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Abstract—1In this paper, we consider multicell processing on the
downlink of a cellular network to accomplish “macrodiversity”
transmit beamforming. The particular downlink beamformer
structure we consider allows a recasting of the downlink beam-
forming problem as a virtual linear mean square error (LMMSE)
estimation problem. We exploit the structure of the channel and
develop distributed beamforming algorithms using local message
passing between neighboring base stations. For 1-D networks, we
use the Kalman smoothing framework to obtain a forward-back-
ward beamforming algorithm. We also propose a limited extent
version of this algorithm that shows that the delay need not
grow with the size of the network in practice. For 2-D cellular
networks, we remodel the network as a factor graph and present
a distributed beamforming algorithm based on the sum—product
algorithm. Despite the presence of loops in the factor graph, the
algorithm produces optimal results if convergence occurs.

Index Terms—Cooperative base stations, distributed algo-
rithm, downlink beamforming, Kalman smoothing, linear mean
square error (LMMSE), localized interference, message passing,
multicell processing, multiple-input-multiple-output (MIMO),
sum-product algorithm.

1. INTRODUCTION

OWNLINK beamforming in cellular systems has been an

D active area of research for many years. Recently, there
has been a rapidly growing interest in the area of multicell pro-
cessing, in which base stations cooperate to provide network-
wide, macroscopic beamforming [1]-[13]. The potential gains
are indeed very promising [7]. In this context, it is of great prac-
tical interest to find distributed forms of multicell cooperation.
The simplest conceptual approach to multicell processing is
to assume that there is a central processing unit, or controller, to
which all the base stations are connected. The central processing
unit’s role is to process information from all the base stations
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and to provide them with the appropriate signals to transmit.
However, there are several drawbacks to such an architecture.
The central processing unit is a single point of failure. As a
network expands, it is expensive to require each new base station
(BS) to be connected directly to the central processing unit. It is
of interest then to consider architectures in which base stations
communicate directly with their neighbors.

In this paper, we demonstrate ways to implement the down-
link beamformer in a truly distributed manner via message
passing between neighboring base stations. In this approach,
there is no need for a central processing unit. The global beam-
forming computation is distributed among the BSs, and only
local communication is required between adjacent BSs.

The main technical contribution in this paper is to recog-
nize that a general transmit beamforming problem can be re-
cast as a simple linear mean square error (LMMSE) estima-
tion problem for a virtual model. The data vector in the beam-
forming problem becomes the observation vector in the esti-
mation problem, and the corresponding vector of LMMSE esti-
mates provides the vector of transmitted symbols in the original
beamforming problem. Because the virtual estimation problem
has exactly the same structure as the LMMSE receiver for an up-
link scenario, we obtain an uplink channel that is in some sense
dual to the downlink beamforming channel. Indeed, we exploit
prior work on distributed algorithms for data estimation in up-
link models to obtain a distributed message passing algorithm
for downlink beamforming.

In beamforming with a transmit antenna array, the symbol
sent by an individual antenna element usually depends on the
vector of data symbols to be sent by the array. This suggests
that in macroscopic beamforming, a BS (or central processor)
will need to know the data symbols of all the users in the entire
cellular network in order to compute the appropriate symbol
to transmit. We will show that this is not the case in typical
cellular networks in which mobiles are in range of at most a
few base stations. We will show that in such cellular systems,
the amount of computation and communication, per BS, need
not grow indefinitely with the size of the network.

A. Related Work

Early papers on multiple cell processing were for the uplink
[14], [15]. Both these papers considered a simple linear array
model for a cellular network. Wyner [15] also proposed and
analyzed a hexagonal array model, and we consider the down-
link version of this model in Section V. Multicell processing
is sometimes called “macrodiversity” [16]. In uplink macrodi-
versity, base stations cooperate to jointly decode a signal from
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Fig. 1. Multicell downlink communication with intracell orthogonality and intercell full reuse.

a mobile in the network, taking advantage of the broadcast na-
ture of wireless communications. In downlink macrodiversity,
base stations cooperate to jointly transmit a signal to a mobile,
one approach being the coherent downlink beamforming that we
consider in this paper. Macrodiversity networks are a special
case of multiple-input—-multiple-output (MIMO), in which the
multiple antennas are widely spaced across a geographic area.
Macrodiversity can theoretically eliminate the impact of other
cell interference on cellular capacity [7], [14], [17]. The poten-
tial capacity gain is, therefore, enormous, as demonstrated in
[31, [7], and [18].

