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Bounds on the Capacity of Random Insertion and
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Abstract—We develop several analytical lower bounds on the information theoretic study of these channels proves toetg v
capacity of binary insertion and deletion channels by consleting  challenging. For instance, even for seemingly simple model
independent uniformly distributed (i.u.d.) inputs and computing such as an i.i.d. deletion channel, an exact calculatiomef t

lower bounds on the mutual information between the input . ) .
and output sequences. For the deletion channel, we considerCapaClty is not possible and only upper/lower bounds (which

two different models: independent and identically distributed —are often loose) are available.

(i.i.d.) deletion-substitution channel and i.i.d. deletbon channel In this paper, we compute analytical lower bounds on
with additive white Gaussian noise (AWGN). These two models the capacity of the i.i.d. deletion channel with substinti
are considered to incorporate effects of the channel noisdang o5 andin the presence of AWGN, and i.i.d. random
with the synchronization errors. For the insertion channel case . . . . .
we consider the Gallager's model in which the transmitted tis I"Sertion channel, by lower bounding the mutual informatio
are replaced with two random bits and uniform over the four rate between the transmitted and received sequences far i.u
possibilities independently of any other insertion eventsThe inputs. We particularly focus on the small insertion/delet
general approach taken is similar in all cases, however the probabilities with the premise that such small values areemo
specific computations differ. Furthermore, the approach yeldsf practical from an application point of view, where every bit

a useful lower bound on the capacity for a wide range of . . . - .
deletion probabilities for the deletion channels, while itprovides 1S independently deleted with probabilipy; or replaced with

a beneficial bound only for small insertion probabiliies (less two randomly chosen bits with probabilify;, while neither
than 0.25) for the insertion model adopted. We emphasize the the transmitter nor the receiver have any information about
importance of these results by noting that 1) our results are the positions of deletions and insertions, and undeletés! bi
the first analytical bounds on the capacity of deletion-AWGN are flipped with probabilitys. and bits are received in the

channels, 2) the results developed are the best availableagtical . N
lower bounds on the deletion-substitution case, 3) for the Gllager COrTect order. By a deletion-substitution channel we reder

insertion channel model, the new lower bound improves the an insertion/deletion channel with; = 0; by a deletion-

existing results for small insertion probabilities. AWGN channel we refer to an insertion/deletion channel with
Index Terms—Insertion/deletion channels, synchronization, chan- Pi = Pe = 0 (_deletlon-only channel) in which undeleted bits
nel capacity, achievable rates. are received in the presence of AWGN, that can be modeled

by a combination of a deletion-only channel with a binary
input AWGN (BI-AWGN) channel such that every bit first

I. INTRODUCTION )
goes through a deletion-only channel and then through a BI-

In modeling digital communication systems, we often as\yGN channel. Finally, by a random insertion channel we
sume that the transmitter and receiver are completely WnChrefer to an insertion/deletion channel with = p, = 0
= p. = 0.

nized; however, achieving a perfect time-alignment betwee
the transmitter and receiver clocks is not possible in all
communication systems and synchronization errors are ua- Review of Existing Results

avoidable. A useful model for synchronization errors asssim Dobrushin [1] proved under very general conditions that

that Lhe n?mber OT regetl)\_/ed bits hmay be(;nore or I_ess/t;[htaen %‘? a memoryless channel with synchronization errors, Shan
number of transmitted bits. In other words, insertion/te non’s theorem on transmission rates applies and the in-

cha_mnelz mayl behusedﬁas ?ppropnatr(]a mpde_ls for commugt, ation and transmission capacities are equal. The proof
cation channels that suffer from synchronization errorSEDhinges on showing that information stability holds for the

to the memory introduced by the synchronization errors, #sertion/deletion channels and, as a re<ult [2], capaity
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with insertion, deletion and substitution errors (whosedeio lower bounds on the capacity of the insertion/deletion cleém

is specified earlier). The approach is to consider transomss based on reduced-state techniques|_In [9], the input psdses
of i.u.d. binary information sequences by convolutionaliog assumed to be a stationary Markov process and lower bounds
and modulo-2 addition of a pseudo-random binary sequerme the capacity of the deletion and insertion channels are
(which could be considered as a watermark used for synchotstained via Monte Carlo simulations considering both tre fi
nization purposes), and computation of a rate that guazantand second-order Markov processes as inpuf. Ih [10], irderm

a successful decoding by sequential decoding. The achevation rates for i.u.d. input sequences are computed for aéver
rate, or the capacity lower bound, is given by the expressiarthannel models using a similar Monte Carlo approach where
in addition to the insertions/deletions, effects of inyenol
interference (I1SI) and AWGN are also investigated.

where( is the channel capacity, = (1 —pa—p;)(1—pe) is There are several papers deriving upper bounds on the
the probability of correct reception, and = (1 —pg — p;)p.  capacity of the insertion/deletion channels as well. Fexto

is the probability that a flipped version of the transmitteénd Duman in([111] present several novel upper bounds on the
bit is received. The logarithm is taken base 2 resulting gapacity of the i.i.d. deletion channel by providing the alder
transmission rates in bits/channel use. By substituting 0  (and possibly the encoder) with some genie-aided infonati

in Eqg. @), forpy < 0.5, a lower bound on the capacity of theabout the deletion process resulting in auxiliary channels

C > 14 palogpa + pilog pi + pclogpe + pslogps, (1)

deletion-substitution channél,,, can be obtained as whose capacities are certainly upper bounds on the capacity
the i.i.d. deletion channel. By providing the decoder with a
Cas > 1 — Hy(pa) — (1 — pa) Hp(pe), (2)  propriate side information, a memoryless channel is obthin

whereH, (pq) = —palog pa— (1—pa) log(1—pa) is the binary in such a way that Blahut-Arimoto algorithm (BAA) can be
entropy function. It is interesting to note that fay = p. = 0  uUsed for evaluating the capacity of the auxiliary channets (
(5 = pe = 0) andp; < 0.5 (pa < 0.5), a lower bound on at least computing a provable upper bound on their capakitie
the capacity of the random insertion channel (deletiory-onfNey also prove that by subtracting some value from the
channel) with insertion (deletion) probability of (p), is derived upper bounds, lower bounds on the capacity can be
equal to the capacity of a binary symmetric channel (Bs(gljerived. The intuition is that the subtracted informati®miore
with a substitution error probability of; (pa). than extra information added by revealing certain aspetts o
In [4], [5], authors argue that, since the deletion channte deletion process. A nontrivial upper bound on the dateti
has memory, optimal codebooks for use over deletion chditannel capacity is also obtained in[12] where a different
nels should have memory. Therefore, inl [4]-[7], achievab@enie-aided decoder is considered. Furthermore, Fertanan
rates are computed by using a random codebook of RateDuman in[13] extend their work[11] to compute several upper
with 27 codewords of length:, while each codeword is and lower bounds on the capacity of channels with insertion,
generated independently according to a symmetric firstrordieletion and substitution errors as well.
Markov process. Then, the generated codebook is used fotn two recent papers [14]. [15], asymptotic capacity expres
transmission over the i.i.d. deletion channel. In the nearei Sions for the binary i.i.d. deletion channel for small dielet
different decoding algorithms are proposed, e.g.[in fAfhé Probabilities are developed. In_[15], the authors prove tha
number of codewords in the codebook that contain the redeives < 1 — (1 — O(pa))Hy(pa) (Where O(.) represents the
sequence as a subsequence is only one, the transmis§igfdard Landau (big-O) notation) which clearly shows that
is successful, otherwise an error is declared. The propodetsmall deletion probabilities] — H,(pa) is a tight lower
decoding algorithms result in an upper bound for the inaarredPound on the capacity of the deletion channel.[In [14], an
decoding probability. Finally, the maximum value &f that expansion of the capacity for small deletion probabiliies
results in a successful decodingas— oo is an achievable computed with several dominant terms in an explicit form.
rate, hence a lower bound on the transmission capacity of thee interpretation of our result for i.i.d. deletion-onlyannel
deletion channel. The lower bourd (1), far= p. = 0, is also case is parallel to the one in_[15].
proved in [4] using a different approach compared to the one
taken by Gallaggr [3], where the authors colmputed achievag' Contributions of the Paper
rates by choosing codewords randomly, independently and ) _ ) )
uniformly among all possible codewords of a certain length. !N this paper, we focus on small insertion/deletion proba-
In [8], a lower bound on the capacity of the deletiofilities and derive analytical lower bounds on the capaoity
channel is directly obtained by lower bounding the inforiorat the insertion/deletion channels by lower bounding the mlutu

