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Abstract—We develop several analytical lower bounds on the
capacity of binary insertion and deletion channels by considering
independent uniformly distributed (i.u.d.) inputs and computing
lower bounds on the mutual information between the input
and output sequences. For the deletion channel, we consider
two different models: independent and identically distributed
(i.i.d.) deletion-substitution channel and i.i.d. deletion channel
with additive white Gaussian noise (AWGN). These two models
are considered to incorporate effects of the channel noise along
with the synchronization errors. For the insertion channel case
we consider the Gallager’s model in which the transmitted bits
are replaced with two random bits and uniform over the four
possibilities independently of any other insertion events. The
general approach taken is similar in all cases, however the
specific computations differ. Furthermore, the approach yields
a useful lower bound on the capacity for a wide range of
deletion probabilities for the deletion channels, while itprovides
a beneficial bound only for small insertion probabilities (less
than 0.25) for the insertion model adopted. We emphasize the
importance of these results by noting that 1) our results are
the first analytical bounds on the capacity of deletion-AWGN
channels, 2) the results developed are the best available analytical
lower bounds on the deletion-substitution case, 3) for the Gallager
insertion channel model, the new lower bound improves the
existing results for small insertion probabilities.

Index Terms—Insertion/deletion channels, synchronization, chan-
nel capacity, achievable rates.

I. I NTRODUCTION

In modeling digital communication systems, we often as-
sume that the transmitter and receiver are completely synchro-
nized; however, achieving a perfect time-alignment between
the transmitter and receiver clocks is not possible in all
communication systems and synchronization errors are un-
avoidable. A useful model for synchronization errors assumes
that the number of received bits may be more or less than the
number of transmitted bits. In other words, insertion/deletion
channels may be used as appropriate models for communi-
cation channels that suffer from synchronization errors. Due
to the memory introduced by the synchronization errors, an
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information theoretic study of these channels proves to be very
challenging. For instance, even for seemingly simple models
such as an i.i.d. deletion channel, an exact calculation of the
capacity is not possible and only upper/lower bounds (which
are often loose) are available.

In this paper, we compute analytical lower bounds on
the capacity of the i.i.d. deletion channel with substitution
errors and in the presence of AWGN, and i.i.d. random
insertion channel, by lower bounding the mutual information
rate between the transmitted and received sequences for i.u.d.
inputs. We particularly focus on the small insertion/deletion
probabilities with the premise that such small values are more
practical from an application point of view, where every bit
is independently deleted with probabilitypd or replaced with
two randomly chosen bits with probabilitypi, while neither
the transmitter nor the receiver have any information about
the positions of deletions and insertions, and undeleted bits
are flipped with probabilitype and bits are received in the
correct order. By a deletion-substitution channel we referto
an insertion/deletion channel withpi = 0; by a deletion-
AWGN channel we refer to an insertion/deletion channel with
pi = pe = 0 (deletion-only channel) in which undeleted bits
are received in the presence of AWGN, that can be modeled
by a combination of a deletion-only channel with a binary
input AWGN (BI-AWGN) channel such that every bit first
goes through a deletion-only channel and then through a BI-
AWGN channel. Finally, by a random insertion channel we
refer to an insertion/deletion channel withpd = pe = 0.

A. Review of Existing Results

Dobrushin [1] proved under very general conditions that
for a memoryless channel with synchronization errors, Shan-
non’s theorem on transmission rates applies and the in-
formation and transmission capacities are equal. The proof
hinges on showing that information stability holds for the
insertion/deletion channels and, as a result [2], capacityper
bit of an i.i.d. insertion/deletion channel can be obtainedby

lim
N→∞

max
P(X)

1

N
I(X ;Y ), whereX andY are the transmitted

and received sequences, respectively, andN is the length of
the transmitted sequence. On the other hand, there is no single-
letter or finite-letter formulation which may be amenable
for the capacity computation, and no results are available
providing the exact value of the limit.

Gallager [3] considered the use of convolutional codes
over channels with synchronization errors, and derived an
expression which represents an achievable rate for channels
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with insertion, deletion and substitution errors (whose model
is specified earlier). The approach is to consider transmission
of i.u.d. binary information sequences by convolutional coding
and modulo-2 addition of a pseudo-random binary sequence
(which could be considered as a watermark used for synchro-
nization purposes), and computation of a rate that guarantees
a successful decoding by sequential decoding. The achievable
rate, or the capacity lower bound, is given by the expression

C ≥ 1 + pd log pd + pi log pi + pc log pc + ps log ps, (1)

whereC is the channel capacity,pc = (1−pd−pi)(1−pe) is
the probability of correct reception, andps = (1− pd − pi)pe
is the probability that a flipped version of the transmitted
bit is received. The logarithm is taken base 2 resulting in
transmission rates in bits/channel use. By substitutingpi = 0
in Eq. (1), forpd ≤ 0.5, a lower bound on the capacity of the
deletion-substitution channelCds, can be obtained as

Cds ≥ 1−Hb(pd)− (1 − pd)Hb(pe), (2)

whereHb(pd) = −pd log pd−(1−pd) log(1−pd) is the binary
entropy function. It is interesting to note that forpd = pe = 0
(pi = pe = 0) and pi ≤ 0.5 (pd ≤ 0.5), a lower bound on
the capacity of the random insertion channel (deletion-only
channel) with insertion (deletion) probability ofpi (pd), is
equal to the capacity of a binary symmetric channel (BSC)
with a substitution error probability ofpi (pd).

In [4], [5], authors argue that, since the deletion channel
has memory, optimal codebooks for use over deletion chan-
nels should have memory. Therefore, in [4]–[7], achievable
rates are computed by using a random codebook of rateR

with 2n·R codewords of lengthn, while each codeword is
generated independently according to a symmetric first-order
Markov process. Then, the generated codebook is used for
transmission over the i.i.d. deletion channel. In the receiver,
different decoding algorithms are proposed, e.g., in [4], if the
number of codewords in the codebook that contain the received
sequence as a subsequence is only one, the transmission
is successful, otherwise an error is declared. The proposed
decoding algorithms result in an upper bound for the incorrect
decoding probability. Finally, the maximum value ofR that
results in a successful decoding asn → ∞ is an achievable
rate, hence a lower bound on the transmission capacity of the
deletion channel. The lower bound (1), forpi = pe = 0, is also
proved in [4] using a different approach compared to the one
taken by Gallager [3], where the authors computed achievable
rates by choosing codewords randomly, independently and
uniformly among all possible codewords of a certain length.

In [8], a lower bound on the capacity of the deletion
channel is directly obtained by lower bounding the information

capacity lim
N→∞

1

N
max
P (X)

I(X;Y ). In [8], input sequences are

considered as alternating blocks of zeros and ones (runs),
where the length of the runsL are i.i.d. random variables
following a particular distribution over positive integers with
a finite expectation and finite entropy (E(L), H(L) < ∞
whereE(·) andH(·) denote the expected value and entropy,
respectively).

In [9], [10], Monte Carlo methods are used for computing

lower bounds on the capacity of the insertion/deletion channels
based on reduced-state techniques. In [9], the input process is
assumed to be a stationary Markov process and lower bounds
on the capacity of the deletion and insertion channels are
obtained via Monte Carlo simulations considering both the first
and second-order Markov processes as input. In [10], informa-
tion rates for i.u.d. input sequences are computed for several
channel models using a similar Monte Carlo approach where
in addition to the insertions/deletions, effects of intersymbol
interference (ISI) and AWGN are also investigated.

There are several papers deriving upper bounds on the
capacity of the insertion/deletion channels as well. Fertonani
and Duman in [11] present several novel upper bounds on the
capacity of the i.i.d. deletion channel by providing the decoder
(and possibly the encoder) with some genie-aided information
about the deletion process resulting in auxiliary channels
whose capacities are certainly upper bounds on the capacityof
the i.i.d. deletion channel. By providing the decoder with ap-
propriate side information, a memoryless channel is obtained
in such a way that Blahut-Arimoto algorithm (BAA) can be
used for evaluating the capacity of the auxiliary channels (or,
at least computing a provable upper bound on their capacities).
They also prove that by subtracting some value from the
derived upper bounds, lower bounds on the capacity can be
derived. The intuition is that the subtracted information is more
than extra information added by revealing certain aspects of
the deletion process. A nontrivial upper bound on the deletion
channel capacity is also obtained in [12] where a different
genie-aided decoder is considered. Furthermore, Fertonani and
Duman in [13] extend their work [11] to compute several upper
and lower bounds on the capacity of channels with insertion,
deletion and substitution errors as well.