Recently, there has been renewed interest in macrodiversity
for both the uplink and the downlink. Mostly, the assumption
is that there is a central processor that performs the joint de-
coding (uplink) or joint encoding (downlink) with an infinite
bandwidth backhaul network connecting the base stations to the
central processor. However, recent works have begun to weaken
these assumptions. In [19] and [20], global cooperation is weak-
ened to local cooperation, in which clusters of base stations co-
operate to decode the users in the cluster. In [9], [21], and [22],
the impact of limited backhaul capacity is considered. The use
of belief propagation and message passing between base sta-
tions is considered in [23]-[25].

B. Organization of This Paper

The multicell downlink transmission model we use in this
paper is presented in Section II. In Section III, we show how the
beamformer structure allows us to recast the downlink beam-
forming problem as a LMMSE estimation problem. Distributed
transmit beamforming algorithms for the linear cellular array
model are presented in Section IV, and for the hexagonal cell
model in V. We conclude this paper in Section V1.

The notation used in this paper is as follows. The set of all
real numbers is denoted by R. Lower case letters are used to de-
note scalars, boldface lower case letters are for vectors, bold-
face upper case letters are for matrices, and I is the identity
matrix. The ith element of the vector a is a; and the {7, j}
entry of the matrix A is represented by A, ;. Finally, we use
|1, tr(-),(-)T,(-)~* and || - || to denote the absolute value,
the trace, the transpose, the inverse and the Frobenius norm,
respectively.

II. MULTICELL DOWNLINK COMMUNICATION MODEL

We consider a cellular network of IV cells where mobile sta-
tions (MS) within a cell do not interfere with each other, for
example through time or frequency division multiplexing (i.e.,
TDMA or FDMA within each cell). However, we allow inter-
cell interference by deploying full reuse in every cell. The in-
tercell interference is assumed to be highly localized; in partic-

ular, we assume that interference only comes from immediate
neighbors. We focus on the multicell downlink communication
process, whereby each BS wishes to transmit a data symbol to its
active MS. Each BS and MS is equipped with only one antenna
(this can be relaxed, to allow MIMO links, but for simplicity, we
do not consider this case). For ease of expression, we refer to the
BS and the MS in cell n as BS n and MS n, respectively. Fig. 1
illustrates a cellular network with our assumptions of local in-
terference, intracell orthogonality, and intercell full reuse.

In addition, there are dedicated communication links, free of
interference, between neighboring BSs, thus enabling a cooper-
ative sharing of information between such BSs. Mathematically,
our system model can be expressed as

Yn = hn,nxn + Z hn,kxk + wn,
kelI(n)

where y,, is the received signal at MS n and x,, is the transmitted
signal from BS n. {w, } are independent identically distributed
(i.i.d.) Gaussian noise variables, with zero mean and variance
o2. I(n) is the set of indices of the adjacent cells for cell n.
The path gain from BS & to MS n is h,, . For simplicity, we
restrict ourselves to a discrete real-valued system. The model in
vector form is given by y = Hx + w, where we have defined
y € RY as the vector of received signals, z € R" as the vector
of transmitted signals, H € RY*N a5 the downlink channel
matrix, and w € R as the noise vector.

Let d € RY be the vector of N scalar data symbols, where
d,, corresponds to the data symbol intended for MS 7, which
is available initially at BS n. In addition, {d,,} are assumed
to be i.i.d. random variables with zero mean and unit variance.
How does the network map the data vector d into the vector of
transmitted symbols z? If we allow BS cooperation, or macro-
diversity, then we can view the N BSs and N MSs as forming
a MIMO system. Macroscopic beamforming can then be im-
plemented via a linear precoder T € RY*¥ as expressed in
x = Td. Thus, the overall system is given by

y = HTd + w. (1)

This is the basic model of this paper, and Fig. 2 depicts this
downlink cellular MIMO system.

Note that our model differs from most single-cell models with
multiple colocated antennas at the BS in the structure of H. In
those models, H is often assumed to be a full matrix, whereas in
our multicell model with localized intercell interference, H may
have many zero elements. As we will see, the local coupling in
the cellular network is the crucial property that allows the design
of distributed transmit beamforming algorithms.