N . information between i.u.d. input sequences and resultirtg o
capacity lim — max I(X;Y). In [8], input sequences are . ; X .
N—oo N p(X) put sequences. Since as showrlin [1], for an insertionidelet

considered as alternating blocks of zeros and ones (rur@)annel, the information and transmission capacities quele
where the length of the rung are i.i.d. random variables justifying our approach in obtaining an achievable rate.
following a particular distribution over positive integewith We note that our idea is somewhat similar to the idea
a finite expectation and finite entrop¥' (L), H(L) < oo of directly lower bounding the information capacity inslea
where E(-) and H(-) denote the expected value and entropgf lower bounding the transmission capacity as employed
respectively). in [8]. However, there are fundamental differences in thénma
In [9], [10], Monte Carlo methods are used for computinghethodology as will become apparent later. For instance, ou



approach provides a procedure that can easily be employedf0 runs by D(n; K;d) = (d1,ds, . . .,dk), whered;, denotes
many different channel models with synchronization erass the number of deletions in theth run and>"1_, dj. = d. The
such we are able to consider deletion-substitution, deleti outputs resulting from a given deletion pattdbin; K; d) =
AWGN and random insertion channels. Other differenc€d;,ds,...,dx) (without any other error) are denoted by
include adopting a finite-length transmission which is p@v D(n; K;d) * z(n; K) = (n1 — di,ne — da,...,ng — d).
to yield a lower bound on the capacity after subtracting sorithe setD’ (d) represents the set of all deletion patterns of
appropriate term, and the complexity in computing the finééngthd of a sequence of length and with K runs.
expression numerically is much lower in many versions of our
results. D
Finally, we emphasize that by utilizing the new approach,’
we improve upon the obtained results in the existing liteeat
in several different aspects. In particular, the contidng of
the paper include

Organization of the Paper

In Section], we introduce our general approach for lower
bounding the mutual information of the input and output
sequences for insertion/deletion channels. In Segtignwé

- , ply the introduced approach to the deletion-substitueiod
« development of a new approach for deriving achievab : .
. . . X . eletion-AWGN channels and present analytical lower bsund
information rates for insertion/deletion channels, . - . .
: : : on their capacities, and compare the resulting expressighs
« the first analytical lower bound on the capacity of the . . .
; €arlier results. In Sectidn 1V, we provide lower bounds om th

deletion-AWGN channel, . ) .

: . , capacity of the random insertion channels and comment on our
« tighter analytical lower bounds on the capacity of thé : s

: O . results with respect to the existing literature. In Seci®mwe
deletion-substitution channel for all values of deletion . . .
- I ._.._compute the lower bounds for a number of insertion/deletion

and substitution probabilities compared to the existi

ng. : . . X
. annels, and finally, we provide our conclusions in Sec-
analytical results,

« tighter analytical lower bounds on the capacity of thtelonlm
random insertion channels for small values of insertion

probabilities f; < 0.25) compared to the existing lower Il. MAIN APPROACH

bounds, We rely on lower bounding the information capacity of
« very simple lower bounds on the capacity of several casegemoryless channels with insertion or deletion errorsctliye
of insertion/deletion channels. as justified by[[1], where it is shown that, for a memoryless

Regarding the final point, we note that by employing= 0 channel with synchronization errors, the Shannon’s threore
in the results on the deletion-substitution channel, wéverr on transmission rates applies and the information and trans
at lower bounds on the capacity of the deletion-only chann@ission capacities are equal, and thus every lower bound on
which are in agreement with the asymptotic results[of [14ihe information capacity of an insertion/deletion chanisel
[15] in the sense of capturing the dominant terms in th lower bound on the transmission capacity of the channel.
capacity expansion. Our results, however, are provabledowour approach is different than most existing work on finding
bounds on the capacity, while the existing asymptotic tesulower bounds on the capacity of the insertion/deletion cets

are not amenable for numerical calculation (as they contaihere typically the transmission capacity is lower bounded
big-O terms). using a certain codebook and particular decoding algogthm

The idea we employ is similar to the work in| [8] which also

C. Notation considers the information capaci%im N mf;éc I(X;Y)

We denote a binary sequence of lengtiwith K runs by and directly lower bounds it using a particular input distri
(b;n1,n2,...,nK), whereb € {0, 1} denotes the first run type bution to arrive at an achievable rate result.
andeK:1 ni = n. For example, the sequence 0011110110000ur primary focus is on the small deletion and insertion
can be represented as (0;2,4,1,2,3). We use four differgmbbabilities. As also noted i [14], for such probabiktig
ways to denote different sequencasp; n”; K*) represents is natural to consider binary i.u.d. input distribution.iJhs
every sequence belonging to the set of sequences of lerigthjustified by noting that whep,; = p; = 0, i.e., for a binary
with K runs and by the first run of typk x(b;n*; K*;1) symmetric channel, the capacity is achieved with independe
represents a sequeneeb; n”; K*) which hasl runs of length and symmetric binary inputs, and hence we expect that for
one ( = Zleé(ni — 1) with §(.) denoting the Kronecker small insertion/deletion probabilities, binary i.u.dputs are
delta function)z(n”) represents every sequence of length not far from the optimal input distribution.
andx represents every possible sequence. The set of all inpuOur methodology is to consider a finite length transmission
sequences is shown Y, and the set of output sequences aoff i.u.d. bits over the insertion/deletion channel, and ame
the deletion-only, and random insertion channels are shywnpute (more precisely, lower bound) the mutual information
Y and)?, respectively)? and)’ . denote the set of outputbetween the input and the resulting output sequences. As
sequences resulting fromdeletions and: random insertions, proved in [11] for a channel with deletion errors, such a
respectively, and/(x — a) and Y (z + ¢) denote the set of finite length transmission in fact results in an upper bound
output sequences resulting frandeletions from and random on the mutual information supported by the insertion/detet
insertions into, the input sequenge respectively. We denote channels; however, as also shown [inl[11], if a suitable term
the deletion pattern of lengthin a sequence of length with is subtracted from the mutual information, a provable lower



bound on the achievable rate, hence the channel capaaitytual information, obviously

results. The following theorem provides this result in glsiiy _ B

generalized form compared to [11]. I(X;Y) =H(Y) - HY|X), ©6)
) ) o ) thus by calculating the exact value of the output entropy

