITY WITH BASE STATION COOPERATION

In this section, using the results on the eigenvalue distributions
of large random matrices, we will characterize the asymptotic sum
capacity of the multiuser MIMO channel when the base stations
cooperate.

Lemma 1: The sum capacity of the system in (2) is

I(x;y;H) = H log det I
N 


+HSH
y

(4)

where the capacity is achieved with a circularly symmetric complex
Gaussian transmit signal vector x with zero mean and block diagonal
covariance matrix

S =
1

N

P

�
I(N� )

. . . P

�
I(N� )

: (5)

The proof of this lemma follows from [18] and [19] and is omitted
for brevity.

We now apply large system analysis to evaluate the limiting sum ca-
pacity as the antenna arrays at the users and base stations grow asymp-
totically large with N !1. A similar approach is applied in [20] for
a single user multiple antenna system with polarization and/or pattern
diversity. The result that we use is the following theorem due to [4, Th.
2.53].

Theorem 1: LetA be a bcNc�bdNc random matrix with indepen-
dent entries which are zero-mean and satisfy the condition

NVar(Aij) < B (6)

for some uniform bound B < 1. Moreover, suppose that we define
for each N a function vN : (0; c] � (0; d] ! by

vN(x; y) = NVar(Aij) (7)

for i; j satisfying

i

N
� x <

i+ 1

N
and

j

N
� y <

j + 1

N
(8)

and that vN(x; y) converges uniformly to a limiting bounded function
v(x; y) as N ! 1. Then, almost surely, the empirical eigenvalue
distribution ofAAH converges weakly to a limiting distributionFA(�)
whose Shannon transform

lim
N!1

1

N
[log det(I + �AAH )]

� c
1

0

log(1 + ��)dFA(�) (9)

for a nonnegative real number � , is given by

lim
N!1

1

N
[log det(I + �AAH)]

=
d

0

log 1 + �
c

0

v(x; y)u(x; �)dx dy

+
c

0

log 1 + �
d

0

v(x; y)!(y; �)dy dx

� �
d

0

c

0

v(x; y)u(x; �)!(y; �)dxdy (10)
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where u(x; �) and !(y; �) are the unique solutions to the fixed point
equations

u(x; �) =
1

1 + �
d

0
v(x; y)!(y; �)dy

(11)

!(y; �) =
1

1 + �
c

0
v(x; y)u(x; �)dx

(12)

for every x 2 (0; c] and y 2 (0; d], respectively.
Our first Result 1s an application of Theorem 1 to the macrodiversity

channel with cooperating base stations, where we identify the matrix

�H =

�11
P

N�
H11 � � � �1K

P

N�
H1K

...
. . .

...
�M1

P

N�
HM1 � � � �MK

P

N�
HMK

(13)

with the matrix A in Theorem 1.
Result 1: The sum capacity of the system (1), normalized by N , is

characterized in the limit of large N by

C � lim
N!1

1

N
I(x;y;H)

=
K

k=1
�k log 1 +

M

n=1

n

�2nkPk

�k
un

+
M

n=1

n log 1 +

K

k=1
�
2

nkPk!k

�
K

k=1

M

n=1

n �

2

nkPkun !k (14)

nats/s/Hz, where un and !k are the unique solutions to the following
equations:

un = 1 +

K

k=1

�
2

nkPk!k

�1

n = 1; . . . ;M (15)

!k = 1 +

M

n=1


n
�2nkPk

�k
un

�1

k = 1; . . . ; K: (16)

Proof: For all n 2 f0; 1; . . . ;Mg and k 2 f0; 1; . . . ; Kg, let
~
n = n

`=0

` with 
0 = 0 and ~�k = k

`=0
�` with �0 = 0. Defining

vN(x; y) as in Theorem 1, we observe that it converges to a bounded
function, v(x; y), where v(x; y) = �2nk

P

�
for x 2 (~
n�1; ~
n] and

y 2 ( ~�k�1; ~�k]. Thus, the assumptions of Theorem 1 hold, and hence
the empirical distribution of the eigenvalues of �H �Hy converge to a
deterministic limit, F �H(x). Coupled with Lemma 1, this implies that

