
Ranking Instances by Maximizing
the Area under ROC Curve

H. Altay Güvenir, Member, IEEE, and Murat Kurtcephe

Abstract—In recent years, the problem of learning a real-valued function that induces a ranking over an instance space has gained

importance in machine learning literature. Here, we propose a supervised algorithm that learns a ranking function, called ranking

instances by maximizing the area under the ROC curve (RIMARC). Since the area under the ROC curve (AUC) is a widely accepted

performance measure for evaluating the quality of ranking, the algorithm aims to maximize the AUC value directly. For a single

categorical feature, we show the necessary and sufficient condition that any ranking function must satisfy to achieve the maximum

AUC. We also sketch a method to discretize a continuous feature in a way to reach the maximum AUC as well. RIMARC uses a

heuristic to extend this maximization to all features of a data set. The ranking function learned by the RIMARC algorithm is in a human-

readable form; therefore, it provides valuable information to domain experts for decision making. Performance of RIMARC is evaluated

on many real-life data sets by using different state-of-the-art algorithms. Evaluations of the AUC metric show that RIMARC achieves

significantly better performance compared to other similar methods.

Index Terms—Ranking, data mining, machine learning, decision support

Ç

1 INTRODUCTION

IN this paper, we propose a binary classification metho-
dology that ranks instances based upon how likely they

are to have a positive label. Our method is based on receiver
operating characteristic (ROC) analysis, and attempts to
maximize the area under the ROC curve (AUC); hence, the
algorithm is called ranking instances by maximizing the
area under ROC curve (RIMARC). The RIMARC algorithm
learns a ranking function which is a linear combination of
nonlinear score functions constructed for each feature
separately. Each of these nonlinear score functions aims to
maximize the AUC by considering only the corresponding
feature in ranking. All continuous features are first
discretized into categorical ones in a way that optimizes
the AUC. Given a single categorical feature, it is possible to
derive a scoring function that achieves the maximum AUC.
We show the necessary and sufficient condition that such a
scoring function for a single feature has to satisfy for
achieving the maximum AUC. Computing the score
function for a categorical feature requires only one pass
over the training data set. Missing feature values are simply
ignored. The AUC value, obtained on the training data, for
a single feature, reflects the effect of that feature in the
correct ranking. Using these AUC values as weights, the
RIMARC algorithm combines these score functions, learned
for each feature, into a single ranking function.

The main characteristics of the RIMARC algorithm can
be summarized as follows: It achieves comparably high
AUC values. Its time complexity for both learning and
applying the ranking function is relatively low. Being a
nonparametric method, it does not require tuning of
parameters to achieve the best performance. It is robust to
missing feature values. Finally, the ranking function learned
is in a human readable form that can be easily interpreted
by domain experts, listing the effects (weight) of features
and how their particular values affect the ranking. The
RIMARC algorithm is simple and easy to implement. In
cases where a data set is collected from experiments for
research purposes, the researchers may be more interested
in the effects of the features and their particular values on
ranking than the particular ranking function.

In the next section, the ranking problem is revisited.
Section 3 covers ROC, AUC and research on AUC
maximization. In Section 4, the RIMARC method and
implementation details are given. Section 5 presents the
empirical evaluation of RIMARC on real-world data sets.
Section 6 discusses the related work. Finally, Section 7
concludes with some suggestions for future work.

2 RANKING

The ranking problem can be viewed as a binary classification
problem with additional ordinal information. In the binary
classification problem, the learner is given a finite sequence
of labeled training examples z ¼ ððx1; y1Þ; . . . ; ðxn; ynÞÞ,
where the xi are instances in some instance space X and
the yi are labels in Y ¼ fp;ng, and the goal is to learn a
binary-valued function h : X ! Y that predicts accurately
labels of future instances.

The problem of finding a function that ranks positive
instances higher than the negative ones is referred as the
bipartite ranking problem. Here, a training data set D, from

2356 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 10, OCTOBER 2013

. The authors are with the Department of Computer Engineering, Bilkent
University, Ankara 06800, Turkey.
E-mail: guvenir@cs.bilkent.edu.tr, kurtcephe@gmail.com.