In two recent papers [14], [15], asymptotic capacity expres-
sions for the binary i.i.d. deletion channel for small deletion
probabilities are developed. In [15], the authors prove that
Cd ≤ 1 − (1 − O(pd))Hb(pd) (where O(.) represents the
standard Landau (big-O) notation) which clearly shows that
for small deletion probabilities,1 − Hb(pd) is a tight lower
bound on the capacity of the deletion channel. In [14], an
expansion of the capacity for small deletion probabilitiesis
computed with several dominant terms in an explicit form.
The interpretation of our result for i.i.d. deletion-only channel
case is parallel to the one in [15].

B. Contributions of the Paper

In this paper, we focus on small insertion/deletion proba-
bilities and derive analytical lower bounds on the capacityof
the insertion/deletion channels by lower bounding the mutual
information between i.u.d. input sequences and resulting out-
put sequences. Since as shown in [1], for an insertion/deletion
channel, the information and transmission capacities are equal
justifying our approach in obtaining an achievable rate.

We note that our idea is somewhat similar to the idea
of directly lower bounding the information capacity instead
of lower bounding the transmission capacity as employed
in [8]. However, there are fundamental differences in the main
methodology as will become apparent later. For instance, our
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approach provides a procedure that can easily be employed for
many different channel models with synchronization errorsas
such we are able to consider deletion-substitution, deletion-
AWGN and random insertion channels. Other differences
include adopting a finite-length transmission which is proved
to yield a lower bound on the capacity after subtracting some
appropriate term, and the complexity in computing the final
expression numerically is much lower in many versions of our
results.

Finally, we emphasize that by utilizing the new approach,
we improve upon the obtained results in the existing literature
in several different aspects. In particular, the contributions of
the paper include

• development of a new approach for deriving achievable
information rates for insertion/deletion channels,

• the first analytical lower bound on the capacity of the
deletion-AWGN channel,

• tighter analytical lower bounds on the capacity of the
deletion-substitution channel for all values of deletion
and substitution probabilities compared to the existing
analytical results,

• tighter analytical lower bounds on the capacity of the
random insertion channels for small values of insertion
probabilities (pi < 0.25) compared to the existing lower
bounds,

• very simple lower bounds on the capacity of several cases
of insertion/deletion channels.

Regarding the final point, we note that by employingpe = 0
in the results on the deletion-substitution channel, we arrive
at lower bounds on the capacity of the deletion-only channel
which are in agreement with the asymptotic results of [14],
[15] in the sense of capturing the dominant terms in the
capacity expansion. Our results, however, are provable lower
bounds on the capacity, while the existing asymptotic results
are not amenable for numerical calculation (as they contain
big-O terms).

C. Notation

We denote a binary sequence of lengthn with K runs by
(b;n1, n2, . . . , nK), whereb ∈ {0, 1} denotes the first run type
and

∑K
k=1 nk = n. For example, the sequence 001111011000

can be represented as (0;2,4,1,2,3). We use four different
ways to denote different sequences;x(b;nx;Kx) represents
every sequence belonging to the set of sequences of lengthnx

with Kx runs and by the first run of typeb, x(b;nx;Kx; l)
represents a sequencex(b;nx;Kx) which hasl runs of length
one (l =

∑Kx

k=1 δ(n
x
k − 1) with δ(.) denoting the Kronecker

delta function),x(nx) represents every sequence of lengthnx,
andx represents every possible sequence. The set of all input
sequences is shown byX , and the set of output sequences of
the deletion-only, and random insertion channels are shownby
Yd andYi, respectively.Yd

−a andYi
+c denote the set of output

sequences resulting froma deletions andc random insertions,
respectively, andYd(x− a) andYi(x+ c) denote the set of
output sequences resulting froma deletions from andc random
insertions into, the input sequencex, respectively. We denote
the deletion pattern of lengthd in a sequence of lengthn with

K runs byD(n;K; d) = (d1, d2, . . . , dK), wheredk denotes
the number of deletions in thek-th run and

∑K

k=1 dk = d. The
outputs resulting from a given deletion patternD(n;K; d) =
(d1, d2, . . . , dK) (without any other error) are denoted by
D(n;K; d) ∗ x(n;K) = (n1 − d1, n2 − d2, . . . , nK − dK).
The setDn

K(d) represents the set of all deletion patterns of
lengthd of a sequence of lengthn and withK runs.

D. Organization of the Paper

In Section II, we introduce our general approach for lower
bounding the mutual information of the input and output
sequences for insertion/deletion channels. In Section III, we
apply the introduced approach to the deletion-substitution and
deletion-AWGN channels and present analytical lower bounds
on their capacities, and compare the resulting expressionswith
earlier results. In Section IV, we provide lower bounds on the
capacity of the random insertion channels and comment on our
results with respect to the existing literature. In SectionV, we
compute the lower bounds for a number of insertion/deletion
channels, and finally, we provide our conclusions in Sec-
tion VII.

II. M AIN APPROACH

We rely on lower bounding the information capacity of
memoryless channels with insertion or deletion errors directly
as justified by [1], where it is shown that, for a memoryless
channel with synchronization errors, the Shannon’s theorem
on transmission rates applies and the information and trans-
mission capacities are equal, and thus every lower bound on
the information capacity of an insertion/deletion channelis
a lower bound on the transmission capacity of the channel.
Our approach is different than most existing work on finding
lower bounds on the capacity of the insertion/deletion channels
where typically the transmission capacity is lower bounded
using a certain codebook and particular decoding algorithms.
The idea we employ is similar to the work in [8] which also

considers the information capacitylim
N→∞

1

N
max
P (X)

I(X ;Y )

and directly lower bounds it using a particular input distri-
bution to arrive at an achievable rate result.

Our primary focus is on the small deletion and insertion
probabilities. As also noted in [14], for such probabilities it
is natural to consider binary i.u.d. input distribution. This is
justified by noting that whenpd = pi = 0, i.e., for a binary
symmetric channel, the capacity is achieved with independent
and symmetric binary inputs, and hence we expect that for
small insertion/deletion probabilities, binary i.u.d. inputs are
not far from the optimal input distribution.

Our methodology is to consider a finite length transmission
of i.u.d. bits over the insertion/deletion channel, and to com-
pute (more precisely, lower bound) the mutual information
between the input and the resulting output sequences. As
proved in [11] for a channel with deletion errors, such a
finite length transmission in fact results in an upper bound
on the mutual information supported by the insertion/deletion
channels; however, as also shown in [11], if a suitable term
is subtracted from the mutual information, a provable lower
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bound on the achievable rate, hence the channel capacity,
results. The following theorem provides this result in a slightly
generalized form compared to [11].

Theorem 1. For binary input channels with i.i.d. insertion or
deletion errors, for any input distribution and anyn > 0, the
channel capacityC can be lower bounded by

C ≥ 1

n
I(X ;Y )− 1

n
H(T ), (3)

where

H(T ) = −
n∑

j=0

[(
n

j

)
pj(1− p)n−j log

((
n

j

)
pj(1− p)n−j

)]

with the understanding thatp = pd for the deletion channel
case andp = pi in the insertion channel case, andn is the
length of the input sequenceX.