C = lim
N!1

1

N
�H log det I

N 

+ �H �Hy

(17)

=

M

j=1


j

1

0

log(1 + �)dF �H(�): (18)

Since v(x; y) is constant in x 2 (~
n�1; ~
n], for fixed y, and constant
in y 2 ( ~�k�1; ~�k], for fixed x, it follows that u(x) � u(x; 1), and
!(y) � !(y; 1) (see (11) and (12) for definitions) are also constant in
the respective intervals. Defining un � u(x) for x 2 (~
n�1; ~
n], and
!k � !(y) for y 2 ( ~�k�1; ~�k], and setting � = 1 in (10), we obtain

C =

K

k=1

~�

~�

log 1 +

M

n=1

~


~


v(x; y)u(x)dx dy

+

M

n=1

~


~


log 1 +

K

k=1

~�

~�

v(x; y)!(y)dy dx

�

K

k=1

M

n=1

~�

~�

~


~


v(x; y)u(x)!(y)dxdy (19)

=

K

k=1

�k log 1 +

M

n=1


n
�2nkPk

�k
un

+

M

n=1


n log 1 +

K

k=1

�k
�2nkPk

�k
!k

�

K

k=1

�k

M

n=1


n
�2nkPk

�k
un !k: (20)

Similarly, the (11) and (12) reduce to (15) and (16). Uniqueness of
solution to (15), (16) can be demonstrated easily from first principles,
but the uniqueness follows directly from the uniqueness for u(x; �) and
!(y; �), that holds more generally in Theorem 1.

Result 1 characterizes the sum capacity of a general multiuser
MIMO system with cooperating receivers and uncorrelated flat
Rayleigh fading as the number of antenna elements grows large. Note
that it is a scaling result: (14) tells us the linear growth rate in sum-rate
capacity, as we scale up the number of antennas in all antenna arrays
in the system. Since the units are nats/s/Hz, we call the quantity in
(14) the spectral efficiency of the system.

The key mathematical result underlying Theorem 1 is a celebrated
Theorem 1n random matrix theory by Girko ([21, Corollary 10.1.2]).
Girko’s theorem proves the existence of the limiting distribution of
eigenvalues of AAH , as the dimensions of A grow large, and char-
acterizes the Stieltjes transform of the limiting distribution. An alter-
native expression for the spectral efficiency provided in Result 1 can
be obtained by using techniques for obtaining the spectral efficiency
from the Stieltjes transform developed in [22]. However, the resulting
expression is not as suitable for numerical evaluation as that provided
in (14)–(16).

The approach taken by Tulino and Verdu in [4] is to build on Girko’s
result, but instead of directly using the Stieltjes transform of the eigen-
value distribution, they obtain an expression for the Shannon transform
of the limiting eigenvalue distribution of AAH , which is more useful
for evaluating spectral efficiency. The benefit in applying Theorem 1 to
the macrodiversity model is that the resulting expression in (14) simply
requires the solution of (15) and (16): a fixed point equation in M +K

variables which can be evaluated numerically very efficiently.
Girko’s theorem has previously been applied to wireless problems

in which degrees of freedom are provided by CDMA spreading codes,
and linear receivers are employed, rather than optimal Shannon-theo-
retic processing. In [23], the effective interference in large dimensional
asynchronous CDMA systems is characterized, and in [17], the net-
work-layer capacity of a CDMA antenna array system is investigated,
both using Girko’s result.

We now present an interesting special case where one can obtain
a closed-form expression for the spectral efficiency. This special case
exhibits a weak form of symmetry, and we show that the spectral effi-
ciency is the same as that of a single user MIMO link whose expression
is already known [1].

IV. RESOURCE POOLING

In this section, we present a nontrivial channel scenario for which
the asymptotic sum capacity in the case of base station cooperation has
a closed-form expression.

Lets assume that Pk = P and �k = �; 8k 2 f1; . . . ; Kg and

j = 
; 8j 2 f1; . . . ;Mg. In addition, we make the assumption that
the M � K matrix


 �

�211 � � � �21K
...