In practice, beamforming requires carrier synchronization be-
tween the separate antenna elements. This may be more diffi-
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Fig. 2. MIMO model.

cult to achieve with macroscopic beamforming than with mi-
croscopic beamforming. However, if the interconnecting links
between base stations are high speed with known delays, this
difficulty is not insurmountable.

The following form for the precoder:

T=KH"(HHT + pI)~! 2)

with two free scalar parameters K, € R, is a general form
for many linear precoders that have been considered in the lit-
erature. By varying the choice of these parameters, it has been
shown that optimality can be achieved with respect to a wide
variety of criteria. For example, it arises in channel inversion
and regularization [26]-[29], minimization of mean square error
[30]-[34], minimization of power subject to signal-to-interfer-
ence-plus noise ratio (SINR) constraints [35], and maximiza-
tion of minimum SINR subject to power constraints [35]—-[37].
In general, K is a normalization constant used to comply with a
total transmit power constraint P, (averaged over data symbols);
if we denote T as the unnormalized transmit beamformer, i.e.,

T=H"(HHT + p1)~! (3)

then K = \/P;/||T||. The other parameter (3 is typically a reg-
ularization parameter.

We will adopt the transmit beamforming structure (2)
throughout this paper. Thus, the transmitted symbol vector will
always be given by

z=KHY (HHT + I) 'd 4)

for an appropriate choice of K and f3.

III. DOWNLINK BEAMFORMING AND A VIRTUAL LMMSE
ESTIMATION PROBLEM

In this paper, we are concerned with the problem of dis-
tributing the computation of z in (4) among the transmit
antenna elements. We will consider a model in which the base
stations only talk to their directly connected neighbors. This
avoids the need for a central processing unit, and only requires
direct links between neighboring base stations. We will exploit
message passing algorithms that have been developed in the
area of LMMSE estimation.

The key observation of this section is that (4) resembles a
well-known result in estimation theory: x can be seen as a
simple scaling (by K) of the LMMSE estimate of a vector u,
under the model

d=Hu+=z (®)]

where u € RY is a vector of i.i.d. random variables with zero
mean and unit variance and z € RY is a vector of i.i.d. random
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variables with zero mean and variance (3, independent of u. In
(5), u can be interpreted as a data vector, H as a channel matrix,
d as an observation data vector, and z as the additive noise, in a
virtual communication model.

Note that # and z have no physical meaning in terms of our
original model (1). However, a consequence of the above obser-
vation is that many signal processing techniques developed for
LMMSE estimation problems (e.g., [38] and [39]) are readily
applicable here. We also emphasize that (5) is different from the
conventional virtual uplink model used to obtain the downlink
beamformer based on the duality of multiple access channel and
broadcast channel [40]-[42]. This can be easily seen by noting
that the channel of the conventional virtual uplink model is H T
not H as in our case.

IV. DISTRIBUTED DOWNLINK BEAMFORMING FOR
THE LINEAR CELLULAR ARRAY
A. Linear Cellular Array

Consider first a 1-D cellular system, with channel matrix pro-
vided by

hl,l h1,2 0 . 0
ha1 hap hags 0
0 }L3’2 ,L3_’3 PN 0
H = . )
0 0 hn—in-1 hn-in
0 0 hnN-1 hn N

This channel model is generalized from the channel model in-
troduced in [14] and [15] to investigate the uplink Shannon ca-
pacity of cellular networks. The band diagonal structure of the
channel matrix provides a “local interaction” structure to the
downlink beamforming problem, which we wish to exploit. It
can be used to model BSs spaced evenly along a highway, or
local network access points installed along corridors in a shop-
ping mall, for two examples. We will extend the model to two
dimensional networks in Section V.

This model has a Markov structure that allows us to pro-
pose a forward—backward algorithm for beamforming, precisely
because a forward—backward estimation algorithm can be de-
veloped for the virtual uplink estimation problem. Indeed, dis-
tributed estimation algorithms have been developed for the esti-
mation problem that arises in the original Wyner uplink model
[38]. We apply these algorithms directly to the beamforming
problem.

B. State—Space Model and Kalman Smoothing

We will treat d as the observation data vector on u in accor-
dance to the channel model (5) and x as the LMMSE estimate
of u given d. This virtual estimation problem can be formulated
as a Kalman smoothing problem by exploiting the “local inter-
action” structure of the cellular network.