Proof: This is a slight generalization of a result in [11]
which shows that Eq. (3) is valid for the i.i.d. deletion channel.
It is easy to see that [11], for any random processTN , and
for any input distributionP (XN ), we have

C ≥ lim
N→∞

1

N
I(XN ;Y N ,TN )− lim

N→∞

1

N
H(TN ), (4)

whereC is the capacity of the channel,N is the length of
the input sequenceXN and N = Qn, i.e., the input bits
in both insertion and deletion channels are divided intoQ

blocks of lengthn (XN = {Xj}Qj=1). We define the random
processTN in the following manner. For an i.i.d. insertion
channel,TN,i is formed as the sequenceTN,i = {T i

j}Qj=1

which denotes the number of insertions that occur in trans-
mission of each block of lengthn. For a deletion channel,
TN,d = {T d

j }Qj=1 represents the number of deletions occurring
in transmission of each block. Since insertions (deletions)
for different blocks are independent, the random variables
Tj = T i

j (T d
j ) for j ∈ {1, . . . , Q} are i.i.d., and transmission

of different blocks are independent. Therefore, we can rewrite
Eq. (4) as

C ≥ 1

n
I(Xj ;Y j)−

1

n
H(T j)

=
1

n
I(X ;Y )− 1

n
H(T ). (5)

Noting that the random variable denoting the number of
deletions or insertions as a result ofn bit transmission is
binomial with parametersn andpd (or, pi) the result follows.

Several comments on the specific calculations involved are in
order. Theorem 1 shows that for any input distribution and
any transmission length, Eq. (3) results in a lower bound
on the capacity of the channel with deletion or insertion
errors. Therefore, employing any lower bound on the mutual
information rate1

n
I(X ;Y ) in Eq. (3) also results in a lower

bound on the capacity of the insertion/deletion channel. Due
to the fact that obtaining the exact value of the mutual
information rate for anyn is infeasible, we first derive a lower
bound on the mutual information rate for i.u.d. input sequences
and then employ it in Eq. (3). Based on the formulation of the

mutual information, obviously

I(X ;Y ) = H(Y )−H(Y |X), (6)

thus by calculating the exact value of the output entropy
or lower bounding it and obtaining the exact value of the
conditional output entropy or upper bounding it, the mutual
information is lower bounded. For the models adopted in this
paper, we are able to obtain the exact value of the output
sequence probability distribution when i.u.d. input sequences
are used, hence the exact value of the output entropy (the
differential output entropy for the deletion-AWGN channel) is
available.

In deriving the conditional output entropies (the conditional
differential entropy of the output sequence for the deletion-
AWGN channel), we cannot obtain the exact probability of
all the possible output sequences conditioned on a given input
sequence. For deletion channels, we compute the probability
of all possible deletion patterns for a given input sequence,
and treat the resulting sequences as if they are all distinctto
find a provable upper bound on the conditional entropy term.
Clearly, we are losing some tightness, as different deletion
patterns may result in the same sequence at the channel output.
For the random insertion channel, we calculate the conditional
probability of the output sequences resulting from at most
one insertion, and derive an upper bound on the part of the
conditional output entropy expression that results from the
output sequences with multiple insertions.

III. L OWER BOUNDS ON THECAPACITY OF NOISY

DELETION CHANNELS

As mentioned earlier, we consider two different variations
of the binary deletion channel: i.i.d. deletion and substitu-
tion channel (deletion-substitution channel), and i.i.d.deletion
channel in the presence of AWGN (deletion-AWGN channel).
The results utilize the idea and approach of the previous
section. We first give the results for the deletion-substitution
channel, then for the deletion-AWGN channel. We note that
the presented lower bounds can be also employed on the
deletion-only channel ifpe = 0 (or σ2 = 0 for the deletion-
AWGN channel).

A. Deletion-Substitution Channel

In this section, we consider a binary deletion channel with
substitution errors in which each bit is independently deleted
with probability pd, and transmitted bits are independently
flipped with probabilitype. The receiver and the transmitter
do not have any information about the position of deletions or
the substitution errors. As shown in Fig. 1, this channel can
be considered as a cascade of an i.i.d. deletion channel with
a deletion probabilitypd and output sequenceY , and a BSC
with a cross-over error probabilitype and output sequence
Y ′. For such a channel model the following lemma is a lower
bound on the capacity.

Lemma 1. For anyn > 0, the capacity of the i.i.d. deletion-
substitution channelCds, with a substitution probabilitype
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i.i.d. Deletion 

Channel
BSC� � �′

Fig. 1. Deletion-substitution channel as a cascade of an i.i.d. deletion channel
and a BSC.

and a deletion probabilitypd, is lower bounded by

Cds ≥ 1− pd −Hb(pd)− (1− pd)Hb(pe)

+
1

n

n∑

j=1

Wj(n)

(
n

j

)
p
j
d(1− pd)

n−j , (7)

where

Wj(n) =

n−1∑

l=1

2−l−1(n− l+ 3)

j∑

j′=1

(
l
j′

)(
n−l
j−j′

)
(
n
j

) log

(
l

j′

)

+ 2−n+1 log

(
n

j

)
, (8)

andHb(pd) = −pd log(pd)− (1 − pd) log(1 − pd). �

Before proving the lemma, we would like to emphasize that
the only existing analytical lower bound on the capacity of
deletion-substitution channels is derived in [3] (Eq. (2)). In
comparing the lower bound in Eq. (2) with the lower bound
in Eq. (7), we observe that the new lower bound improves
the previous one by1

n

∑n

j=1 Wj(n)
(
n
j

)
p
j
d(1 − pd)

n−j − pd,
which is guaranteed to be positive.

A simplified form of the lower bound for small values
of deletion probability can also be presented. By invoking
the inequalities(1 − p)m ≥ [1 − mp +

(
m
2

)
p2 −

(
m
3

)
p3]

and (1− p)m ≥ 1−mp, and ignoring some positive terms
(pjd(1− pd)

n−j for j ≥ 3), we can write

Cd ≥1−Hb(pd)+pd(W1(n)−1)+p2d
n−1

2
(W2(n)−2W1(n))

+ p3d

(
n− 1

2

)
(W1(n)−W2(n))− p4d

(
n− 1

3

)
W1(n).

By utilizing pe = 0 in Eq. (7), we can obtain a lower bound
on the capacity of the deletion-only channel as given in the
following corollary.

Corollary 1. For anyn > 0, the capacity of an i.i.d. deletion
channelCd, with a deletion probability ofpd is lower bounded
by

Cd ≥ 1−pd−Hb(pd)+
1

n

n∑

j=1

Wj(n)

(
n

j

)
p
j
d(1−pd)

n−j . (9)

We also would like to make a few comments on the result
of the Corollary 1. First of all, the lower bound (9) is tighter
than the one proved in [3] (Eq. (1) withpi = pe = 0) which
is the simplest analytical lower bound on the capacity of the
deletion channel. The amount of improvement in (9) over the
one in (1) is 1

n

∑n

j=1 Wj(n)
(
n
j

)
p
j
d(1− pd)

n−j − pd, which is
guaranteed to be positive.

In [14], it is shown that

Cd = 1 + pd log(pd)−A1pd +O(p1.4d ), (10)

whereA1 = log(2e) −∑∞
l=1 2

−l−1l log(l). A similar result

in [15] is provided, that isCd ≤ 1 − (1 − O(pd))Hb(pd),
which shows that1−Hb(pd) is a tight lower bound for small
deletion probabilities. If we consider the new capacity lower
bound in (9), and represent(1− pd) log(1− pd) by its Taylor
series expansion, we can readily write

Cd ≥ 1 + pd log(pd)− (log(2e)−W1(n)) pd + p2df(n, pd),

wheref(n, pd) is a polynomial function. On the other hand
for W1(n), if we let n go to infinity, we have

lim
n→∞

W1(n) = lim
n→∞

[
1

n

n−1∑

l=1

2−l−1(n−l+3)l log(l) +
log(n)

2n−1

]

=
∞∑

l=1

2−l−1l log(l). (11)

Therefore, we observe that the lower bound (9) captures
the first order term of the capacity expansion (10). This is
an important result as the capacity expansions in [14], [15]
are asymptotic and do not lend themselves for a numerical
calculation of the transmission rates for any non-zero value of
the deletion probability.

We need the following two propositions in the proof of
Lemma 1. In Proposition 1, we obtain the exact value of the
output entropy in the deletion-substitution channel with i.u.d.
input sequences, while Proposition 2 gives an upper bound
on the conditional output entropy with i.u.d. bits transmitted
through the deletion-substitution channel.

Proposition 1. For an i.i.d. deletion-substitution channel with
i.u.d. input sequences of lengthn, we have

H(Y ′) = n(1− pd) +H(T ), (12)

where Y ′ denotes the output sequence of the deletion-
substitution channel andH(T ) is as defined in Eq.(3).