Theo_rem 1. For binary |r_1put ch_annels_ with i.i.d. insertion or o, |ower bounding it and obtaining the exact value of the

deletion errors, for any input distribution and amy> 0, the  ~nditional output entropy or upper bounding it, the mutual

channel capacitC’ can be lower bounded by information is lower bounded. For the models adopted in this
1 _ 1 paper, we are able to obtain the exact value of the output

= EI(X’ Y) - EH(T)’ ) sequence probability distribution when i.u.d. input sewes
where are used, hence the exact value of the output entropy (the

differential output entropy for the deletion-AWGN channisl

H(T) = — Z |:(T_L)pj(1 _p)n*j log ((T_L)pj(l _p)nj)] available.
i=o L\J J In deriving the conditional output entropies (the conditib
with the understanding that = p, for the deletion channel differential entropy of the output sequence for the detetio

case andp = p; in the insertion channel case, andis the AWGN cha_nnel), we cannot obtain th(_e_exact proba}blllty_ of
| ; all the possible output sequences conditioned on a givaut inp
ength of the input sequenck.

sequence. For deletion channels, we compute the prolyabilit

Proof: This is a slight generalization of a result in [11]°f @l possible deletion patterns for a given input sequence
which shows that Eq[{3) is valid for the i.i.d. deletion cheh @nd treat the resulting sequences as if they are all distinct

It is easy to see thaf [11], for any random proc@¥s, and find a provable upper bound on the conditional entropy term.
for any input distributic;nP(XN) we have Clearly, we are losing some tightness, as different dedetio

patterns may result in the same sequence at the channet.outpu
C > lim i[(XN; YV, V)~ lim iH(TN% (4) For the random insertion channel, we calculate the comitio
N—oo N N—oo N probability of the output sequences resulting from at most
where C is the capacity of the channel is the length of one insertion, and derive an upper bound on the part of the
the input sequenc&X”™ and N = Qn, i.e., the input bits conditional output entropy expression that results from th
in both insertion and deletion channels are divided iGto output sequences with multiple insertions.
blocks of lengthn (X = {Xj}JQ:l). We define the random
processT'” in the following manner. For an i.i.d. insertion
channel, 7" is formed as the sequen@®""’ = {Ti}%
which denotes the number of insertions that occur in trans-
mission of each block of length. For a deletion channel, As mentioned earlier, we consider two different variations
TV = {Tjd}?:1 represents the number of deletions occurringf the binary deletion channel: i.i.d. deletion and substit
in transmission of each block. Since insertions (dele)iongon channel (deletion-substitution channel), and ideletion
for different blocks are independent, the random variablehannel in the presence of AWGN (deletion-AWGN channel).

IIl. LowERBOUNDS ON THECAPACITY OF NOISY
DELETION CHANNELS

T; =T} (T{) for j € {1,...,Q} are i.i.d., and transmissionThe results utilize the idea and approach of the previous
of different blocks are independent. Therefore, we canitewrsection. We first give the results for the deletion-substitu
Eq. (@) as channel, then for the deletion-AWGN channel. We note that
1 1 the presented lower bounds can be also employed on the
¢ 2 ~I(X;Y;) - —H(T)) deletion-only channel i, = 0 (or 02 = 0 for the deletion-
1 1 AWGN channel).
= EI(X;Y) - EH(T)' (5)

Noting that the random variable denoting the number of
deletions or insertions as a result of bit transmission is

binomial with parametera andp, (or, p;) the result follows. N this section, we consider a binary deletion channel with
m Substitution errors in which each bit is independently tgle

S | ¢ th ii lculat involved with probability ps, and transmitted bits are independently
everal comments on Ihe specilic calcuiations Involve rweff'pped with probabilityp.. The receiver and the transmitter

order. Theorenil1 shows that for any input distribution an not have any information about the position of deletions o

any transmission length, Edll(3) results in a lower bouqé)e substitution errors. As shown in F[g. 1, this channel can

Z?rotrr;e Tchaepri(f:c:?/e O;n:gleoy?rt:gn;ne)l I\é)v\:\tgr%eclﬁggnor?rthlgsriﬁltﬂg? considered as a cascade of an i.i.d. deletion channel with
) o ' . . deleti babilit d output c¢¥, and a BSC
information rate%I(X;Y) in Eq. (3) also results in a lower eletion probabilitps and oUtpu™ sequen and a

. . . . with a cross-over error probability. and output sequence
bound on the capacity of the insertion/deletion channek DLi,/ For such a channel model the following lemma is a lower
to the fact that obtaining the exact value of the mutu%l ' .
. . .2 : . . ound on the capacity.
information rate for any. is infeasible, we first derive a lower
bound on the mutual information rate for i.u.d. input sequesn Lemma 1. For anyn > 0, the capacity of the i.i.d. deletion-

and then employ it in Eq[{3). Based on the formulation of theubstitution channeC,,, with a substitution probabilityp,

Deletion-Substitution Channel



X iid. Deletion Y Y in [15] is provided, that isCy < 1 — (1 — O(pa))Hp(pa),

Channel BSC > which shows that — H;(p,) is a tight lower bound for small
deletion probabilities. If we consider the new capacity dow
Fig. 1. Deletion-substitution channel as a cascade of &h deletion channel bo‘%”d in (9), a_‘nd represeqt — p_d) 105(1 —pa) by its Taylor
and a BSC. series expansion, we can readily write

Cq > 1+ palog(pa) — (log(2e) — Wi(n)) pa + paf(n, pa),

where f(n,py) is a polynomial function. On the other hand

and a deletion probability,, is lower bounded by

Cas > 1—pa— Hy(pa) — (1 — pa)Hy(pe) for Wi (n), if we letn go to infinity, we have
- Zn: W;(n) (T.L)p?;(l -pa)", () LmWi(n) = lim 1 nf 271" (n—1+3)llog(l) + log(n)
nj:1 ’ J n—o00 1 n—oo | n Py 8 2"_1
where s
— —1—1
- () z =Y 27" log(1). (11)
W;(n) :Z2‘l_1(n—l—|—3) Z LI og (/) =t
p = () J Therefore, we observe that the lower bourd (9) captures
n the first order term of the capacity expansién](10). This is
+ 27" log (j)’ (8) an important result as the capacity expansiond_in [14], [15]

are asymptotic and do not lend themselves for a numerical
and Hy(pa) = —palog(pa) — (1 — pa) log(1 — pa). U calculation of the transmission rates for any non-zeroealu

Before proving the lemma, we would like to emphasize thifie deletion probability.
the only existing analytical lower bound on the capacity of We need the following two propositions in the proof of
deletion-substitution channels is derived in [3] (Eg. (3)) Lemmall. In Propositioh]1, we obtain the exact value of the
comparing the lower bound in Ed.](2) with the lower boun@utput entropy in the deletion-substitution channel withd.
in Eq. (1), we observe that the new lower bound improvégput sequences, while Propositibh 2 gives an upper bound
the previous one by}I Z;?:l W;(n) (?)Pfi(l —pg)" I —pg, ON the conditional output entropy with i.u.d. bits trangeut
which is guaranteed to be positive.’ through the deletion-substitution channel.