We define the state as v, = [up_1 Up Uny1]?. By
treating the index n as “time,” the evolution of v,, forward and
backward in time can be expressed as

vn+1=Afvn+bfun+2, n=1,...,N—-1

b b
Up—1 = A v, + b)un—27
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where

Al = ¥ =0 o 17

AP = =1 0o 0.

_ oo OO

The observation model is given by
dn = i’fn'”n + Zny
where

il.l = [0 hl,l }lez]., ’NLN = [}LNYNfl hN,N 0]

hn = [hn,nfl hn,n hn,n+1]7 i = 27 L) N -1

Given the above state—space model, a forward Kalman filter
can be applied [43] to produce the LMMSE estimate of the state
vector v,,, given {dy, ..., d, } attime n. Similarly, the backward
Kalman filter produces, at time n, the LMMSE estimate of the
state vector v,,, given {d,, ... ,dx}. Denote ¥;(;, .} as the
estimate of state v; based on {d;, ..., dy} and M |(; . ;3 asits
covariance. The forward and backward Kalman filters are given
by the following set of equations [43].

Forward Prediction

Vi(1,m1y = A0 11 a1y (6)
T T

M, n1y =AM, 11, nyAT +1I[n # NJb7b
@)

where I]-] denotes the indicator function.
Forward Correction

.....

kKl =

. — 3
B+hoMy 1, n-1yh,

Vo1, m) = Vnf{1,mne1} + KL (dn — BB (1, 1))

)
M, 1, .0y = (I— kﬁhn) M, 1, no1) (10)
Backward Prediction
V)it N = AVt (nr1, N} (11)

12)

Backward Correction

~T
Mn|{n+1,...,N}hn

K =
n = - -T
B+h My i1, Nyh,
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where kfl and kfl are the Kalman gains. The forward iteration
is initialized by ®y|{1) and M {1}, while the backward itera-
tion is initialized by ¥ |(n} and M y|(x}. These are basically
“self-estimates” (estimate of u,, based on d,, only) and can be
calculated for any n as follows:

Vo (n) = By, (Rnhy, + B)7'd, (16)
T [~ ~T -1
where
R [0 0 O] R 1 0 0
I,=10 1 0 In=10 1 0
10 0 1] 0 0 O
R [1 0 0]
I,=10 1 0 n=2,...,N—1
10 0 1]

Using the fact that the Kalman smoother can be interpreted as
linear combination of the forward and backward Kalman filters
[44], the LMMSE estimate of a state v,, can be written as a linear
combination of ¥y, |{n}, Un|{1,..,n—1} aNd Vpy|{ny1,.., N}

N 1 N
v, =M, (Mn\{l _____ n—1}Yn[{1,..,n—-1}

-1 N 1 -
+ Mn|{n+1,...,N}v”|{”+1’---:N} + Mnl{n}v"H"})
(18)

-1
_ -1 1 -1 o7
Mn_(Mn|{1,...,n—1}+Mn|{n+1,...,N}+Mn|{n} 2In) :

(19)

Based on the Kalman smoothing framework, distributed algo-
rithms via message passing between BSs can be designed.

C. Forward-Backward Beamforming Algorithm

A natural distributed beamforming algorithm based on the
Kalman smoothing framework is the forward-backward algo-
rithm presented below. Assume that BS n already knows (3 and
ﬁn, the latter as a result of feedback from the MSs. For now, let
us also assume that the scaling factor K is set to unity. The al-
gorithm is then as follows.

1) At both ends of the linear array, the initial estimates
{ﬂl|{1},M1|{1}} and {"A)N|{N}7MN|{N}} are produced
by BS 1 (given dy) and BS N (given dy), respectively,
according to (16) and (17). This is the initialization step of
the forward and backward Kalman filters.

2) The outputs of BS 1 and BS V are passed as messages to
their direct neighbors, namely, BS 2 and BS N — 1, respec-
tively. This process realizes the forward prediction equa-
tions (6) and (7) for n = 2, and the backward prediction
equations (11) and (12) forn = N — 1.

3) BS 2 and BS N — 1 combine the messages re-
ceived from their neighbors with the information
from their own data dy and dy_;, respectively,
to produce new messages {¥g(1,2}, Majf1,2y} and
{’f’N71|{Nfl,N}7MNfl\{Nfl,N}} according to the
forward correction equations (8)—(10) and the backward
correction equations (13)—(15), respectively.
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Fig. 3. Limited extent set of BSs associated with generation of =,, after j message-passing steps. Only {d,,_;, - - - d,,+; } are involved in producing .