Proof: By using the facts that all the elements of the set
Yd
−j are identically distributed, which are inputs into the BSC

channel, and a fixed length i.u.d. input sequence into a BSC
result in i.u.d. output sequences, all elements of the setY ′d

−j

are also identically distributed. Hence,

P (y′(n− j)) =
1

2n−j

(
n

j

)
p
j
d(1 − pd)

n−j , (13)

where

(
n

j

)
p
j
d(1 − pd)

n−j is the probability of exactlyj

deletions occurring inn use of the channel. Therefore, we
obtain

H(Y ′) =
∑

y′

−P (y′) log(P (y′))

=

n∑

j=0

(
n

j

)
p
j
d(1− pd)

n−j log

(
2n−j

(
n
j

)
p
j
d(1− pd)n−j

)

= n(1− pd) +H(T ), (14)

which concludes the proof.

Proposition 2. For a deletion-substitution channel with i.u.d.
input sequences, the entropy of the outputY ′ conditioned on
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the inputX of lengthn bits, is upper bounded by

H(Y ′|X) ≤ nHb(pd)−
n∑

j=1

Wj(n)

(
n

j

)
p
j
d(1 − pd)

n−j

+n(1− pd)Hb(pe), (15)

whereWj(n) is given in Eq.(8).

Proof: To obtain the conditional output entropy, we need
to compute the probability of all possible output sequences
resulting from every possible input sequencex, i.e.,P (Y ′|x).
For a givenx = (b;n1, n2, . . . , nk) and for a specific deletion
patternD(n;K; j) = (j1, . . . , jK) in which jk denotes the
number of deletions in thek-th run, we can write

P

(
D(n;K; j) =(j1, . . . , jK)

∣∣∣∣x(b;n1, . . . , nK)

)

=

(
n1

j1

)
. . .

(
nK

jK

)
p
j
d(1− pd)

n−j . (16)

Furthermore, for everyD(n;K; j), we can write

P

(
y′

∣∣∣∣D ∗ x(n;K)

)
=

{
pse(1− pe)

n−j−s if |y′| = n− j,

0 otherwise,
(17)

wheres = dH (y′;D(n;K; j) ∗ x(n;K)), and dH = (a; b)
is the Hamming distance between two sequencesa andb. On
the other hand, for every output sequence of lengthn − j,
conditioned on a given inputx(n;K), we have

P

(

y
′(n−j)

∣

∣

∣

∣

x(n;K)

)

=
∑

D∈Dn
K

(j)

P

(

y
′(n−j)

∣

∣

∣

∣

D,x(n;K)

)

P

(

D

∣

∣

∣

∣

x(n;K)

)

.

However, there is a difficulty as two different possible deletion
patterns,D(n;K; j) = (j1, · · · , jK) and D′(n;K; j) =
(j′1, · · · , j′K), under the same substitution error pattern, i.e., the
substitution errors occur at the same positions onD(n;K; j)∗
x(n;K) and D′(n;K; j) ∗ x(n,K), may convert a given
input sequencex(n;K) into the same output sequence, i.e.,
D(n;K; j) ∗ x(n;K) = D′(n;K; j) ∗ x(n,K). This occurs
when successive runs are completely deleted, for example,
in transmitting(1; 2, 1, 2, 3, 2) = 1101100011, if the second,
third and fourth runs are completely deleted, by deleting
one bit from the first run,(1, 1, 2, 3, 0) ∗ (1; 2, 1, 2, 3, 2) =
(1; 1, 0, 0, 0, 2) = 111, or from the last run,(0, 1, 2, 3, 1) ∗
(1; 2, 1, 2, 3, 2) = (1; 2, 0, 0, 0, 1) = 111, the same output
sequences are obtained. This difficulty can be addressed using

∑

t

−pt

(
log
∑

t′

pt′

)
≤
∑

t

−pt log(pt), (18)

which is trivially valid for any set of probabilities
(p1, . . . , pt, . . . ). Therefore, we can write

− P (y′|x) log (P (y′|x))

=−
∑

D∈Dn
K
(j)

P (y′|D∗x)P (D|x)log




∑

D′∈Dn
K
(j)

P (y′|D′∗x)P (D′|x)





≤ −
∑

D∈Dn
K
(j)

P (y′|D ∗ x)P (D|x) log
(
P (y′|D ∗ x)P (D|x)

)
.

(19)

Hence, for a specificx(b;n;Kx) = (b;nx
1 , . . . , n

x
Kx), we

obtain (for more details see Appendix B)

H

(
Y ′

∣∣∣∣x(b;n;K
x)

)
≤ nHb(pd) + n(1− pd)Hb(pe)

−
n∑

j=0

p
j
d(1 − pd)

n−j

Kx∑

k=1

j∑

jk=0

(
nx
k

jk

)(
n− nx

k

j − jK

)
log

(
nx
k

jk

)
.

Therefore, by considering i.u.d. input sequences, we have

H(Y ′|X) =
∑

x∈X

1

2n
H(Y ′|x) ≤ nHb(pd)+n(1−pd)Hb(pe)

−
n∑

j=0

p
j
d(1−pd)

n−j

2n

∑

x∈X

Kx∑

k=1

j∑

jk=0

(
nx
k

jk

)(
n−nx

k

j−jk

)
log

(
nx
k

jk

)
.

(20)

On the other hand, we can write

∑

x∈X

1

2n

Kx∑

k=1

j∑

jk=0

(
nx
k

jk

)(
n− nx

k

j − jk

)
log

(
nx
k

jk

)

=

j∑

j′=0

n∑

l=1

PR(l, n)

(
l

j′

)(
n− l

j − j′

)
log

(
l

j′

)
, (21)

where PR(l, n) denotes the probability of having a run of
length l in an input sequence of lengthn. It is obvious that
PR(n, n) =

2
2n . Due to the fact that, for1 ≤ l ≤ n− 1, there

are

(
n− l− 1

K− 2

)
possibilities to have a run of lengthl in a

sequence withK runs, we can write

PR(l, n) =
2

2n

n−l+1∑

K=2

(
n− l− 1

K − 2

)
K = 2−l−1(n−l+3). (22)

Finally, by substituting Eqs. (21) and (22) in Eq. (20), Eq. (15)
results, completing the proof.

We can now complete the proof of the main lemma of the
section.

Proof of Lemma 1: In Theorem 1, we showed that for
any input distribution and any transmission length, Eq. (3)
results in a lower bound on the capacity of the channel with
i.i.d. deletion errors. On the other hand, any lower bound
on the information rate can also be used to derive a lower
bound on the capacity. Due to the definition of the mutual
information, Eq. (6), by obtaining the exact value of the output
entropy (Proposition 1) and upper bounding the conditional
output entropy (Proposition 2) the mutual information is lower
bounded. Finally, by substituting Eqs. (12) and (15) into
Eq. (3), Lemma 1 is proved. �

At this point we digress to point out that the result in the
above lemma can also be obtained using a simpler approach
as pointed out by one of the reviewers (details are given
in Appendix A). That is, a lower bound on the deletion-
substitution channel capacity can be provided in terms of the
deletion-only channel capacity as (this is also a special case
of a result in [16])

Cds ≥ Cd − (1− pd)Hb(pe). (23)



7

i.i.d. Deletion 

Channel

BI-AWGN 

Channel

� � �

Fig. 2. Deletion-AWGN channel as a cascade of an i.i.d. deletion channel
and a BI-AWGN channel.

Therefore, computing the mutual information rate of the
deletion-only channel for i.u.d. input sequences and substi-
tuting it in the above inequality results in a lower bound on
Cds. It can be verified that the same procedure as in the proof
of Lemma 1 gives

Cd ≥ 1− pd −Hb(pd) +
1

n

n∑

j=1

Wj(n)

(
n

j

)
p
j
d(1− pd)

n−j ,

and substituting this into Eq. (23) concludes the proof of
Lemma 1.