. . .
...

�2M1 � � � �2MK

(21)
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satisfies the symmetry condition that all row sums are equal, and all
column sums are equal. Thus, if we define the row sums and column
sums by:

�j =

K

k=1

�
2

jk j = 1; . . . ;M (22)

�k =

M

j=1

�
2

jk k = 1; . . . ; K (23)

the assumption is that �j = �; 8j and �k = �; 8k, with � = M

K
�.

Note that if M = K , and gains are suitably normalized, then 
 is a
doubly stochastic matrix.

Although the above assumptions are restrictive from a practical point
of view, they do arise in theoretical models in which there is a high
degree of symmetry. For example, the assumptions are satisfied when-
ever there is “cellular symmetry”: all cells are equivalent, after an ap-
propriate relabeling of base stations and mobiles, although this is not
necessary. One example is the Wyner circular cellular model that we
consider in Section V, but more general models also satisfy the as-
sumptions of the present section: for example, the MIMO version of the
Wyner hexagonal cell model [6], and models in which there are many
mobiles per cell, each with their own set of average gains to the base
stations, provided the cellular symmetry condition holds. Although the-
oretical, these models provide insight into the effects of varying system
parameters, and have the advantage that the following resource pooling
result holds:

Result 2: Under the above assumptions, the spectral efficiency per
receive antenna, as measured by asymptotic sum capacity normalized
by total number of receive antennas, is given by

Cc = � log[1 + P0 �F(P0; �)]
+ log[1 + �P0 � F(P0; �)]� 1

P0
F(P0; �) (24)

where

F(x; z) � 1

4
1 + x(1 +

p
z)2 � 1 + x(1�pz)2

2

(25)

� � �K


M
, and P0 � P�

�
.

Proof: Note that (15), (16) reduce to

un = 1 +

K

k=1

�
2

nkP!k

�1

; for n = 1; . . . ;M (26)

!k = 1 + 


M

n=1

�2nkP

�
un

�1

; for k = 1; . . . ; K: (27)

Since these equations have a unique solution, it is enough to exhibit
a particular solution. We arrive at such a solution by first supposing
that the solution will satisfy the additional conditions un = u�; 8n
and !k = !�;8k where u� and !� must then satisfy,

u
� = (1 + P0�!

�)�1 (28)

!
� = (1 + P0u

�)�1: (29)

Substituting (29) into (29), one obtains a quadratic in u�, and it is there-
fore easy to obtain the unique positive roots of (28) and (31) as

u
� = 1� 1

P0
F(P0; �) (30)

!
� = 1� 1

�P0
F(P0; �) (31)

where F (x; z) is defined in (25).

One can verify directly that un = u�, and !k = !� provide the
unique solution to (26) and (27).

The following formula for the spectral efficiency per receive antenna
then follows from Result 1:

Cc =
1


M

K

k=1

� log 1 +

M

n=1



�2nkP

�
un

+

M

n=1


 log 1 + d

K

k=1

�
2

nkP!k

�
K

k=1

M

n=1


 �
2

nkPun !k (32)

=
1


M
K� log 1 + 


�P

�
u
�

+M
 log (1 + �P!�)�K�
Pu�!� (33)

= � log(1 + P0u
�) + log(1 + �P0!

�)� �P0u
�

!
�

:

(34)

Finally using (30) and (31), the spectral efficiency per receive antenna
can be obtained in closed form as given in (24).

Consider a single user link with NK� transmit antennas and NM


receive antennas where the channels between transmit and receive an-
tennas are i.i.d. and the received signal power at each antenna is Pr .
One can easily show using Result 1 that the capacity per receive an-
tenna of this system as N ! 1 is given by (24) where � = K�

M

and

P0 = P

�
. Thus, we observe that the macrodiversity multiuser system

of this section, with the matrix 
 of channel gains satisfying the scaled
doubly stochastic condition, curiously behaves like a microdiversity
single user system with i.i.d. channels between transmit and receive
antennas but with the number of transmit and receive antennas equal
to the sum of the number of user antennas and the sum of base station
antennas in the multiuser system, respectively, and with the received
signal power at each antenna equal to the total received signal power at
each antenna in the multiuser system.