4) The process of information combination and message
passing continues in both the forward and the backward
directions until each BS has obtained its own ¥y, {1,... n—1},
V| {n+1,..N}> Un|{n}s Mn){1,..n—1} Mu|{ns1,... N}, and
M) (ny

5) For each n, the messages at BS 7 are then linearly com-
bined with the local information to produce v,,, according
to (18) and (19), and z,, is set to be the middle component
of v,,.

An important remark is that the distributed algorithm outlined
above is sensitive to the size of the network, in particular, the
time required to propagate information to cover the entire net-
work increases linearly with the size of the cellular array. Fur-
thermore, the delay experienced by each BS is also dependent
on the location of the BS in the array. Specifically, the BSs at
the edge of the array suffer longer delay than the BSs in the
middle of the array. We address this issue in the following sec-
tion by considering a different implementation of the Kalman
message-passing algorithm that enables it to be stopped before
the optimal performance is reached, allowing the delay to be in-
dependent of the size of the array.

D. Limited Extent Distributed Beamforming Algorithm

We exploit the local coupling property of our channel further
in this section by noting that for the computation of z,, at a par-
ticular BS n, information from BS m decreases in importance as
the distance between BS m and BS 7 increases. For this reason,
there will be little impact if we replace the forward—backward
algorithm with the limited extent algorithm below, which ap-
proximates the optimal solution increasingly well as the itera-
tions increase. The algorithm is described below from the point
of view of BS n, assuming /3 and h,, are already known at BS n.

1) v,)(n} and M.} are estimated based on the data d,, ac-
cording to (16) and (17).

2) The self-estimates are sent to the BS n — 1 and the BS
n + 1, realizing the prediction equations (6), (7), (11), and
(12). At the same time, messages corresponding to the self-
estimates by the neighbors BS n — 1 and BS n 4 1 are
received.

3) The message received from the left neighbor BS n — 1
is combined with BS n’s own information d,,, producing
Up|{n—1,n} a0d My (,,_1 ) according to the forward cor-
rection equations (8)—(10). Similarly, the message received
from the right neighbor is combined with d,,, producing
Vp|{n,n+1} and M|, 41} based on the backward cor-
rection equations (13)—(15).

4) The result from the forward correction is passed to the right
neighbor BS n + 1. At the same time, the result from the
backward correction is passed to the left.
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5) After j passes, Up|{n—j, ...ntj} a0d Myj(n_j . nij}
can be computed using (18) and (19) with
Unl{n}r  Onl{n—j...n-1}»  On|{ntl,....ntj}> Mn|{n}
M, n—j,..n—1}y> and My (41, nyj), Where we have
used the identifications

A

Un = Un|{n—j,...,n+j}
Un|{1,...,n—-1} = Un|{n—j,...,n—1}

Un|{n+1,..N} = Un|{n+1,...n+j)
M, = M,|in—j.,..n+j}

M1,.n-1) = Myj(n_j,...n-1}
My ins1,. Ny = My ngr,. ntj)-

6) After j passes, v,|{n_j,..
J;,(f ) to the optimal transmit symbol z,,.

If the number of passes j is large enough for the information
from the BSs at the edges of the array to arrive, then z% ) —
Ty, is optimal. However, the algorithm can be terminated after
an arbitrary number of passes, and a:gf ) incorporates only the
data symbols from the limited extent set corresponding to the
number of passes that have taken place (Fig. 3). If the algorithm
is stopped early, optimality is lost, but delay is reduced. There
is a tradeoff between performance and delay. In this version of
the algorithm, the amount of knowledge about the network that
a BS requires depends on the number of passes that have taken
place when the algorithm is terminated.

Up until now, we have made the simplifying assumption that
K = 1. In some of the beamforming schemes referred to in
Section II, K depends on the instantaneous channels across the
entire linear arrays; it is then a scaling factor to ensure that the
total transmit energy across all BSs is conserved for all channel
states. In these cases, computing K requires global knowledge
of the channel states, but the channel states will typically be
changing much more slowly than the data symbols, so this is
much less onerous than requiring global knowledge of the all
the data symbols. If only the long-term average power is to be

constrained, then we can set K to be /P, /E||T||2, where T is

defined in (3), and global knowledge of the channel states is not
required in this case.