B. Deletion-AWGN Channel

In this section, a binary deletion channel in the presence of
AWGN is considered, where the bits are transmitted using
binary phase shift keying (BPSK) and the received signal
contains AWGN in addition to the deletion errors. As illus-
trated in Fig. 2, this channel can be considered as a cascade
of two independent channels where the first channel is an
i.i.d. deletion channel and the second one is a BI-AWGN
channel. We useX to denote the input sequence to the first
channel which is a BPSK modulated version of the binary
input sequenceX, i.e., x̄i = 1 − 2xi, andY to denote the
output sequence of the first channel input to the second one.
Ỹ is the output sequence of the second channel that is the
noisy version ofY , i.e., ỹi = ȳi + zi, in which zi’s are i.i.d.
Gaussian random variables with zero mean and a variance of
σ2, and ỹi and ȳi are theith received and transmitted bits of
the second channel, respectively. Therefore, for the probability
density function of theith channel output, we have

fỹi
(η) =fỹi

(η|ȳi = 1)P (ȳi=1)+fỹi
(η|ȳi = −1)P (ȳi=−1)

=
1√
2πσ

[
P (ȳi = 1)e−

(η−1)2

2σ2 + P (ȳi = −1)e−
(η+1)2

2σ2

]
.

(24)

In the following lemma, an achievable rate is provided over
this channel.

Lemma 2. For anyn > 0, the capacity of the deletion-AWGN
channel with a deletion probability ofpd and a noise variance
of σ2 is lower bounded by

Cd,AWGN ≥1− pd +
1

n

n∑

j=1

Wj(n)

(
n

j

)
p
j
d(1− pd)

n−j

−Hb(pd)− (1− pd)E
[
log
(
1 + e

−2z
σ2

)]
, (25)

whereWj(n) is as given in Eq.(8), E[.] is statistical expec-
tation, andz ∼ N (0, σ2). �

Before giving the proof of the above lemma, we provide
several comments about the result. First, the desired lower

bound in Eq. (25) is the only analytical lower bound on the ca-
pacity of the deletion-AWGN channel. In the current literature,
there are only simulation based lower bounds, e.g. [10], which
employs Monte-Carlo simulation techniques. Furthermore,the
procedure employed in [10] is only useful for deriving lower
bounds for small values of deletion probability, e.g.,pd ≤ 0.1,
while the lower bound in Eq. (25) is useful for a much wider
range.

For pd = 0, the lower bound in Eq. (25) is equal to

1− E
[
log(1 + e

−2z
σ2 )

]
which is the capacity of the BI-

AWGN channel [17, p. 362]. Finally, we note that the term

in Eq. (25) which containsE
[
log(1 + e

−2z
σ2 )

]
can be easily

computed by numerical integration with an arbitrary accuracy
(it involves only an one-dimensional integral).

We need the following two propositions in the proof of
Lemma 2. In the following proposition, the exact value of the
differential output entropy in the deletion-AWGN channel with
i.u.d. input bits is calculated.

Proposition 3. For an i.i.d. deletion-AWGN channel with i.u.d.
input sequences of lengthn, we have

h(Ỹ ) =n(1− pd)
(
log
(
2σ

√
2πe
)
− E

[
log
(
1 + e−

2z
σ2

)])

+H(T ), (26)

whereh(.) denotes the differential entropy function,Ỹ denotes
the output of the deletion-AWGN channel,z ∼ N (0, σ2), and
H(T ) is as defined in Eq.(3).

Proof: For the differential entropy of the output sequence,
we can write

h(Ỹ ) = h(Ỹ ) +H(T |Ỹ )

= h(Ỹ ,T )

= h(Ỹ |T ) +H(T ), (27)

where the first equality results by using the fact that by
knowing the received sequence, the number of deletions is
known andT is determined, i.e.,H(T |Ỹ ) = 0, and the last
equality is obtained by using a different expansion ofh(Ỹ ,T ).
On the other hand, we can write

h(Ỹ |T ) =

n∑

j=0

h(Ỹ |T = j)P (T = j)

=

n∑

j=0

h(Ỹ |T = j)

(
n

j

)
p
j
d(1 − pd)

n−j . (28)

Due to the fact that all the elements of the setYd

−j are i.i.d., we
haveP (ȳ(n− j)) = P (ȳ,T = j) = 1

2n−j

(
n
j

)
p
j
d(1 − pd)

n−j .
Therefore, we can write

P (ȳ|T = j) =
P (ȳ,T = j)

P (T = j)
=

1

2n−j
, (29)

and as a resultP (ȳi = 1|T = j) = P (ȳi = −1|T = j) = 1
2

(for 1 ≤ i ≤ n− j). By employing this result in Eq. (24), we
have

fỹi
(η) =

1

2
√
2πσ

[
e−

(η−1)2

2σ2 + e−
(η+1)2

2σ2

]
, (30)
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wherefỹi
(η) denotes the probability density function (PDF)

of the continuous random variablẽyi. Noting also that the
deletions happen independently andỹi’s are i.i.d., we can write

h(Ỹ |T = j) =(n− j)h(ỹi)

=(n− j)

∫ ∞

−∞

−fỹi
(η) log (fỹi

(η)) dη

=(n− j)
(
log
(
2σ

√
2πe
)
−E

[
log
(
1+e−

2z
σ2

)])
.

By substituting the above equation into Eq. (28), we obtain

h(Ỹ |T ) =

n∑

j=0

(n− j)

(
n

j

)
p
j
d(1− pd)

n−j×

×
(
log(2σ

√
2πe)− E

[
log(1 + e−

2z
σ2 )
])

= n(1− pd)
(
log(2σ

√
2πe)− E

[
log(1 + e−

2z
σ2 )
])

, (31)

and by using Eqs. (31) and (27), Eq. (26) is obtained.
In the following proposition, we derive an upper bound on

the differential entropy of the output conditioned on the input
for deletion-AWGN channel.

Proposition 4. For a deletion-AWGN channel with i.u.d.
input bits, the differential entropy of the output sequenceỸ

conditioned on the inputX of lengthn, is upper bounded by

h(Ỹ |X) ≤ nHb(pd)−
∑n

j=1 Wj(n)
(
n
j

)
p
j
d(1− pd)

n−j

+n(1− pd) log(2σ
√
2πe), (32)

whereWj(n) is given in Eq.(8).

Proof: For the conditional differential entropy of the
output sequence given the lengthn input X, we can write

h(Ỹ |X) = h(Ỹ |X) +H(T |Ỹ ,X)

= H(T ) + h(Ỹ |T ,X), (33)

where the first equality follows since by knowingX and Ỹ ,
the number of deletions is known, i.e.,H(T |Ỹ ,X) = 0. The
second equality is obtained by using a different expansion of
h(Ỹ ,T |X) and also using the fact that the deletion process
is independent of the inputX, i.e., H(T |X) = H(T ).
Furthermore, we have

h(Ỹ |T ,X) =

n∑

j=0

h(Ỹ |X,T = j)P (T = j)

=

n∑

j=0

h(Ỹ |X,T = j)

(
n

j

)
p
j
d(1− pd)

n−j .

To obtainh(Ỹ |X ,T = j), we need to computefỹ|x,j(η)

for any given input sequencex = (b;n1, n2, . . . , nK) and
different values ofj. As in the proofs of Proposition 2, if
we consider the outputs of the deletion channel resulting from
different deletion patterns of lengthj from a givenx, as if they
are distinct and also use the result in Eq. (18), an upper bound
on the differential output entropy conditioned on the input
sequenceX results. We relegate the details of this computation
and completion of the proposition proof to Appendix C.

We can now state the proof of the main lemma of the
section.

Proof of Lemma 2: By substituting the exact value of
the differential output entropy in Eq. (26), and the upper
bound (32) on the differential output entropy conditioned on
the input in Eq. (6), a lower bound on the mutual information
rate of the deletion-AWGN channel is obtained, hence the
lemma is proved. �

IV. L OWER BOUNDS ON THECAPACITY OF RANDOM

INSERTIONCHANNELS

We now turn our attention to the random insertion channels
and derive lower bounds on the capacity of random insertion
channels by employing the approach proposed in Section II.
We consider the Gallager model [3] for insertion channels in
which every transmitted bit is independently replaced by two
random bits with probability ofpi while neither the receiver
nor the transmitter have any information about the positionof
the insertions. The following lemma provides the main result
of this section.