Manuscript received 26 Feb. 2012; revised 15 Oct. 2012; accepted 17 Oct.
2012; published online 23 Oct. 2012.
Recommended for acceptance by B.C. Ooi.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-2012-02-0128.
Digital Object Identifier no. 10.1109/TKDE.2012.214.

1041-4347/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society

an instance space X, is given, where the instances come
from a set of two categories, positive and negative,
represented as {p, n}. Using D, the goal is to learn a ranking
function r : X ! IR that ranks future positive instances
higher than negative ones. In other words, the function r is
expected to assign higher values to positive instances than
to negative ones. Then, the instances can be ordered using
the values provided by the ranking function.

3 INTRODUCTION TO ROC ANALYSIS

The ROC graph is a tool that can be used to visualize,
organize, and select classifiers based on their performance
[22]. It has become a popular performance measure in the
machine learning community after it was realized that
accuracy is often a poor metric to evaluate classifier
performance [33], [41], [42].

The literature on ROC is more established to deal with
binary classification problems than multiclass ones. At the
end of the classification phase, some classifiers simply map
each instance to a class label (discrete output). Some other
classifiers, such as naı̈ve Bayes or neural networks are able
to estimate the probability of an instance belonging to a
specific class (continuous valued output).

Binary classifiers produce a discrete output represented
by only one point in the ROC space, since only one
confusion matrix is produced from their classification
output. Continuous-output-producing classifiers can have
more than one confusion matrix by applying different
thresholds to predict class membership. All instances with a
score greater than the threshold are predicted to be p class
and all others are predicted to be n class. Therefore, for each
threshold value, a separate confusion matrix is obtained.
The number of confusion matrices is equal to the number of
ROC points on an ROC graph. With the method proposed
by Domingos [15], it is possible to obtain ROC curves even
for algorithms that are unable to produce scores.

Let a set of instances, labeled as p or n, be ranked by
some scoring function. Given a threshold value � , instances
whose score is below � are predicted as n, and those with
score higher than � are predicted as p. For a given threshold
value, TP is equal to the number of positive instances that
have been classified correctly and FP is equal to the number
of negative instances that have been misclassified.

The ROC graph can be plotted as the fraction of true
positives out of the positives (TPR = true positive rate)
versus the fraction of false positives out of the negatives
(FPR = false positive rate). The values of TPR and FPR are
calculated by using (1). In this equation, N is the number of
total negative instances and P is the number of total
positive instances

TPR ¼ TP
P
; FPR ¼ FP

N
: ð1Þ

For each possible distinct � value, a distinct (FPR, TPR)
value is computed. The ROC space is a 2D space with a
range of [0, 1] on both axes. In ROC space the vertical axis
represents the true positive rate of a classification output,
while the horizontal axis represents the false positive rate.
That is, each (FPR, TPR) pair corresponds to a point on the
ROC space. In a data set with s distinct classifier scores,

there are sþ 1 ROC points, including the trivial (0, 0) and
(1, 1) points.

Although ROC graphs are useful for visualizing the
performance of a classifier, a scalar value is needed to
compare classifiers. Bradley [5] proposes the area under the
ROC curve as a performance measure.

The ROC graph space is a one-unit square. The highest
possible AUC value is 1.0, which represents the perfect
ordering. In ROC graphs, a 0.5 AUC value means random
guessing has occurred and values below 0.5 are not realistic
as they can be negated by changing the decision criteria of
the classifier.

The AUC value of a classifier is equal to the
probability that the classifier will rank a randomly chosen
positive instance higher than a randomly chosen negative
instance [22].

In an empirical ROC curve, the AUC is usually estimated
by the trapezoidal rule. According to this rule, trapezoids
are formed using the observed points as corners, the areas
of these trapezoids are computed and then they are added
up. Fawcett [22] proposed efficient algorithms for generat-
ing the ROC points and computing the AUC.

It can be shown that the area under the ROC curve is
closely related to the Mann-Whitney U, which tests whether
positives are ranked higher than negatives. AUC is also
equivalent to the Wilcoxon test of ranks [30].