This Result 1s a generalization of the Result 1n [1] where Telatar
showed that in a multiuser system where the MIMO channels for the
users are identically distributed, the multiuser system is equivalent to a
single user system with the same total number of antennas and the same
total transmit power constraint. A similar “resource pooling” phenom-
enon was observed in [17] but within the context of a microdiversity
multiuser CDMA network with random spreading and an antenna array
at the base station only.

A similar observation on the simplification of the asymptotic ca-
pacity expression to the form above was made in [20] for single link
MIMO systems with polarization and/or pattern diversity. The structure
of 
 required for this simplification was reported to be double-regu-
larity where every row and every column of 
 have the same empirical
distribution. Our resource pooling result generalizes this by allowing
a weaker form of symmetry, which is an important generalization in
the context of the multiuser macrodiversity model of the present corre-
spondence.

One interesting observation is that the system spectral efficiency ex-
pression in (24) is equivalent to the asymptotic optimal spectral effi-
ciency of a CDMA system with random spreading, in the absence of
fading, as considered (and initially characterized) in [24] where the
number of users is NK�, spreading gain is NM
, the energy per
transmitted symbol (NM
 chips) is P0. This closed-form expression
was later rederived in [25] using a more direct approach for a single
link MIMO system with i.i.d. channels.
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V. WYNER’S CELLULAR MODEL REVISITED

In [6], Wyner proposed an insightful model of a cellular network that
allowed the effect of intercell interference to be investigated, using a
single parameter to represent the strength of the other-cell interference.
The macrodiversity assumption was used, allowing the network to be
treated as a multiple access channel, and elegant formulas for the per-
user capacity were obtained, for the infinite linear array of base stations,
and for the infinite 2-D array of base stations in the plane.

In this section, we revisit Wyner’s cellular model of cooperating
cell sites, but with each link from mobile to base station replaced by
a MIMO link, with the same average gain. As in the recent works on
MIMO, the fading between individual antenna elements is modeled as
independent and Rayleigh distributed. We show that the circular ver-
sion of Wyner’s linear array (as studied in [5]) satisfies the resource
pooling conditions, meaning that we can write down a closed-form ex-
pression for the spectral efficiency of this network. Thus, we obtain
simple formulas, not by taking the array of cells large, but by taking
the size of the MIMO arrays large instead. We also apply the theory
from [9] to calculate spectral efficiencies when the cell-sites do not co-
operate, and thereby provide a point of comparison between the two
different architectures for the circular cellular model.

Consider the special case in which K base stations and K users are
arranged in a circle as depicted in Fig. 1. Each user is identified with a
particular base station. Each base station is equipped with N antennas
and each user hasN� antennas. The total transmit power constraint for
each user is P . The average channel gain between base station m and
user k is given as

�mk =

1; if k = m

�; if (k �m)K = 1

�; if (k �m)K = K � 1

0; otherwise

(35)

where (�)K denotes integer modulo K . The squared average channel
gain matrix 
 defined in (21) is of the form


 =

1 �2 �2

�2 1 �2

. . .
. . .

. . .

�2 1 �2

�2 �2 1

(36)

and is a circulant (and thus a scaled doubly stochastic) matrix. Since
this multiuser setting is an example of the special case of resource
pooling, we can use the system spectral efficiency results in Section IV.
The spectral efficiency per receive antenna with base station coopera-
tion is given as

Cc = � log(1 + P0 �F(P0; �))

+ log(1 + �P0 �F(P0; �))�
F(P0; �)

P0
(37)

where P0 = P

�
(1 + 2�2) and F(x; z) is defined in (25).

Using the results from (21) and (22) in [9], the spectral efficiency
per receive antenna without base station cooperation is

Cnc = � log 1 +
P

�
�1 + 2� log

1 + P

�
�2�1

1 + P

�
�2�2

+ log
�2

�1
+ �1 � �2 (38)

Fig. 1. Circular cellular array.

where �1 � 0 and �2 � 0 satisfy

�1 + �

P

�
�1

1 + P

�
�1

+ 2�

P

�
�2�1

1 + P

�
�2�1

= 1 (39)

�2 + 2�

P

�
�2�2

1 + P

�
�2�2

= 1: (40)

Note that base station cooperation requires the joint decoding of all the
users in the network, whereas the noncooperative case involves only
single user decoding by the base stations.