Lemma 3. For any n > 0, the capacity of the random
insertion channelCi, is lower bounded by

Ci ≥ (1−pi)
n−Hb(pi)+

(
S(n)− 3n+ 1

4n
+ n

)
pi(1−pi)

n−1

+
log
(
n
2

)

n

(
1−(1−pi)

n−npi(1−pi)
n−1−pni −npn−1

i (1−pi)
)

+ pn−1
i (1− pi) log(n), (34)

where

S(n) =
1

4n

n−1∑

l=1

2−l

[
(n+ 1− l)(l + 2) log(l + 2)

+ 2(l + 1) log(l + 1)

]
+

log(n)

2n+1
. �

To the best of our knowledge, the only analytical lower
bound on the capacity of the random insertion channel is de-
rived in [3] (i.e., Eq. (1) forpd = pe = 0). Our result improves
upon this result for small values of insertion probabilities as
will be apparent with numerical examples.

Similar to the deletion-substitution channel case, we can
write a simpler lower bound as

Ci ≥1−Hb(pi) +

(
S(n)− 3n+ 1

4n

)
pi

− n− 1

2

(
2S(n)− 3n+ 1

2n
+ n− log

(
n

2

))
p2i

−
(
n− 1

2

)(
log

(
n

2

)
− S(n)− 2n

3
+

3n+ 1

4n

)
p3i

−
(
n− 1

3

)(
S(n) + n− 3n+ 1

4n

)
p4i . (35)

For instance, forn = 10, Eq. (35) evaluates to

Ci ≥ 1−Hb(pi) + 1.1591pi − 30.7184p2i + 1.0502× 102p3i

− 1.3391× 103p4i . (36)

To prove the above lemma, we need the following two
propositions. The output entropy of the random insertion
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channel with i.u.d. input sequences is calculated in the first
one.

Proposition 5. For a random insertion channel with i.u.d.
input sequences of lengthn, we have

H(Y ) = n(1 + pi) +H(T ). (37)

whereY denotes the output sequence andH(T ) is as defined
in Eq. (3).

Proof: Similar to the proof of Proposition 1, we use the
fact that

P (y(n+ j)) =
1

2n+j

(
n

j

)
p
j
i (1− pi)

n−j . (38)

Therefore, by employing Eq. (38) in computing the output
entropy, we obtain

H(Y ) =−
n∑

j=0

(
n

j

)
p
j
i (1 − pi)

n−j log

((n
j

)
p
j
i (1− pi)

n−j

2n+j

)

=n(1 + pi) +H(T ). (39)

In the following proposition, we present an upper bound on
the conditional output entropy of the random insertion channel
with i.u.d. input sequences for a given input of lengthn.

Proposition 6. For a random insertion channel with input
and output sequences denoted byX andY , respectively, with
i.u.d. input sequences of lengthn, we have

H(Y |X) ≤n(1 + pi) + nHb(pi)− n(1− pi)
n

−
(
1−(1−pi)

n−npi(1−pi)
n−1−pni −npn−1

i (1−pi)
)
log

(
n

2

)

− n

(
S(n)−3n+1

4n
+n

)
pi(1−pi)

n−1−npn−1
i (1−pi) log(n),

(40)

whereS(n) is given in Eq.(34).

Proof: For the conditional output sequence distribution
for a given input sequence, we can write

p(y|x(b;n;K))

=






(1−pi)
n y = x(b;n;K)

n1+1
4 pi(1−pi)

n−1 y = (b;n1 + 1, . . . , nK)
nK+1

4 pi(1−pi)
n−1 y = (b;n1, . . . , nK + 1)

nk+2
4 pi(1−pi)

n−1 y = (b;n1, . . . , nk + 1, . . . , nK)
(1 < k < K)

1
4pi(1−pi)

n−1 y = (b;n1, . . . , n
′
k,1, 2, n

′
k,2, . . . , nK)

2
4pi(1−pi)

n−1 y = (b;n1, . . . , n
′′
k,1, 1, n

′′
k,2, . . . , nK)

1
4pi(1−pi)

n−1 y = (b̄; 1, n1, . . . , nk, . . . , nK)
1
4pi(1−pi)

n−1 y = (b;n1, . . . , nk, . . . , nK , 1)
ǫiy,x |y| ≥ n+ 2

wheren′
k,1+n′

k,2 = nk−1 (n′
k,1, n′

k,2 ≥ 0), n′′
k,1+n′′

k,2 = nk

(n′′
k,1, n′′

k,2 ≥ 1), andǫiy,x representsp(y|x(b;n;K)) for given
y with |y| ≥ 2. Furthermore, since there arenk possibilities
for n′

k,i ≥ 0 to have n′
k,1 + n′

k,2 = nk − 1, and nk − 1

possibilities forn′′
k,i ≥ 1 to haven′′

k,1 + n′′
k,2 = nk, we obtain

H(Y |x(b;n;Kx)) = −(1− pi)
n log(1− pi)

n

− pi(1− pi)
n−1

(
n log(pi(1− pi)

n−1)− 1.5n− 0.5Kx

)

−1

4
pi(1−pi)

n−1

(
(nx

1+1) log(nx
1+1) + (nx

Kx+1) log(nx
Kx+1)

+

Kx−1∑

k=2

(nx
k + 2) log(nx

k + 2)

)
+Hǫ,i(x),

whereHǫ,i(x) is the term related to the outputs resulting from
more than one insertion. Therefore, by considering i.u.d. input
sequences, since there are2

(
n−1
K−1

)
input sequences of length

n with K runs, we have

H(Y |X) = −(1− pi)
n log(1− pi)

n +Hǫ,i(X)

− npi(1 − pi)
n−1

(
log(pi(1 − pi)

n−1)− 7n+ 1

4n
+ S(n)

)
,

(41)

whereHǫ,i(X) =
∑

x∈X
Hǫ,i(x)

2n and

S(n)=
1

2n+2n

∑

x,Kx 6=1

[
(nx

1+1) log(nx
1+1)

+(nx
Kx+1) log(nx

Kx+1)+
Kx−1∑

k=2

(nx
k+2) log(nx

k+2)

]
+
log(n)

2n+1
,

which can be written as

S(n) =
log(n)

2n+1
+

1

2n+2n

[
∑

x

Kx∑

k=1

(nx
k + 2) log(nx

k + 2)

+ 2
∑

x,Kx 6=1

[(nx
1 + 1) log(nx

1 + 1)− (nx
1 + 2) log(nx

1 + 2)]

]

=
1

4n

n−1∑

l=1

2−l [(n+1−l)(l+2) log(l+2)+2(l+1) log(l+1)]

+
log(n)

2n+1
. (42)

Here we have used the same approach used in the proof of
Proposition 2, and considered the fact that there are2n−l

sequences of lengthn with n1 = l or nK = l.
If we assume that all the possible outputs resulting fromk

insertions (k ≥ 2) for a givenx are equiprobable, since

−
J∑

j=1

pj log(pj) ≤ −
J∑

j=1

pj log

∑J

j′=1 pj′

J
, (43)

we can upper boundHǫ,i(x). That is,

Hǫ,i(x) =

n∑

k=2

∑

y∈Yi(x+k)

−Q(y|x) log
(
Q(y|x)

)

≤
n∑

k=2

−ǫk log
(

ǫk

|Yi(x+ k)|

)
≤

n∑

k=2

−ǫk log
(

ǫk

2n+k

)
,

where ǫk =
∑

y∈(x,k) Q(y|x) =
(
n
k

)
pki (1 − pi)

n−k is the
probability of k insertions in transmission ofn bits, and the
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last inequality follows since|Yi(x + k)| ≤ 2n+k, where
|Yi(x+ k)| denotes the number of output sequences resulting
from k insertions into a given input sequencex. After some
algebra, we arrive at

Hǫ,i(X) ≤ n(1 + pi) + nHb(pi)− n(1− pi)
n

− (n+ 1)npi(1 − pi)
n−1+(1− pi)

n log(1 − pi)
n

+ npi(1− pi)
n−1 log

(
pi(1− pi)

n−1
)

− npn−1
i (1− pi) log(n)−

(
1− pni − (1− pi)

n

− npi(1− pi)
n−1 − npn−1

i (1 − pi)

)
log

(
n

2

)
.

Finally, by substituting the above upper bound into Eq. (41),
the upper bound (40) is obtained.