A simplified form of the lower bound for small values

of deletion probability can also be presented. By invokinBrOpOSition 1. For an i.i.d. deletion-substitution channel with

the inequalities(1 — p)™ > [1 — mp + (T)p? — ()5 i-u.d. input sequences of length we have

and (1 —p)™ > 1 —mp, and ignoring some positive terms H(Y') =n(l —pg)+ H(T), (12)
(p%(1 — pa)"~7 for j > 3), we can write , _
where Y’ denotes the output sequence of the deletion-

(Wa(n)—2W;(n)) sSubstitution channel and/(T') is as defined in Eq(3).

n—1
Ca >1—Hy(pa)+pa(Wi(n)—1)+p3 5

3fn—1 B _oafn—1 Proof: By using the facts that all the elements of the set
+pd< 2 ) (Win) = Wa(n)) pd( 3 >W1 (n) yij are identically distributed, which are inputs into the BSC
By utilizing p, — 0 in Eq. [7), we can obtain a lower bound“haMnel, and a fixed length i.u.d. input sequence into a BSC

on the capacity of the deletion-only channel as given in ﬂ{gsult n {.u.d._output_sequences, all elements of thegéé;
following corollary. are also identically distributed. Hence,

Corollary 1. For anyn > 0, the capacity of an i.i.d. deletion P(y'(n—j)) = 2n1_j (n) 21— pa)" I, (13)
channelC,, with a deletion probability op, is lower bounded J
b . ,
y 1 n\ } where n (1 — pqg)"~7 is the probability of exactly;
g z , J(1—p,\PJ
Ca = 1=pa Hb(pd)+n 21W7 (n)(j)pd(l Pa)"""- ) geletions occurring im use of the channel. Therefore, we
i=

obtain
We also would like to make a few comments on the result

of the Corollary1. First of all, the lower boungl (9) is tighte 2(¥Y") = > —P(y")log(P(y")

than the one proved in]3] (EJJ(1) with, = p. = 0) which v’
is the simplest analytical lower bound on the capacity of the " /n ; g on—j
deletion channel. The amount of improvementih (9) over the = Z <j)pd(1 —pa)" "’ log (ﬂ)pj(l )
one in [1) is% 37, W;(n) () p(1 — pa)"~7 — pa, which is J=0 j/vd
guaranteed to be positive. =n(l —pa) + H(T), (14)
In [14], it is shown that which concludes the proof. ]
Ca = 1+ palog(pa) — A1pa + O(pg™"), (10)

Proposition 2. For a deletion-substitution channel with i.u.d.
where 4; = log(2e) — > 2, 27" 1llog(l). A similar result input sequences, the entropy of the outpltconditioned on



the inputX of lengthn bits, is upper bounded by

H(Y'|X) < nHy(pa)— ZW ()Pdl—Pd) -

+n(1 _pd)Hb(pe)a (15)

where;(n) is given in Eq.(8).

Hence, for a specifice(b;n; K*) = (b;n{,...
obtain (for more details see Appendix B)

7nf{m)’ we

(v

_ n 7 g, ni ni
S 33 () (5 e ()

2(bin: KI)) < nHy(pa) +n(1 - pa)Hy(pe)

Proof: To obtain the conditional output entropy, we needherefore, by considering i.u.d. input sequences, we have

to compute the probability of all possible output sequences

HY'|X)=)_ 2i

resulting from every possible input sequengé.e., P(Y'|x).
For a givenz = (b;ny1,no, ...
pattern D(n; K;j) = (j1,. .-
number of deletions in thé-th run, we can write

P (D5 i) =G i) ol )

_ (?1) (?If)pgu —pa)" . (16)

Furthermore, for every)(n; K;j), we can write

pi(l=p) 775 if |y |=n—j
P < D x z(n; K)) { 0 otherwise,
(17)

,nk) and for a specific deletion
,jk) in which j, denotes the

H(Y'|x) < nHy(pa)+n(1—pa)Hy(pe)
rex

" p]
B d
2.

s S s () (e ()
(20)

On the other hand, we can write

SAEE ()0 ()
- ZiPR b ( ) (j—jl’> o (gl) &)

wheres = dy (y'; D(n; K;j) *x(n; K)), anddyg = (a;b)
is the Hamming distance between two sequercasdb. On
the other hand, for every output sequence of length j,
conditioned on a given input(n; K), we have

where Pr(l,n) denotes the probability of having a run of
length! in an input sequence of length It is obvious that

Pr(n,n) = 2n Due to the fact that, fot <! <n —1, there

n-i-1 ibiliti h f lengthi
P<y (n—j)a ) ZP< n—)\D, @ (n; K9P<D m(n;K». are K2 possibilities to have a run of lengthin a
DeDY (5) sequence withK' runs, we can write
However, there is a difficulty as two different possible diele om0 11
patterns, Din: K-) = (i) and Dn:K:) = Palton) = Y ("0, )i =2 n-t49). 22)

(41, -+ %), under the same substitution error pattern, i.e., the K=2
substitution errors occur at the same positiongxn; K; j)*  Finally, by substituting Eqsi{21) and{22) in EG.J(20), @)(
x(n; K) and D'(n; K;j) * x(n, K), may convert a given results, completing the proof.

input sequencer(n; K) into the same output sequence, i.€., \we can now complete the proof of the main lemma of the
D(n; K; j) * x(n; K) = D'(n; K j) * z(n, K). This occurs ¢ation.

when successive runs are completely deleted, for example’__,romc of Lemma [T In Theorem[]L, we showed that for

in transmitting(1;2,1,2,3,2) = 1101100011, if the second, ) o e

third and fourth runs are completely deleted, by deletin y mplut distribution and any transm_lssmn length, Eg. (.3)

one bit from the first run(1,1,2,3,0)  (152,1,2,3,2) — _sults in a lower bound on the capacity of the channel with

(1:1,0,0,0,2) — 111, or from the last runy0,1,2,3,1) * iid. de_let|0n errors. On the other hand, any IO\_/ver bound

(1:2,1,2,3,2) = (1:2,0,0,0,1) — 111, the same output on the information rate can also be used to derive a lower

sequences are obtained. This difficulty can be addressed ugound on the capacity. Due to the definition of the mutual
information, Eq.[(B), by obtaining the exact value of thepuat

entropy (Propositiofi]1) and upper bounding the conditional
> —n (10g2pt/> <Y —pilog(py),
t t’ t

(18) output entropy (Propositidd 2) the mutual information iaéw
bounded. Finally, by substituting Eqd. [12) add](15) into
which is trivially valid for any set of probabilities Eq. (3), Lemmdll is proved. 0
(p1,...,Dpt,...). Therefore, we can write

— P(y'|x)log (P(y'|z))

At this point we digress to point out that the result in the
above lemma can also be obtained using a simpler approach
as pointed out by one of the reviewers (details are given
in Appendix A). That is, a lower bound on the deletion-

=—> P(y'|D D|x)] o ) . .
Z (' |D*a)P(Dlz)log substitution channel capacity can be provided in terms ef th

> P(y'|D'xx)P(D'|z)

PePic) P deletion-only channel capacity as (this is also a specisé ca
<— Y P(y|Dxz)P(D|x)log <P(y’|D * m)P(D|m)> of a result in [16])
DEDY(4)

(19) Cys > Cy — (1 —pd)Hb(pe). (23)