In Fig. 2, we consider the special case of K = 3 cell sites and com-
pare the spectral efficiency per receive antenna as a function of � for
each user’s transmit SNR of 20 dB. This allows us to observe the ef-
fect of increasing the number of antennas at the mobile, holding the
number of antennas at the cell site fixed, which we will consider in fur-
ther detail below. This last statement relies on the fact that the asymp-
totic theory applies very accurately, even for quite small sized systems,
such as those with only six antennas; this is well known, but we provide
further justification for this statement in Section VI.

The lower four curves in Fig. 2 correspond to the traditional cellular
model with no base station cooperation. The upper four curves corre-
spond to spectral efficiency with base station cooperation. As must be
the case, the joint decoding of all users via cooperation results in higher
spectral efficiency for any given � and �. Furthermore, the spectral ef-
ficiency with BS cooperation is an increasing function of � for a given
�, whereas for the noncooperative scheme, increasing � decreases the
spectral efficiency due to increasing interference from the two neigh-
boring cells.

Fig. 2 shows that the spectral efficiency per receive antenna is not
a monotonic function of � in the noncooperative scenario: there ex-
ists an optimum �� beyond which capacity starts to decay due to lack
of available degrees of freedom to cancel the interference. Indeed, the
figure illustrates the fact that when � > 0:5, there are not enough de-
grees of freedom at any base station to null the interference from the
two adjacent base stations. Such nonmonotonicity has been observed
in [9]. This effect does not occur with macrodiversity, since all users
are being decoded by the same global decoder, and the linear growth
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Fig. 2. Comparison of the spectral efficiency per receive antenna of the circular cellular array with and without base station cooperation with each user’s transmit
SNR equal to 20 dB.

rate increases with �, as depicted in the figure. As such, we see a large
gain from macrodiversity for � > 0:5.

For � < 0:3, the gain in spectral efficiency due to base station coop-
eration is not as great, since the noncooperative case is not interference
limited in this case. Indeed, the gain of macrodiversity is an increasing
function of �. However, at � = 1, there is still a discernible gain at
moderately small values of �, such as 20% at � = 0:1, and 30% at
� = 0:2. When � is small, there is very little gain for � < 0:5. It
is likely in practice for the base station to have many more antennas
than the mobile devices, and hence for � to be fairly small. The results
above suggest that, at best, moderate gains will accrue from base sta-
tion cooperation when � is small. However, this example is for a high
SNR value of 20 dB.

We now illustrate the gain from base station cooperation that occurs
at a relatively low signal to noise ratio. In Fig. 3 we plot the corre-
sponding graph for each user’s transmit SNR of 0 dB. From Fig. 3,
we notice that there is now a more significant gain from base station
cooperation at � = 1 and relatively low values of �: a 55% gain at
� = 0:1, and a 90% gain at � = 0:2. On the other hand, the gain from
macrodiversity at � = 0:1 is less than in the high SNR scenario, uni-
formly across all �. Presumably, in this case, the weaker signals at the
adjacent base stations provide little benefit. Nevertheless, the benefit
of base station cooperation increases with � for all parameter values, a
general trend in common with the high SNR example.

VI. APPLICATIONS TO THE DESIGN OF CELLULAR SYSTEMS

Although insightful, it might be argued that the Wyner model is not
very realistic. It is beyond the scope of the present correspondence to

undertake a detailed study of cellular network optimization, but we do
wish to present an alternative example with some additional features
that apply in real networks. We restrict attention to the central questions
of this correspondence: what is the gain from base station cooperation,
and how does this gain vary with the sizes of the antenna arrays at the
mobile and base station?