Proof of Lemma 3: By substituting the exact value of
the output entropy (Eq. (37)) and the upper bound on the
conditional output entropy (Eq. (40)) of the random insertion
channel with i.u.d. input sequences into Eq. (6), a lower
bound on the achievable information rate is obtained, hence
the lemma is proved. �

V. NUMERICAL EXAMPLES

We now present several examples of the lower bounds on
the insertion/deletion channel capacity for different values of
n and compare them with the existing ones in the literature.

A. Deletion-Substitution Channel

In Table I, we compare the lower bound (7) forn = 100
andn = 1000 with the one in [3]. We observe that the new
bound improves the result of [3] for the entire range ofpd and
pe, and also as expected, by increasingn from 100 to 1000,
a tighter lower bound for all values ofpd andpe is obtained.

B. Deletion-AWGN Channel

We now compare the derived analytical lower bound on the
capacity of the deletion-AWGN channel with the simulation
based bound of [10] which is the achievable information
rate of the deletion-AWGN channel for i.u.d. input sequences
obtained by Monte-Carlo simulations. As we observe in Fig. 3,
the lower bound (25) is very close to the simulation results
of [10] for small values of deletion probability but it does
not improve them. This is not unexpected, because we further
lower bounded the achievable information rate for i.u.d. input
sequences while in [10], the achievable information rate for
i.u.d. input sequences is obtained by Monte-Carlo simulations
without any further lower bounding. On the other hand, new
bound is provable, analytical and very easy to compute while
the result in [10] requires lengthly simulations. Furthermore,
the procedure employed in [10] is only useful for deriving
lower bounds for small values of deletion probability, e.g.,
pd ≤ 0.1, while the lower bound (25) holds for a much wider
range.
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Fig. 3. Comparison between the lower bound (25) forn = 1000 with the
lower bound in [10] versus SNR for different deletion probabilities.
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Fig. 4. Comparison of the lower bound (34) with lower bound presented
in [3].

C. Random Insertion Channel

We now numerically evaluate the lower bounds derived on
the capacity of the random insertion channel. Similar to the
previous cases, different values ofn result in different lower
bounds. In Table II and Fig. 4, we compare the lower bound
in Eq. (34) with the lower bound due to Gallager [3]Ci ≥ 1−
Hb(pi), where the reported values are obtained for the optimal
value ofn. We observe that for largerpi, smaller values ofn
give the tightest lower bounds. This is not unexpected since
in upper boundingH(Y |X), we computed the exact value
of p(y|x) for at most one insertion, i.e.,|y| = |x| or |y| =
|x|+1, and upper bounded the part of the conditional entropy
resulting form more than one insertion. Therefore, for a fixed
pi by increasingn, the probability of having more than one
insertion increases and as a result the upper bound becomes
loose. We also observe that the lower bound (34) improves
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TABLE I
LOWER BOUNDS ON THE CAPACITY OF THE DELETION-SUBSTITUTION CHANNEL (IN THE LEFT HAND SIDE TABLE “1-LOWER BOUND” IS REPORTED).

pd pe 1−LB (2) 1−LB (7) 1−LB (7)
n = 1000 n = 100

10−5 10−5 3.6104× 10−4 3.5817× 10−4 3.5834× 10−4

10−5 10−4 1.6535× 10−3 1.6506× 10−3 1.6508× 10−3

10−5 10−3 1.15881× 10−2 1.15853× 10−2 1.15854× 10−2

10−4 10−5 1.6535× 10−3 1.6248× 10−3 1.6264× 10−3

10−4 10−4 2.9459× 10−3 2.9172× 10−3 2.9188× 10−3

10−4 10−3 1.2879× 10−2 1.2850× 10−2 1.2852× 10−2

10−3 10−5 1.1588× 10−2 1.1302× 10−2 1.1319× 10−2

10−3 10−4 1.2879× 10−2 1.2593× 10−2 1.261× 10−2

10−3 10−3 2.2804× 10−2 2.2518× 10−2 2.2535× 10−2

pd pe LB (2) LB (7) LB (7)
n = 1000 n = 100

0.01 0.01 0.8392 0.8419 0.8418
0.01 0.03 0.7268 0.7373 0.7293
0.01 0.10 0.4549 0.4576 0.4575
0.05 0.01 0.6368 0.6476 0.6469
0.05 0.03 0.5289 0.5397 0.5390
0.05 0.10 0.2681 0.2789 0.2781
0.10 0.01 0.4583 0.4729 0.4716
0.10 0.03 0.3561 0.3707 0.3693
0.10 0.10 0.1089 0.1236 0.1222

TABLE II
LOWER BOUNDS ON THE CAPACITY OF THE RANDOM INSERTION CHANNEL(IN THE LEFT HAND SIDE TABLE “1-LOWER BOUND” IS REPORTED).

pi 1−LB from [3] 1−LB (34) optimal
value ofn

10−6 2.14× 10−5 2.007× 10−5 121
10−5 1.81× 10−4 1.68× 10−4 57
10−4 1.47× 10−3 1.35× 10−3 27
10−3 1.14× 10−2 1.02× 10−2 13
10−2 8.07× 10−1 7.14× 10−2 7

pi LB from [3] LB (34) optimal
value ofn

0.03 0.8056 0.8276 5
0.05 0.7136 0.7442 5
0.10 0.5310 0.5702 4
0.15 0.3901 0.4230 4
0.20 0.2781 0.2962 3
0.23 0.2220 0.2283 3
0.25 0.1887 0.1853 3

upon the lower bound in [3] forpi < 0.25, e.g., forpi = 0.1,
we achieve an improvement of0.0392 bits/channel use.
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VII. C ONCLUSIONS

We have presented several analytical lower bounds on the
capacity of the insertion/deletion channels by lower bounding
the mutual information rate for i.u.d. input sequences. We have
derived the first analytical lower bound on the capacity of the
deletion-AWGN channel which for small values of deletion
probability is very close to the existing simulation based lower
bounds. The lower bound presented on the capacity of the
deletion-substitution channel improves the existing analyti-
cal lower bound for all values of deletion and substitution
probabilities. For random insertion channel, the presented
lower bound improve the existing ones forpi < 0.25. For
pe = 0, the presented lower bound on the capacity of the
deletion-substitution channel results into a lower bound on
the capacity of the deletion-only channel which for small
values of deletion probability, is very close to the tightest
presented lower bounds, and is in agreement with the first
order expansion of the channel capacity forpd → 0, while
our result is a strict lower bound for the entire range ofpd.

APPENDIX A
DELETION-SUBSTITUTION CHANNEL CAPACITY IN TERMS

OF THE DELETION CHANNEL CAPACITY

In this appendix, we relate the deletion-substitution and
deletion-only channel capacities through an inequality (as
pointed to us by one of the reviewers) which is a special case
of a result obtained by the authors in [16]. This inequality can
provide a tool to provide simpler proof for Lemma 1.

Claim 1. For any possible input distributionP (X), we have

I(X;Y ′) ≥ I(X ;Y )− n(1− pd)Hb(pe). (44)

Proof: In Fig. 1, X → Y → Y ′ form a Markov chain.
Let F be the ‘flipping’ process of the BSC channel, consisting
of (1−pd+δ)n bits drawn from i.i.d. Bernoulli(pe), where a 1
represents a flip, and 0 represents a location that is unaffected,
and δ > 0 is some constant we can choose later. Clearly,
Y ′ = f(Y ;F ) with high probability for the obvious function
f(.) which doesY ′

i = Yi ⊕ Fi for all bits in Y . (There is a
problematic event corresponding to more than(1 − pd + δ)n
bits passing through the deletion channel, but the probability
of this event goes to 0 asn → ∞. This event can be dealt
with and we ignore it below, simply assumingY ′ = f(Y ;F ).
Note that we also haveY = f(Y ′;F ) at the same time).

Hence, for the mutual informationI(X;Y ′), we have

I(X;Y ′) = H(X)−H(X |Y ′)

= H(X)−H(X |Y ′,F )− I(F ;X|Y ′).