X iid. Deletion BLAWGN 4 bou_nd in Eq.[(2b) _is the only analytical lower bound on the ca-
Channel " Channel ? pacity of the deletion-AWGN channel. In the current litera,

there are only simulation based lower bounds, €.d. [10]ckwhi

Fig. 2. Deletion-AWGN channel as a cascade of an i.i.d. @elethannel employs Monte-CarIo-S|muIaF|on techniques. Furthe_rmm'

and a BI-AWGN channel. procedure employed in_[10] is only useful for deriving lower
bounds for small values of deletion probability, e;g;,< 0.1,
while the lower bound in Eq[(25) is useful for a much wider

Therefore, computing the mutual information rate of thgange.

deletion-only channel for i.u.d. input sequences and subst g, pa = 0, the lower bound in Eq.[125) is equal to

tuting it in the above inequality results in a lower bound on —2Z L . i
Cys. It can be verified that the same procedure as in the proTof Eyllzﬁgn::; [01'7)}p V\;hégg] II:Sin;rl]Ii \fvaepiglg tE;tt:Lee Itselrm

of Lemmall gives AWG A
in Eg. (25) which contain€ |log(1 + e =2 )| can be easily

Ca>1—pg— Hy(pa) + % Z W;(n) (?)pé(l — pa)" 7, computed by numerical integration with an"arbitrary accura
j=1

=l

(it involves only an one-dimensional integral).

and substituting this into Eq[{(R3) concludes the proof of We need the foIIowi_ng two pr(_)positions in the proof of
Lemmall. Lemmal2. In the following proposition, the exact value of the

differential output entropy in the deletion-AWGN channéthw
i.u.d. input bits is calculated.

B. Deletion-AWGN Channel Proposition 3. For an i.i.d. deletion-AWGN channel with i.u.d.
In this section, a binary deletion channel in the presenceigput sequences of length we have

AWGN is considered, where the bits are transmitted using _ oz

binary phase shift keying (BPSK) and the received signdl(Y) =n(1 — pa) (10g (20\/%) -F [10g (1 + 6_72)D

contains AWGN in addition to the deletion errors. As illus- + H(T), (26)

trated in Fig[2, this channel can be considered as a cascade _

of two independent channels where the first channel is aereh(.) denotes the differential entropy functidri,denotes

i.i.d. deletion channel and the second one is a BI-AWGHe output of the deletion-AWGN channel~ N (0,0?), and

channel. We us& to denote the input sequence to the first/ (T') is as defined in Eq@).

channel which is a BPSK modulated version of the binary

input sequenceX, i.e., 7 — 1 — 2z, andY to denote the Proof: For the differential entropy of the output sequence,

output sequence of the first channel input to the second ol can write

Y is the output sequence of the second channel that is the MY) = h(Y)+H(T|Y)

noisy version ofY, i.e., y; = 4; + z;, in which z;’s are i.i.d. _ h(ff )

Gaussian random variables with zero mean and a variance of o

o2, andy; andy;, are thei'” received and transmitted bits of = h(Y|T)+ H(T), (27)

the second channel, respectively. Therefore, for the fiétya \\here the first equality results by using the fact that by
density function of the*" channel output, we have knowing the received sequence, the number of deletions is

fa.(0) =f5,(lg: = VP @i =1)+f5, (| = —1)P (g = —1 known andT is determined, i.e.H(T|}~’) = 0, and the last
v (m) =1z P )+ fa JF( ) equality is obtained by using a different expansioh (¥, T').

1 _ (=12 _ (m+1)?

=—— |P(y; =1)e” 202 + P(y; = —1)e” 2.2 |. On the other hand, we can write
Vemo
24 < SN , ,
| | B e - S =jpw=))
In the following lemma, an achievable rate is provided over =0
this channel. no_ n\ _
= hY|T = 7 (1 —pg)" 7. (28
Lemma 2. For anyn > 0, the capacity of the deletion-AWGN jz::o (¥ 7 (j)pd( Pd) (28)
channel with a deletion probability gf; and a noise variance »
of o2 is lower bounded by Due to the fact that all the elements of the et are i.i.d., we
n have P(y(n —j)) = P(4.T = j) = 5 (;)pi(1 —pa)" .
1 n\ , ) -7 d
Caawan =1 —pa+ - Z W;(n) (J.)pé(l —pa)" Therefore, we can write ’

i=1 o
Ty - ST L @

— Hy(pa) — (1 — pa)E [log (1 + e—z)} . (25)

whereW;(n) is as given in Eq(8), E]] is statistical expec- and as a resulP(y; = 1|T = j) = P(y;i = —1|T = j) = 3

tation, andz ~ A (0, 02). O (for 1 <i<n—j). By employing this result in Eq[(24), we
have
Before giving the proof of the above lemma, we provide 1 _@m-1? _mtn?

several comments about the result. First, the desired lower T (n) = 20/ oo e o ote 2 (30)



where f5,(n) denotes the probability density function (PDF) Proof of Lemma By substituting the exact value of

of the continuous random variablg. Noting also that the the differential output entropy in Eq[_(R6), and the upper

deletions happen independently an are i.i.d., we can write bound [[32) on the differential output entropy conditioned o
the input in Eq.[(B), a lower bound on the mutual information

MYIT =) :(n_‘j)h(ii) rate of the deletion-AWGN channel is obtained, hence the
~0-3) [ =t o (55, (m) lemmais proved. 0
2z
=(n—17j) (1og (20\/2776) —E[log (1+e’a_2)D. IV. LOWERBOUNDS ON THECAPACITY OF RANDOM

I L . INSERTION CHANNELS
By substituting the above equation into Elg.1(28), we obtain

We now turn our attention to the random insertion channels

h(Y|T) :Z n—j < >Pd(1 —pa)" I x and derive lower bounds on the capacity of random insertion
= channels by employing the approach proposed in SeEfjon II.
ez We consider the Gallager modél [3] for insertion channels in

x (1Og (20v2me) — {k’g(l te 2 )D which every transmitted bit is independently replaced by tw

_ —2Z2 random bits with probability of; while neither the receiver
= (1= pa) (log(%m B [log(l te s )D + (31) nor the transmitter have any information about the positibn
and by using Eqs[(31) and{27), EQ.](26) is obtained. m the insertions. The following lemma provides the main resul

In the following proposition, we derive an upper bound oaf this section.
the differential entropy of the output conditioned on thpuh

for deletion-AWGN channel. Lemma 3. For any n > 0, the capacity of the random

insertion channel’;, is lower bounded by
Proposition 4. For a deletion-AWGN channel with i.u.d.
input bits, the differential entropy of the output sequeiite ¢, > (1—pi)" — Hy(pi)+ <g(n)_ Sn+1 + n)pi(l —py)" !
conditioned on the inpuX of lengthn, is upper bounded by 4n

WY |X) < nHy(pa) = 35—y Wi(n) (3 ph(1 — pa)"~ +% (1= (1=pi)" —np;(1—p;))"~* —pF —np = (1—p;))
+n(1 — pq) log(20+/2me), (32 (1 — p;) log(n), (34)

whereW;(n) is given in Eq.(8). where

Proof: For the conditional differential entropy of the
output sequence given the lengthinput X, we can write S(n) = n Z 2~ {(n +1-0(+2)log(l +2)

MY |X) = WY|X)+H(T|Y,X)

~ log(n)
= H(T)+hY|T, X), (33) +2(0+ Dlog(l+1)| + o557 O
where the first equality follows since by knowin§ andY, To the best of our knowledge, the only analytical lower

the number of deletions is known, i. GH(T|Y X)=0.The bound on the capacity of the random insertion channel is de-
second equality is obtained by using a different expansfon ived in [3] (i.e., Eq.[1) fop, = p. = 0). Our result improves
h(Y,T|X) and also using the fact that the deletion procesgon this result for small values of insertion probabititias

is independent of the inpuiX, ie., H(T|X) = H(T). will be apparent with numerical examples.