Consider the two-tier hexagonal cellular structure depicted in Fig. 4
with a total of 19 identical cells where the base stations are located in
the middle of the hexagonal cells. In each cell, assume that there is only
one user transmitting information to the base station at a given time due
to an orthogonal multiple access scheme (e.g., TDMA or FDMA) em-
ployed within the cell. Each user is randomly located within the cell
with a uniform distribution. The base stations are equipped with an-
tenna arrays of the same size and so are the users. The average squared
channel gain from user j to base station i is determined by the path loss
model

�
2

ij =
1

dij

4

(41)

where dij is the distance between user j and base station i, normalized
with respect to the maximum distance within a cell and the path loss
exponent is assumed to be 4 which is typical for an urban cellular en-
vironment.

For simplicity, we will assume power control is not employed, and
instead assume that the mobiles transmit with a constant power. We
consider two cases corresponding to high and low SNR, respectively. In
the first case, the transmit SNR of a mobile is 20 dB, and in the second
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Fig. 3. Comparison of the spectral efficiency per receive antenna of the circular cellular array with and without base station cooperation with each user’s transmit
SNR equal to 0 dB.

Fig. 4. Two-tier hexagonal cellular system.

case it is 0 dB. Similarly in the second case, the average transmit SNR
of a mobile, averaged over the uniform distribution of locations within
a cell, is 0 dB.

In both cases, we consider the cellular system in Fig. 4 where each
user has six antennas and the number of antennas at each base station
is varied from 1 to 60. We take one randomly selected snapshot of the
user locations which are distributed uniformly within each cell; how-

ever, we restrict the selected snapshot to be such that no user is within
normalized distance of 0:1 from their respective base stations. For the
given selection of user locations, we compute the sum capacity of this
finite antenna array system by averaging over 500 independent channel
realizations. The sum capacities are normalized by the total number of
user antennas. The results are depicted in Figs. 5 and 6, respectively.

We condition the randomly selected snapshot of user locations as
above in order to obtain a “typical” realization of user locations, i.e.,
one not dominated by the relatively rare event that several mobiles are
very close to their respective base stations and hence obtain a massive
(and unrealistic) received SNR. These rare events also make computing
the sum capacity averaged over user locations problematic, and we do
not attempt to do so. Instead, we randomly select user locations once (as
above) and then compute the conditional average sum capacities, where
the averaging is performed over the small scale fading parameters only.

Defining � as the ratio of the number of antennas at the user to the
number of antennas at its base station, we compare the sum capacity
normalized by the total number of antennas at the users (spectral ef-
ficiency per transmit antenna) with and without base station coopera-
tion as a function of 1=�. We plot this spectral efficiency, obtained by
Monte Carlo simulations as described above, and superimpose on the
same graph the results that are obtained by numerical calculations from
the large system asymptotics.

The first point to note from both graphs is that the asymptotic theory
provides very accurate results, even though there are only six antennas
at the mobiles. In both cases, we observe that if we increase the number
of base station antennas while keeping the number of user antennas
fixed (i.e., we increase 1=�), the spectral efficiency per transmit an-
tenna increases monotonically for both BS cooperation and BS nonco-
operation.
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Fig. 5. Spectral efficiency per transmit antenna of the two-tier hexagonal cellular system with average transmit SNR of each user equal to 20 dB.

Fig. 6. Spectral efficiency per transmit antenna of the two-tier hexagonal cellular system with average transmit SNR of each user equal to 0 dB.

In both cases, the gain from macrodiversity is highest at small
values of 1=�, which is consistent with the trends observed in
Wyner’s model considered in Section V. At high SNR, the max-
imum macrodiversity gain is approximately 215%, achieved when
1=� = 0:667, i.e., four antennas at each base station, decreasing to a
gain of about 39%, when there are 60 antennas at the base stations.
The gain of macrodiversity is much reduced in the low SNR scenario.
This is consistent with the results obtained from Wyner’s model for
small �. In the low SNR scenario, the maximum gain from macro-
diversity is about 47%, achieved when there is only one antenna at

the base stations, and this decreases to a gain of about 17%, when
there are 60 antennas at the base stations.