.,n+j} contains an approximation

V. DISTRIBUTED DOWNLINK BEAMFORMING FOR
HEXAGONAL CELLULAR ARRAY

The 1-D cellular array model has its uses, but most cellular
networks have a 2-D aspect, and the hexagonal cellular array
is the traditional model of a cellular network. For this reason,
we now extend the distributed beamforming model to the case
of a hexagonal cellular array. The key is to recognize that the
Kalman distributed algorithm is in fact a special case of the
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sum—product algorithm [45] operating on a 1-D factor graph.
Interested readers should refer to [45] where the Kalman filter
is proven to be a special case of the sum—product algorithm
(the fact that the proof can be extended to Kalman smoothing
is straightforward). In this section, we present a distributed
downlink beamforming algorithm based on the sum—product
algorithm that can be applied to 2-D networks with local cou-
pling. We will use the hexagonal cellular array model [15] as
an example.

A. Hexagonal Cellular Array and Factor Graph

The channel matrix H for a hexagonal cellular array can no
longer be expressed as a tridiagonal matrix as in the linear cel-
lular array. In a network of seven cells where cell 1 is surrounded
by six cells labeled 2 to 7, H is given by

Thii hip hiz hia his hig hig]
}L211 h272 }L2’3 0 0 0 }L2’7
hsi hs2 hss hsa O 0 0
H = h4,1 0 h4,3 h474 h4,5 0 0 (20)
hsi 0 0 hsa hss hseg O
he1 0 0 0 hes hee her
_}L711 h772 0 0 0 h7_’6 }L7’7_

While it is possible to construct a 2-D state—space model,
we will not pursue that course here and we will instead use the
model of a factor graph. A factor graph encodes a global func-
tion that can be factored into local functions, and marginalized
functions can be computed using message passing on the graph.
When this approach is applied to statistical inference problems,
the global function is the a posteriori density function, i.e., a
joint probability density function (pdf) of the unknown variables
conditioned on the observed ones, and the requirement is to find
the marginalized probability densities given observed data.

For the virtual LMMSE estimation problem of estimating u
given d, we further assume that {u,, } are i.i.d. Gaussian random
variables with zero mean and unit variance. In this case, the
LMMSE estimate «x is the mean of the conditional distribution
p(u|d), which can be factored as follows:

p(uld) o< p(du)p(w)
= p(di|uy, un,n € 1(1))p(da|uz, un,n € I1(2))
o pldn|un s un,n € I(N))p(ur)p(uz) - - p(un)

where I(n) is the set of indices of the cells adjacent to cell n,
e.g., for the seven cell example, we obtain

p(ut, ..., uz|dy, ..., d7)
x p(dy,...,drlug,...,u7)p(us,...,uz)
= p(di|us, - .., ur)p(dajur, us, us, ur)
x p(ds|ur, uz, u3, ua)p(dalur, us, wa, us)
x p(ds|u, ug, us, ug)p(ds|uy, us, ug, ur)
X p(drluy, uz, ug, ur)p(ur)p(uz) - - - p(ur).
The corresponding factor graph is shown in Fig. 4,

where f;, is the factor node that corresponds to the
local function p(dy|uy,...,ur), fa, corresponds to
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Fig. 4. Factor graph corresponding to hexagonal cellular array of seven cells.

p(dz|uy, uz,us, u7) and so on, while fy,, ..., fu, correspond
to p(u1),p(uz),...,p(un), respectively. Note that the
localized nature of the interference is reflected in the form of
the factorization.

The marginal functions of interest are the conditional pdfs
p(un|d), n = 1,...,N, which are also Gaussian. With
Gaussian p(uy|d), the transmitted symbol from BS n, z,,
is simply the mean of p(u,|d) and can be calculated in a
distributed manner using the sum—product algorithm, which is
described in the next section.

B. Distributed Beamforming Using the
Sum—Product Algorithm

The sum—product algorithm is designed to compute the
marginalized functions or, in the present case, the a posteriori
distributions p(u,|d), n = 1,..., N, via message passing be-
tween the nodes in the factor graph. A comprehensive tutorial
on the sum—product algorithm can be found in [45]. In this
section, our aim is to show how the sum—product algorithm,
operating on a factor graph that models the hexagonal cellular
array, can be used as a distributed transmit beamforming
algorithm.