Furthermore, we have Similar to the deletion-substitution channel case, we can

~ oo ) , write a simpler lower bound as
WY |T,X) = > WY|X,T=j)P(T =j) N
= Ci 21~ Hyfpi) + < -2
~ 3 n - TL*I
= Zh(YlX,T—J)(.)pfi(l—pd) .. -1 3n+1 )

= J 25 tn—log(,|)pi
To obtain h(Y|X,T = j), we need to computgy ;. ;(1) (n -1 (log ( ) S(n) — 2 3n+ 1) .
for any given input sequence = (b;ni,n2,...,nx) and 2 3 4n
different values ofj. As in the proofs of Propositioh] 2, if 3n+1Y\ 4
we consider the outputs of the deletion channel resultiogfr - 3 S(n) +n — an_ ) Pi (35)

different deletion patterns of lengjhfrom a givenz, as if they
are distinct and also use the result in Eql(18), an upperdoun
on the differential output entropy conditioned on the input; > 1 — Hy(p;) + 1.1591p; — 30.7184pi + 1.0502 x 102p§’
sequenceX r_esults. We relegat_e_ the details of this computation ~1.3301 x 10%p2. (36)
and completion of the proposition proof to Appenflikx Cm

We can now state the proof of the main lemma of the To prove the above lemma, we need the following two
section. propositions. The output entropy of the random insertion

For instance, fon = 10, Eq. [3%) evaluates to



channel with i.u.d. input sequences is calculated in the figsossibilities fornj ; > 1 to haven;, | + ny , = ny, we obtain

one.
H(Y |x(b;n; K*)) = —(1 —p;)"log(1 — p;)"
_Proposition 5. For a random insertion channel with i.u.d. — i1 — py)t (n log(pi(1 — pi)™ 1) — 1.5n — O'5Kx>
input sequences of length we have
_ ) 1
H(Y) =n(l+p;) + H(T). (37) —Zpi(l—pi)"_1<(n‘ff+1) log(n7+1) + (ng.~+1)log(ng.+1)
whereY denotes the output sequence a@idr") is as defined Koy
in Eq. (3). -
@ + Z (ng + 2)log(ny + 2)) + H i(x),
Proof: Similar to the proof of Proposition] 1, we use the k=2
fact that whereH. ;(x) is the term related to the outputs resulting from
L (n\ —j h tion. Therefore, by considering i.unpluf
Ply(n + "\pi (1 = ) more than one insertion. y g
(y(n+7)) = on+i <J>pl( pi) (38) sequences, since there &€ ~}) input sequences of length

Therefore, by employing EqL(B8) in computing the output With K" runs, we have

entropy, we obtain _ . H(Y|X)=—(1—p;)"log(l — p;)" + Hei(X)
" /n e (7-1)17?(1 —pi)" I Tn+1
HY) ==} <j>pz(1 — )" log ( o > —npi(1 —pi)"~! (10g(pi(1 —p)" ) = =+ S(n ))
j=0
41
=n(1+pi) + H(T). (39) (41)
w WhereH.;(X)=3pcx Heil®) and
In the following proposition, we present an upper bound og(n):L Z [(n”f—i—l) log(n¥+1)
the conditional output entropy of the random insertion ctehn 2””"1,[@7&1
with i.u.d. input sequences for a given input of length K%_1 log(n)
(6]
i - bl kD Tog(nge + D+ 3 (nf+2) o +2) |+ 95
Proposition 6. For a random insertion channel with input 2 2

and output sequences denotedXyand Y, respectively, with
i.u.d. input sequences of length we have

-
H(Y|X) <n(1+ p) + nHy(ps) ~ n(1 - py)" sty =220 [Z > 0 +2)log(nf + 2)

1 4 n T k=1
— (1=(1=ps)"—np;(1=p:)" " —p} —np} ' (1—p;)) log <2>

which can be written as

+2 Z (n? + 1) log(ny + 1) — (n] + 2) log(n{ + 2)]

—n<5’(n) 3Z+1+n>pl(1 pi)"—nptt(1—p;) log(n), zKI#

(40) —4 22 [(n4+1-1)(1+2) log(14+2)+2(1+1) log(I+1)]
here S is given in Eq.(34).
w (n) is given in Eq.(34) +1(2)§(+1)' 42)

Proof: For the conditional output sequence distributio

. . ; Fere we have used the same approach used in the proof of
for a given input sequence, we can write

Proposition[2, and considered the fact that there 2ire!

p(ylx(b;n; K)) sequences of length with ny =1 orng = 1.
\n — (B we assume that all the possible outputs resultin m
(1—pi) y = x(b;n; K) If hat all the possibl p Iting fio
m;ﬂpl_(l_zpz)nq y = (b;m +’1 ’ %) insertions ¢ > 2) for a givenx are equiprobable since
nKJrl —1
RELLpn (1—pi)" y=(b;ny,...,ng+1) Dy
wg (1 pyrt Y= B L) —ijlogpj ijlog J— ., (43)
_ (1<k<K)
i i(1=pi)" ™ty =(bina, ..., 1,2, )5, nK)  we can upper boundl. ;(z). That is,
2 1(1 Z)n 1 y:(b'nla'"7”%7171571%725"'7711() n
%pz(i r)n . v= (2 1, ”17"""7@""7”1’;) Hei(x)=Y_ > —Qylx)log <Q(y|w)>
1Pi( y —pi) y = (b; n|13,/| ->-,;Lri-2--7nf<a ) k=2 YEVi (T+k)
Y,x - n n
€k €k
wheren; 1 TN = =np—1 (M09 Mo = 0), 4+ 1y 5 = ni, = Z—eklog (M) = Z—eklog (W)’
(nj.1, il > 1), ande], , representp(y|x(b; n; K)) for given k=2 k=2

y with |y| > 2. Furthermore, since there arg possibilities wheree, = > ye(@ k) Qylz) = (V)pk(1 —p;)"~* is the
for nj, > 0 to haven; , +nj,=n;—1, andny — 1 probability of k msertrons in transmission of bits, and the
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1

last inequality follows sinceYi(z + k)| < 2"**, where
|Vi(x + k)| denotes the number of output sequences resultingoes
from k insertions into a given input sequenge After some ool —0- B
algebra, we arrive at '

H.;(X) < n(l+p;)+nHy(pi) —n(l—p)"
— (n+Dnpi(1 —pi)" '+ (1 — pi)" log(1 — p;)"