In the model of the present section, the gains from macrodiversity are
moderate, or quite significant, depending on the SNR, and the value of
�. These results are preliminary for a number of reasons. First, they are
for a single realization of user locations. Secondly, and perhaps more
importantly, they are for a log-distance path loss model, with exponent
4, which has the property that the interference a mobile in one cell
creates in an adjacent cell has a small average value, when averaged
over the mobile’s location in the cell.
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More realistic cellular models, with shadowing, will have larger in-
tercell interference, and the gains from macrodiversity will almost cer-
tainly be higher than those reported in the present section. A recent
paper that does include many realistic features is [26], a paper that
studies the capacity of cellular networks with MIMO links, and which
includes lognormal shadowing, sectorized cells, and a variety of fre-
quency reuse patterns. However, this paper does not consider macrodi-
versity, and it is for the downlink of a cellular system. In contrast to our
approach of harnessing asymptotic theory, it takes a simulation-based
approach to measure system spectral efficiency. It will be interesting in
future work to see if the theoretical approach of the present correspon-
dence can be fruitfully applied to more complex, cellular scenarios,
such as those investigated in [26].

VII. CONCLUSION

In this correspondence, we have applied recent results on the lim-
iting eigenvalue distributions of large random matrices to the design of
cellular systems with MIMO links. In particular, we are interested in
characterizing the gain that can be accrued from allowing the base sta-
tions to cooperate in the joint decoding of all users in the network. Our
focus is entirely the mobile to base station uplink.

We show that large systems analysis provides expressions for
spectral efficiency that can be evaluated numerically much faster than
Monte Carlo simulations, and yet are accurate enough to be used in
network simulation and optimization.

We compare the spectral efficiency results for base station coopera-
tion with the corresponding results for a more traditional cellular archi-
tecture where each user is assigned to a base station and base stations
try to only decode their user data treating interference from other users
as random noise. Clearly, we should expect a gain from cooperation,
but the question is, how much? The answer depends on the relative sizes
of the antenna arrays at the users and cell sites, as well as the SNR, and
the relative interference strength from adjacent cells.

A general trend is that the benefit from BS cooperation increases with
the relative size of the mobile transmit antenna array compared to the
base station antenna array size. However, the precise gain, and the point
where returns start diminishing, varies widely with the other parameters
that characterize the network scenario. Other parameters that have a
strong impact are the SNR, and the level of intercell interference. If
the SNR is low, then cooperation gain across base stations becomes
an important issue that helps the macrodiversity case. However, the
intercell interference factor must be high enough to get significant gain,
and the higher it is, the more macrodiversity gains from being able to
jointly decode mobiles that would otherwise be interfering with each
other.

These comparisons are somewhat preliminary, and a more detailed
study of a cellular network might include issues such as shadow fading,
which can greatly increase the interference between cells. Including
shadow fading to the model is not very complicated. Based on the con-
clusions of the present correspondence, it should be sufficient to use
spectral efficiency formulas obtained in this correspondence, but the
numerical results are then random inputs to a Monte Carlo simulation
of slow fading parameters. One thing to expect is that the small inter-
cell interference we observed in Section VI will become much larger
with lognormal shadowing included, and then gains of macrodiversity
will be much greater than those reported here.

An important remark is that for simplicity, and to provide generaliza-
tion of current results in the literature, we have assumed a single user in
each cell, i.e., an orthogonal multiple access scheme is employed within
each cell with full frequency reuse over the cells. However, it is more
efficient in terms of sum capacity to allow multiple users per cell to
share the same channel using space-division multiple-access (SDMA)

or a spatial multiplexing scheme [26]. In fact, one can consider models
in which the number of users grow large with the number of antennas
at the base station, with the number of antennas at each mobile held
fixed. This analysis is beyond the scope of the present correspondence,
but clearly provides an opportunity for there to be many transmit an-
tennas in total (much more than at the base stations) without requiring
there to be many antennas at each mobile; therefore, we might expect
the gains from macrodiversity to be more significant. This is the sub-
ject of ongoing research (see [27]).