When the sum—product algorithm is applied in a statistical
inference problem, the messages passed between nodes are pdfs.
For a factor graph with Gaussian variables, the messages are
Gaussian pdfs, and thus they can be completely characterized
by their means and variances. Furthermore, because our factor
graph has loops, the sum—product algorithm is iterative in nature
and does not terminate in a finite number of steps. Dropping
the index n for ease of notation, we denote the mean and the
variance of the message passed from variable node u to factor
node f at the ith iteration, by M 152 5 and Vu(ﬂ #» respectively.
Similarly, we denote the mean and the variance of the message
passed from factor node f to variable node w at the ith iteration,
by M (i“ and Vf(z_)m, respectively. We define A(u) as the set of
neighbors of node , including node f,,, and we define A(u)\ f
to be the set of neighbors of node u excluding the node f. Note
that the neighbors of a variable node must be factor nodes and
vice versa.

Considering the flooding schedule [45] where for each time
instance, messages on all edges are updated simultaneously, the
sum—product update equations for Gaussian factor graphs are
given by [46] the following.
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Factor node to variable node

@ __ 1 oy Gi=1)
M;,_, = ) d— > h(feu)M,Z7 | @D
o uw EA(fa)\u
o _ 1 2 (i-1)
Vi = W2 (o) B+ > K(fad)Vyly | 22
’ uw €A(fa)\u
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Variable node to factor node
) . M(i)
@ _ @ f—u .
u—fq = Kt—»fd Z V(L) ’ L= 172737 s
feA(W)\fa ~fou
(23)
-1
i 1 .
von=1 X 5| o i=nzs.. @
feEA(\fa " fou
with initial conditions
0 _ ) _
Mu—»f,;, - 07 Vu—)fd =1

where h(f4,u) represents the channel gain from BS corre-
sponding to node u to the mobile in the cell corresponding to
node fq. Note that there is no need to construct the messages
M 52 s, and Vu(g 7. as the factor nodes f, are not connected
to any other nod;:s. Also, the f, nodes can be considered to be
transmitting M (z)_m = 0 and Vf(:)_m = 1 by default, so there is

no need to send these messages. After ¢ iterations, one obtains
estimates of E[u|d] and Var(u|d), respectively

(@)

. . M
E® (u|d) = Var? (u|d) Z {;u (25)
feA(u) " fou
-1
; 1
() = -
Var@O(uld) = | > -5 (26)
feEA(u) " f—u

for each node w in the graph. The true value of E(u,|d) is the
LMMSE estimate of w,,, and the global beamformer would set
T, to be this value; the value in (25) is an approximation to x,,
obtained after ¢ steps of the sum—product algorithm.

It is easy to see that M," 7, In(23) is simply the average
weighted mean estimate of u from all the factor nodes except
fa. Each term in the sum on the right-hand side (RHS) of (23)
is the mean obtained from a particular factor node weighted by
its variance. In general, the variance reflects the confidence of
the corresponding mean, with smaller variance implying higher
confidence. Thus, a smaller variance in the sum corresponds to
a larger weight and the overall confidence of the mean of u is
given by V., in (24).

Equation (21) can be seen intuitively as “correcting” the mean
of u given the observed d and the strengths of links between
the factor node and the variable nodes. The strength of the link
between f; and u is given by h(fq, u). Likewise, the variance
is also “corrected” given the observation noise variance and the
link strengths as shown in (22).
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In our proposed distributed beamforming algorithm, we take
advantage of the fact that the variance updates in (24) and (22)
do not depend on the data vector d. Further, the channel states
will change much more slowly than the data symbols, allowing
us to make the separation of time-scale assumption that the
channel states can be assumed to be fixed on the time scale
of the data symbols. Following similar techniques to those pre-
sented in [47] and [48], we show in [12] that the variance up-
dates in (24) and (22) always converge. Let V7, and V{ _,
denote the limiting values corresponding to (24) and (22), re-
spectively. Then the messages passed between base stations to
implement the distributed beamforming algorithm are just the
means of the corresponding Gaussian distributions, and we ob-
tain the following algorithm.

Sum—product beamforming algorithm

@ _ 1

narE—1)

e = ey |47 2 MUa MUy | @)
u’eA(fd)\u
. M(i)
(1) _ * f—u

M =vi |l Y A= (28)
feA(\fa v

for i = 1,2,3,... with initial condition M”) . = 0. If the

u—faq
algorithm is terminated after ¢ steps, then we set

. M(i)
i * f—u
‘/1:’57,) = Vu—)fd Z ;

feA(u)
followed by an appropriate scaling to meet the power constraint.