0.85f

0.8F

+npi(1 = pi)" " log (pi(1 — pi)" ) £ o7 e ]
o f —€— p, =0.01 from [10] |
—np? (1 — p;) log(n) — (1 —pl— (1 —=p)" o7 - 9= ps=0.01 in (26)
0.6 —t— p; =0.02 from [10] i
n . N
T ‘n—l_n’(lfll_ . lo ) = = = 5, =0.02 in (26)
pi(1—pi) P ( pz)) g (2) 06 o oatomo |1
Finally, by substituting the above upper bound into Eql (41) os -©- 5, =003in(26) ||
the upper bound(40) is obtained. ] o ‘ o ‘ ‘
o 0'50 1 2 3 4 5 6 7 8 9 10
Proof of Lemma By substituting the exact value of SNR (dB)

the output entropy (Eq[(87)) and the upper bound on tr;_e s o on between the | bouf (25)foe- 1000 with th
e H H 1g9. o. omparison between the lower boupnd Wi e

condltlonal_out_put en_tmpy (EdﬂhO)) Of_ the random inserti lower bound in[[10] versus SNR for different deletion protités.

channel with i.u.d. input sequences into EQl (6), a lower

bound on the achievable information rate is obtained, hence Random Insertion Channel

. 1 ,
the lemma is proved. U LB (35)
0.9} = = = Gallager LB H

V. NUMERICAL EXAMPLES 08l

We now present several examples of the lower bounds orv.7}
the insertion/deletion channel capacity for differentues of
n and compare them with the existing ones in the literatures %61

[+

(=9
S 0.5+
A. Deletion-Substitution Channel 0.4}

In Table[l, we compare the lower bourld (7) for= 100 03l
andn = 1000 with the one in[[8]. We observe that the new
bound improves the result of|[3] for the entire rangepgfand 0.2
pe, and also as expected, by increasingrom 100 to 1000,

. . . 0.1 .
a tighter lower bound for all values g@f; andp,. is obtained. 0 0.05 0.1 0.15 0.2 0.25
Di

. Fig. 4. Comparison of the lower bound {34) with lower boundsented
B. Deletion-AWGN Channel in [3].

We now compare the derived analytical lower bound on the
capacity of the deletion-AWGN channel with the simulatiora: Random Insertion Channel
based bound of[ [10] which is the achievable information”
rate of the deletion-AWGN channel for i.u.d. input sequance We now numerically evaluate the lower bounds derived on
obtained by Monte-Carlo simulations. As we observe in[Hig. the capacity of the random insertion channel. Similar to the
the lower bound[(25) is very close to the simulation resulfevious cases, different values wfresult in different lower
of [1Q] for small values of deletion probability but it doesbounds. In Tablé€ll and Fid.l 4, we compare the lower bound
not improve them. This is not unexpected, because we furtherEq. (34) with the lower bound due to Gallager [3] > 1—
lower bounded the achievable information rate for i.u.guin H;(p;), where the reported values are obtained for the optimal
sequences while ir_[10], the achievable information rate fealue ofn. We observe that for larger;, smaller values ofi
i.u.d. input sequences is obtained by Monte-Carlo simutati give the tightest lower bounds. This is not unexpected since
without any further lower bounding. On the other hand, neim upper boundingd (Y| X), we computed the exact value
bound is provable, analytical and very easy to compute whité p(y|x) for at most one insertion, i.ely| = || or |y| =
the result in [[10] requires lengthly simulations. Furthersy ||+ 1, and upper bounded the part of the conditional entropy
the procedure employed in [10] is only useful for derivingesulting form more than one insertion. Therefore, for adixe
lower bounds for small values of deletion probability, e.gp; by increasingn, the probability of having more than one
pa < 0.1, while the lower bound(25) holds for a much wideinsertion increases and as a result the upper bound becomes
range. loose. We also observe that the lower boulnd (34) improves
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LOWER BOUNDS ON THE CAPACITY OF THE DELETIONSUBSTITUTION CHANNEL (IN THE LEFT HAND SIDE TABLE “1-LOWER BOUND" IS REPORTED.

Pa Pe 1-LB @) 1-LB @) 1-LB @) pa | pe |LB@ | LB@ | LB@
n = 1000 n = 100 n = 1000 | n = 100
107° [ 10°° 3.6104 x 10~4 3.5817 x 10~ ¢ 3.5834 x 10~4 0.01| 0.01| 0.8392| 0.8419 0.8418
107° | 1074 1.6535 x 103 1.6506 x 10~3 1.6508 x 103 0.01| 0.03| 0.7268| 0.7373 0.7293
1075 [ 1073 || 1.15881 x 1072 | 1.15853 x 10~ 2 | 1.15854 x 102 0.01| 0.10|| 0.4549| 0.4576 | 0.4575
10-% | 10°° 1.6535 x 103 1.6248 x 10~3 1.6264 x 103 0.05| 0.01| 0.6368| 0.6476 0.6469
1072 [ 107 || 2.9459 x 1073 | 2.9172x 103 | 2.9188 x 1073 0.05] 0.03] 0.5289| 0.5397 | 0.5390
1072 [ 1073 || 1.2879x 1072 | 1.2850x 102 | 1.2852 x 1072 0.05| 0.10]| 0.2681| 0.2789 | 0.2781
1073 [ 107° || 1.1588 x 1072 | 1.1302x 102 | 1.1319 x 1072 0.10| 0.01] 0.4583| 0.4729 | 0.4716
1072 | 1071 1.2879 x 102 1.2593 x 102 1.261 x 1072 0.10| 0.03| 0.3561| 0.3707 0.3693
10~2 | 10°3 2.2804 x 10~2 2.2518 x 10~ 2 2.2535 x 10~2 0.10| 0.10| 0.1089| 0.1236 0.1222
TABLE Il
LOWER BOUNDS ON THE CAPACITY OF THE RANDOM INSERTION CHANNEKIN THE LEFT HAND SIDE TABLE “1-LOWER BOUND" IS REPORTED.
Di LB from [3] | LB (B4) optimal
Di 1-LB from [3] 1-LB B4) optimal value ofn
value ofn 0.03 0.8056 0.8276 5
106 2.14 x 10~° 2.007 x 10~ ° 121 0.05 0.7136 0.7442 5
107° 1.81 x 1074 1.68 x 1074 57 0.10 0.5310 0.5702 4
10~% 1.47 x 1073 1.35 x 103 27 0.15 0.3901 0.4230 4
1073 1.14 x 1072 1.02 x 102 13 0.20 0.2781 0.2962 3
10~2 8.07 x 1071 7.14 x 10~ 2 7 0.23 0.2220 0.2283 3
0.25 0.1887 0.1853 3
upon the lower bound i [3] fop; < 0.25, e.g., forp; = 0.1, APPENDIXA

DELETION-SUBSTITUTION CHANNEL CAPACITY IN TERMS
OF THE DELETION CHANNEL CAPACITY

we achieve an improvement 06f0392 bits/channel use.