From a theoretical point of view, our main contribution is to show
that when the system has a certain symmetry, a phenomenon of re-
source pooling occurs whereby the multiuser macrodiversity system
behaves like a single user microdiversity system with same total re-
ceived signal power and same number of transmitting and receiving
antennas.
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Power Allocation Over Parallel Gaussian Multiple Access
and Broadcast Channels
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Abstract—In this correspondence, we determine the optimal power allo-
cation, that achieves any specified point on the boundary of the capacity
region, for sets of parallel Gaussian multiple-access channels (MACs) and
sets of parallel Gaussian broadcast channels (BCs). The power allocation
is across the parallel channels and, within each channel, across the users.
In both cases, there is a single constraint on the total power used. First, the
allocation for the parallel MACs is determined, in a simple form, using the
Karush–Kuhn–Tucker (KKT) conditions and a simple Lagrangian argu-
ment. Using this result, the allocation for the parallel BCs is derived using
recent findings on the duality of the MAC and BC.

Index Terms—Broadcast Channel (BC), capacity region, duality, mul-
tiple-access channel (MAC), parallel channels, power allocation.

I. INTRODUCTION

The Gaussian multiple access channel (MAC) and the Gaussian
broadcast channel (BC) (Fig. 1) are the most common modeling
choices whenever there is many-to-one or one-to-many communica-
tion over a common channel, notably in the cases of the cellular uplink
and downlink. On the other hand, sets of parallel channels appear in the
modeling and analysis of various channels, for example, channels with
intersymbol interference (ISI), fading, time-frequency code-division
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Fig. 1. System models.

multiple access, and so on. Consequently, parallel Gaussian MACs
and BCs have attracted significant research interest.

A first study of parallel Gaussian BCs appears in [1]. There, an al-
gorithm is given for calculating the optimal allocation of power among
the different parallel channels and among the users of each channel.
The power allocation is optimal in the sense that it can achieve any
specified point on the boundary of the capacity region. In [2], [3] an
alternative greedy algorithm is offered.

In [4], Gaussian BCs with ISI and colored noise are modeled as sets
of parallel BCs, each BC corresponding to a different frequency. The
authors study the optimal power allocations across different users and
frequencies, using the results of [1]. In [5], Gaussian fading BCs are
modeled as sets of parallel channels, each channel corresponding to a
different fading state. The authors compare the optimal power alloca-
tion across different users and states, determined by the method of [1],
with a number of suboptimal, but much simpler, power allocations.

Parallel MACs are studied in [6], in the context of MACs with ISI.
Similarly to [4], the authors show that such channels can be modeled
as sets of parallel MACs, each corresponding to a different frequency.
The authors determine graphically the optimal power allocation across
different frequencies and users. Parallel MACs are also studied in [7],
in the context of channels with fading. In this work, and similarly to
[5], each parallel channel corresponds to a different fading state.

In this work, we calculate optimal power allocations, that achieve
any point on the boundary of the capacity region, for parallel Gaussian
MACs and BCs. Contrary to previous works, [6], [7], we assume a sum-
power constraint for the MAC, meaning that there are no constraints on
the powers of individual transmitters, but rather a global constraint on
the total power across all users and channels.

The sum-power constraint is worth investigating firstly because it ap-
pears naturally in various applications. For example, consider a wire-
less sensor network that consists of a number of sensors Ti, each re-
laying data with rate Ri to a central site. If the total power that can be
allocated to this network, for example in the form of batteries, is fixed,
but we are free to distribute it as we like, we would like to know the
optimal distribution of batteries. As another example, consider the up-
link of a cellular network, in which a constraint has been placed on the
sum of transmitter powers, so as to bound the amount of interference
caused at nearby cells. Secondly, recent duality results [8] have shown
that the capacity region of the MAC with a sum-power constraint is
equal to the capacity region of an appropriately defined dual BC, and
in addition the power allocation that achieves a given point in the ca-
pacity region of the BC can be calculated using the power allocation
that achieves the same point in the MAC. We use this duality to derive
the power allocations of the parallel BC from the power allocations of
the parallel MAC, in a very straightforward manner.

The rest of this work is organized as follows: We start in Section II by
calculating the optimal power allocation in the case of a single Gaussian
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