Now, H(X|Y ′,F ) = H(X|Y ,Y ′,F ) = H(X|Y ) since
Y = f(Y ′,F ) and X → Y → (F ,Y ′) form a Markov
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chain. Further,I(F ;X|Y ′) ≤ H(F |Y ′) = H(F ) =
n(1− pd + δ)Hb(pe). It follows that

I(X;Y ′) ≥ H(X)−H(X |Y )− n(1− pd + δ)Hb(pe)

= I(X;Y )− n(1− pd + δ)Hb(pe).

Sinceδ > 0 is arbitrary, the result follows.

Corollary 2. Let Cd and Cds denote the deletion-only and
deletion-substitution channel capacities, respectively, then

Cds ≥ Cd − (1− pd)Hb(pe). (45)

Proof: Since Eq. (44) holds for any possible input dis-
tribution, it holds for capacity achieving input distribution for
the deletion-only channel as well. Therefore, by dividing both
sides byn and lettingn go to infinity the proof follows.

APPENDIX B
PART OF PROOF OFPROPOSITION2

H

(

Y
′

∣

∣

∣

∣

x(b;n;Kx)

)

= −
n
∑

j=0

∑

y′∈Yd
−j

P
(

y
′(n− j)|x

)

log
(

P
(

y
′(n− j)|x

))

≤−
n
∑

j=0

∑

y′∈Yd
−j

∑

D∈Dn
K

(j)

P (y′|D∗x)P (D|x)log
(

P (y′|D∗x)P (D|x)
)

,

where the inequality is obtained from the expression in (19).
Furthermore, by employing the results from Eqs. (16)
and (17) and using the fact that there are

(
n−j
s

)
, dis-

tinct output sequences of lengthn − j resulting from
s substitution errors into a given inputx, i.e., s =
dH (y′(n− j);D(n;K; j) ∗ x(n;K)), we arrive at

H

(
Y ′

∣∣∣∣x(b;n;K
x)

)

≤ −
n∑

j=0

n−j∑

s=0

(
n− j

s

) ∑

j1+···+jK=j

pse(1− pe)
n−j−s×

×
(
nx
1

j1

)
· · ·
(
nx
K

jK

)
p
j
d(1 − pd)

n−j×

× log

((
nx
1

j1

)
· · ·
(
nx
K

jK

)
p
j
d(1− pd)

n−jpse(1− pe)
n−j−s

)

= −
n∑

j=0

∑

j1+···+jK=j

(
nx
1

j1

)
· · ·
(
nx
K

jK

)
p
j
d(1− pd)

n−j×

×
[
− (n−j)Hb(pe)+log

((
nx
1

j1

)
· · ·
(
nx
K

jK

)
p
j
d(1− pd)

n−j

)]

= nHb(pd)−
n∑

j=0

∑

j1+···+jK=j

(
nx
1

j1

)
· · ·
(
nx
K

jK

)
p
j
d(1−pd)

n−j×

×
[
− n(1− pd)Hb(pe) + log

((
nx
1

j1

)
· · ·
(
nx
K

jK

))]
.

Using the generalized Vandermonde’s identity, that is,

∑

j1+...+jKx=j

(
nx
1

j1

)
. . .

(
nx
Kx

jKx

)
=

(
n

j

)
,

and the result
∑

j1+...+jKx=j

(
nx
1

j1

)
. . .

(
nx
Kx

jKx

)
log

((
nx
1

j1

)
. . .

(
nx
Kx

jKx

))

=
∑

j1+...+jKx=j

(
nx
1

j1

)
. . .

(
nx
Kx

jKx

) Kx∑

k=1

log

(
nx
k

jk

)

=

Kx∑

k=1

j∑

jk=0

(
nx
k

jk

)(
n− nx

k

j − jk

)
log

(
nx
k

jk

)
,

we obtain

H

(
Y ′

∣∣∣∣x(b;n;K
x)

)
≤ nHb(pd) + n(1− pd)Hb(pe)

−
n∑

j=0

p
j
d(1 − pd)

n−j

Kx∑

k=1

j∑

jk=0

(
nx
k

jk

)(
n− nx

k

j − jk

)
log

(
nx
k

jk

)
.

APPENDIX C
PROOF OFPROPOSITION4

For an i.i.d. deletion-AWGN channel, for a givenx(b;n;K)
and a fixedj, definingα(D,x) = 1−2(D∗x), i.e.,αi(D,x) ∈
{1,−1}, yields

fỹ(η|x(b;n;K), j)

=
∑

D∈Dn
K
(j)

fỹ(η|x(b;n;K), D)P (D|x(b;n;K))

=
∑

D∈Dn
K
(j)

fỹ(η|α(D,x))P (D|x(b;n;K))

=
∑

D∈Dn
K
(j)

fỹ1...ỹn−j
(η1 . . . ηn−j |α1 . . . αn−j)P (D|x(b;n;K))

=
∑

D∈Dn
K
(j)

fỹ1
(η1|α1) . . . fỹn−j

(ηn−j |αn−j)P (D|x(b;n;K)),

where the last equality follows the fact that the noise samples
zi are independent andαi(D,x) are also independent. By
employing

fỹi
(ηi|αi(D,x)) =

1√
2πσ

exp

(−(ηi − αi(D,x))2

2σ2

)
,

andP

(
D(n;K; j)

∣∣∣∣x(b;n;K), j

)
=

(
n1

j1

)
. . .
(
nK

jK

)
(
n
j

) , we can

write

fỹ(η|x(b;n;K), j)

=
1

(
√
2πσ)n−j

∑

D∈Dn
K
(j)

n−j∏

i=1

e
−(ηi−αi(D,x))2

2σ2 P (D|x(b;n;K), j)

=
1

(
√
2πσ)n−j

∑

j1+...+jK=j

(
n1

j1

)
. . .
(
nK

jK

)
(
n
j

)
n−j∏

i=1

e
−(ηi−αi(D,x))2

2σ2 ,

Therefore, by defining

A(j1, . . . , jK) =

(
n1

j1

)
. . .
(
nK

jK

)
(
n
j

)
n−j∏

i=1

e
−(ηi−αi(D,x))2

2σ2 ,
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we obtain

h(Ỹ |x, j)

= −
∫ ∞

−∞

. . .

∫ ∞

−∞

1

(
√
2πσ)n−j

∑

j1+...+jK=j

A(j1, . . . , jK)×

×log



 1

(
√
2πσ)n−j

∑

j′1+...+j′
K
=j

A(j′1, . . . , j
′
K)



dη1 . . . dηn−j

= −
∫ ∞

−∞

. . .

∫ ∞

−∞

1

(
√
2πσ)n−j

∑

j1+...+jK=j

A(j1, . . . , jK)×

×


log




∑

j′1+...+j′
K
=j

A(j′1, . . . , j
′
K)




 dη1 . . . dηn−j

+ (n− j) log(
√
2πσ),

where we used the result of the generalized Vandermonde’s
identity and also the fact that

∫∞

−∞ fỹi
(ηi|ȳi)dηi = 1. By using

the inequality
∑

j′1+...+j′
K
=j

A(j′1, . . . , j
′
K) ≥ A(j1, . . . , jK),

which holds for everyj1 + . . .+ jK = j, we can write

h(Ỹ |x, j) ≤ (n− j) log(
√
2πσ)

−
∫ ∞

−∞

. . .

∫ ∞

−∞

1

(
√
2πσ)n−j

∑

j1+...+jK=j

A(j1, . . . , jK)×

× log (A(j1, . . . , jK)) dη1 . . . dηn−j

= (n− j) log(
√
2πeσ) + log

(
n

j

)

−
∑

j1+...+jK=j

(
n1

j1

)
. . .
(
nK

jK

)
(
n
j

) log

((
n1

j1

)
. . .

(
nK

jK

))
.

By considering i.u.d. input sequences, we have

h(Ỹ |X, T ) =

n∑

j=0

(
n

j

)
p
j
d(1− pd)

n−j
∑

x∈X

1

2n
h(Ỹ |x, j)

≤ n(1− pd) log(
√
2πeσ)

+

n∑

j=0

(
n

j

)
p
j
d(1− pd)

n−j

[
log

(
n

j

)
−Wj(n)

]
,

(46)

whereWj(n) is given in Eq. (8), and the result is obtained by
following the same steps as in the computation leading to (20).
Therefore, by substituting Eq. (46) into Eq. (33), Eq. (32) is
obtained which concludes the proof.
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