In this appendix, we relate the deletion-substitution and
deletion-only channel capacities through an inequality (a

We would like to thank the editor and the reviewers fopginted to us by one of the reviewers) which is a special case
detailed comments on the manuscript. In particular, we @oubt a result obtained by the authors in[16]. This inequaliy ¢

like to acknowledge that the simpler proof of Lemma 1 giveprovide a tool to provide simpler proof for Lemrih 1.
in Appendix A is due to one of the reviewers.
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Claim 1. For any possible input distributio®(X'), we have

VII. CONCLUSIONS I(X;Y') > I(X;Y) = n(1 — pa) Hy(pe)- (44)

he Proof:in Fig.[I, X — Y — Y’ form a Markov chain.

et F' be the ‘flipping’ process of the BSC channel, consisting
of (1—pgq+0)n bits drawn from i.i.d. Bernoullif.), where a 1
fJepresents a flip, and O represents a location that is unedfec

ndo > 0 is some constant we can choose later. Clearly,

"= f(Y; F) with high probability for the obvious function

t{%‘) which doesY; = Y; ¢ F; for all bits in Y. (There is a
problematic event corresponding to more tHan- p; + d)n

We have presented several analytical lower bounds on
capacity of the insertion/deletion channels by lower baogd
the mutual information rate for i.u.d. input sequences. \Alech
derived the first analytical lower bound on the capacity &f t
deletion-AWGN channel which for small values of deletio
probability is very close to the existing simulation basadér
bounds. The lower bound presented on the capacity of
deletion-substitution channel improves the existing wial . ) . .
cal lower bound for all values of deletion and substitutioR'tS passing through the deletion channel, but the proabil

probabilities. For random insertion channel, the presientgf.t:]h's gvent. goes _ttobolazs - OOI' This e\{ggt Ean IB?Fdealt
lower bound improve the existing ones fpy < 0.25. For with and we ignore it below, simply assumiag = f(Y; F).

; ;
pe = 0, the presented lower bound on the capacity of tHgote that we also have’ - Y ;_F) at the, same time).
deletion-substitution channel results into a lower boumd o Hence, for the mutual informatiof( X'; Y”), we have

the capacity of the deletion-only channel which for small ;(x.v’") = H(X)-H(X|Y)

values of deletion probability, is very close to the tlghte_s — H(X)-H(X|Y',F) - I(F; X|Y").

presented lower bounds, and is in agreement with the first
order expansion of the channel capacity for — 0, while Now, H(X|Y',F) = H(X|Y,Y',F) = H(X]Y) since
our result is a strict lower bound for the entire rangepgf Y = f(Y',F) and X — Y — (F,Y’) form a Markov
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chain. Further,I(F; X|Y') < H(F|Y') = H(F) = and the result
n(1 — pg + 0)Hp(pe). It follows that

I(X;Y') > H(X)-HX|Y)—n(l—pg+6)Hy(pe) 2 (le) ' <?§<<)log<<?i>(7;§>)

Jittjkz=j
= I(X;Y) = n(l = pa+6)Hy(pe). ne ni.
. ’ 1
Sinced > 0 is arbitrary, the result follows. ] ,1+ %:KI_J, (jl) (]Kx) Z ©8 ( )
Corollary 2. Let Cy and Cy44 denote the deletion-only and ("k)( nz)l (n”,ﬁ)

deletion-substitution channel capacities, respectivisign Z Z
k=1 7k—0

— Jk Ik

OS>O_1_ H e)- 45 .
ds > Ca — (1 — pa) Hy(pe) (45) we obtain

Proof: Since Eq.[(4¥) holds for any possible input dis-
tribution, it holds for capacity achieving input distriln for H<Y x(b;n; KI)) < nHy(pa) +n(1 — pa) Hy(pe)

the deletion-only channel as well. Therefore, by dividirggh .
sides byn and lettingn go to infinity the proof follows. m _ Z (1= pa)” Z Z (nk> ( ni) log (ni>

=0 r— —Jk Jk
APPENDIXB
PART OF PROOF OFPROPOSITIONZ
APPENDIXC
B PROOF OFPROPOSITIONZ
H< z(b; n; K‘))
/ For an i.i.d. deletion-AWGN channel, for a giverib; n; K)

= —Z > Py (n—j)x)log (P (y'(n—j)lz)) and a fixedj, defininga(D, ) = 1-2(Dxx), i.e.,a;(D,x) €

I=0yreyd {1, -1}, yields

—Z Z ZP y'|D+x) P(D|x)log (P(y'|Dxx)P(D|x)), f@(n|w(b;n;K),j)
Y PERED) = Y [fyle(b;n; K), D)P(Dla(bin; K))

where the inequality is obtained from the expressiorid.(19) pepx (j)

Furthermore, by employing the results from Eq$§.](16) (D Dla(b:n: K
and [I7) and using the fact that there af®_’), dis- Z f (nja(D, =) P(Dla(b;n; K))

tinct output sequences of length — j resulting from PEDil
s substitution errors into a given inpuk, i.e., s = Z fy1 Gy (M- oMn—jlan .. o) P(D]2(b;n; K))
dy (y'(n—j); D(n; K;7) * x(n; K)), we arrive at DEDY(J
f Q G i (Mn—jlan—;)P(D|x(b;n; K)),
H<Y, w(b;mm> DDZ Jalmlon)- o, (imsleny) PDla(bi K)
non=gog _ where the last equality follows the fact that the noise saspl
<33 (n j> > Pl —p)t T z; are independent and;(D,x) are also independent. By
- . S ) ( ) e (3 . 7 ) .
§=0 s=0 Jitetin=j employing
TL% TL% J n—j ; i 2
(70 (T Y o 1 (- (D))
J1 i JK . fyi(nl|al(D’$)) = V2o exp 202 )
n n j ] n—j—s
x log (( .1> ( .K)pé(l = pa)" 7 pe(L = pe)" ) (") ... ()
Ju JK and P (D(n;K;j) w(b;n;K),j) = 2 _VIKZ e can

- Zn: > <n9f> ' (n%)pd(l —pa)" % write )

J=0ji++jx=J S JK

e oo (Y (T R f@(nlw(b'n'K) 7)
{ (n—J)Hp(pe)+1 g(( 1) ( K) (1 —pa)" )}
g3 S Z”l) ) (1= paix W— Z He s P(Dlz(bin; K), )

J=0ji++jx=J

( ! 1 G ()
X {—n(l—]ﬂd )Hp(pe) +1og(< alE) : (nK>)] ~ (Vzmo)n, 2 (J) He

Jit.tik=j

Using the generalized Vandermonde’s identity, that is, Therefore, by defining

n¥ nie\ _ (7 _ R VO IR ) n=J (i (D)
Z (]1)(]1@) <])’ Aty JK) = (n) He i )

Jit.tike=j



we obtain
(Y |z, j)
/ / > AG - i) X
(V2mo)" =3 | =i
1
xlog | —— AGL i) o
T, Z_ (712 d5c) | dim - dipa—y
L +J
/ / Y AU dr)x
(Vamo)=i k=i
x |log Z ALy dx) || dm- . dnn—;

Jitetik=3

+ (n - .7) 1Og(m0)7

where we used the result of the generalized Vandermondﬁ’fj

identity and also the fact thgt™_
the inequality

>

Jie =g

f3: (niyi)dn; = 1. By using

A(j{?" '7j}(> Z A(jl?" '7jK)7

which holds for everyj; + ...

h(Y |z, 5)
Jit..+ixk=j

S

x log (A(j1,- -+, jx))dm -
= (n — j)log(v2meo) + log <7;>
R (R )]

Jit.+ik=j

By considering i.u.d. input sequences, we have

+ jx = j, we can write
n—J)log(\/ mo)

A(jl,...,jK)X

>

27TU” J

. dnn—j

WYX, T) = 3 <’;>pi;<1 )" Y (V)
Jj=0 Trex
< n(1 — pg) log(v2meo)

+z( Yot = o= o () <.

(46)
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whereW,(n) is given in Eq.[(8), and the result is obtained by
following the same steps as in the computation leading th (20
Therefore, by substituting EJ_(46) into E§.{33), Hq.l(3R) i

obtained which concludes the proof.
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