C. Convergence of the Sum—Product Beamforming Algorithm

The sum—product algorithm is not guaranteed to converge in
general, nor does it always produce the exact marginalized con-
ditional pdf of the variable when it does converge, unless the
graph is loop-free [45], and it is not loop-free in the hexagonal
model.

Sufficient conditions for convergence of belief propagation
for Gaussian graphical models are presented in [47]-[50]. Fol-
lowing similar techniques to those presented in [47] and [48],
we show in [12] that the variance updates in (24) and (22) al-
ways converge, and we provide a necessary and sufficient con-
dition for convergence of (27) and (28). The convergence con-
dition is that the spectral radius of a certain iteration matrix is
less than one, a matrix that depends on various system param-
eters including the path gains in the cellular network. Detailed
convergence results and methods for improving convergence are
presented in [51].

It is known that if the variables are Gaussian distributed, as
in our case, and if convergence occurs, then the limiting value
T, = lim;_ o xﬁf) is indeed the true conditional mean, i.e.,
Ty, = E(up|d), even though V7 . 'may not be the correct con-
ditional variance of u,, given d [47], [49]. Correctness of x,, is
sufficient for our problem because it is in fact the signal that
should be transmitted. The limiting conditional variance of u,,
is not actually used by the beamformer, so its incorrectness is
not a practical issue.
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Fig. 5. Convergence of the relative error between sum-product beamformer
and global beamformer.
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Fig. 6. Example where the sum—product beamformer fails.

Fig. 5 illustrates the convergence of the sum—product beam-
former for a hexagonal network with 19 cells, same-cell gain of
1, adjacent cell gain of «, noise power of 1, total global transmit
power of 19, and 3 = 1. The plot is for a particular realization of

) (i) _
data symbols, and the relative error plotted refers to %,

where (9 is the vector of transmitted symbols after i iterations
and z is the vector of transmitted symbols from the global beam-
former. The convergence is geometric at a rate that is indepen-
dent of the data symbols (being only dependent on the iteration
matrix [51]), with & = 0.1 exhibiting faster convergence than
a = 0.2, as illustrated in the figure.

Fig. 6 illustrates an example where the condition for conver-
gence is not met. Note that it is trivial to provide a globally con-
vergent distributed beamforming algorithm if we are willing to
sacrifice optimality. The future challenge is to improve conver-
gence without sacrificing optimality, or at least sacrificing as
little as possible.
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VI. CONCLUSION

Multicell processing with cooperative BSs has tremendous
potential to meet the ever increasing demand for higher data
rates in cellular networks. In the downlink scenario, we show
how that gain can be realized by utilizing multiple BSs in a dis-
tributed version of downlink beamforming in which information
is shared only between adjacent BSs.

We first considered a simple linear array model of a cellular
network, in which base stations are arranged along a line. Using
the Markov structure of this model, we formulated a state—space
model for the virtual LMMSE estimation problem. We adapted
the Kalman smoothing framework to obtain a forward—back-
ward, distributed beamforming algorithm. The forward—back-
ward algorithm produces the optimal transmitted signals for
each BS. However, the algorithm suffers from a delay that grows
linearly with the network size.

Recognizing that only the data symbols in the local neigh-
borhood have significant impact on the signal transmitted from
a particular BS in the optimal beamformer, we then proposed
a limited extent distributed beamforming algorithm. This ap-
proach allows all the base stations to operate in parallel, rather
than in series. Results in [6] show that this algorithm realizes a
near-optimal beamformer after a typically small number of local
message passingsteps. The number of message passings needed
does not grow with the network size in practice.

We also presented a distributed downlink beamforming algo-
rithm for a 2-D hexagonal cellular array model. In this case, we
remodel the hexagonal cellular array virtual uplink estimation
problem as a factor graph and apply the sum—product algorithm
[45] to obtain a method of distributed beamforming that gener-
alizes the 1-D limited-extent algorithm.

Future work will be to improve the distributed beamforming
algorithm, with lack of global convergence being its current
weakness. Another pressing issue from a practical point of view
is to investigate how clock synchronization, required to achieve
coherence at the base stations, can be obtained in a distributed
manner.
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