4 RIMARC

RIMARC is a simple, yet powerful, ranking algorithm
designed to maximize the AUC metric directly. The
RIMARC algorithm reduces the problem of finding a
ranking function for the whole set of features into finding
a ranking function for a single categorical feature, and then
combines these functions to form one covering all features.
We will show that it is possible to determine a ranking
function that achieves the maximum possible AUC for a
single categorical feature. During the training phase, the
RIMARC algorithm first discretizes the continuous features
by a method called MAD2C, proposed by Kurtcephe and
Guvenir [35]. The MAD2C method discretizes a continuous
feature in such a way that results in a set of categorical
values so that the AUC of the new categorical feature is the
maximum. At this point, all the features are categorical.
Then, the score for a value v of a feature f is assigned to be
the probability of a training instance that has the value v for
the feature f to have the class label p. During the
computation of the score values, instances whose value
for the feature f is missing are simply ignored. For each
feature, the values are sorted in the increasing order of their
score, and the AUC is computed. Finally, the weight of a
feature f is computed as, wf ¼ 2ðAUCðfÞ � 0:5Þ where
AUC(f) is the AUC obtained on the feature f . That is, the
weight of a feature is a linear function of its AUC value
calculated using the training instances whose value for that
feature is known. A higher value of AUC for a feature is an
indication of its higher relevance in determining the class
label. For example, if the AUC computed for a feature f is 1,
than it means that all instances in the training set can be
ranked by using only the values of f . Hence, we can expect
that new query instances can also be ranked correctly by

GÜVENIR AND KURTCEPHE: RANKING INSTANCES BY MAXIMIZING THE AREA UNDER ROC CURVE 2357

using f only. The training method of the RIMARC

algorithm is given in Algorithm 2.
For a given query, q, the ranking function, r(), of the

RIMARC algorithm returns a real value rðqÞ in the range of

[0, 1]. This value r(q) is roughly the probability that the

instance q has the class label p. It is only a rough estimate of

the probability, since it is very likely that no other instance

with exactly the same feature values has been observed in

the training set. The ranking function of the RIMARC

algorithm determines this estimated probability by comput-

ing the weighted average of probabilities computed on

single features, as shown in Algorithm 1.

Algorithm 1. The ranking function.

Algorithm 2. Training in RIMARC.

In the following sections, we will show how the ranking

function and the score values can be defined for a single

categorical feature.

4.1 Single Categorical Feature Case

A categorical feature has a finite set of choices as its values.

Let V ¼ fv1; . . . vkg be a the set of categorical values for a

given feature. In that case, the training data set D is a set of

instances represented by a vector of feature value and class

label as <vi; c>, where vi 2 V and c 2 fp;ng. A ranking

function r : V ! [0, 1] can be defined to rank the values in

V . According to this ranking function, a value vj comes after

a value vi if and only if rðviÞ < rðvjÞ; hence, r defines a total

ordering on the set V , that is vi � vj. A pair of consecutive
values vi and viþ1 defines an ROC point Ri on the ROC
space. The coordinates of the point Ri are (FPRi; TPRi).
The instances of D can then be ranked according to the
values of rðvi) corresponding to their feature values, vi.

Let D be a data set with a single categorical feature
whose value set is V ¼ fv1; . . . ; vkg, and r : V ! [0, 1] be
the ranking function that orders the values of V , such that
vi � viþ1 if rðviÞ < rðviþ1Þ, for all values of 1 � i � k. Since
there is only one feature, this function r(), ranks the
instances, directly.

It is interesting to note that, if the values of the ranking
function for two consecutive values vi and viþ1 are
swapped, then the only change in the ROC curve is that
the ROC point corresponding to the vi and viþ1 values
moves to a new location so that the slopes of the line
segments adjacent to that ROC point are swapped.

For example, consider a data set with a single categorical
feature, given as D ¼ fða;nÞ; ðb;pÞ; ðb;nÞ; ðb;nÞ; ðb;nÞ;
ðc;pÞ; ðc;pÞ; ðc;nÞ; ðc;nÞ; ðd;pÞ; ðd;pÞ; ðd;nÞg, where V ¼
fa; b; c; dg. If a ranking function r orders the values of V
as a � c � b � d, with rðaÞ < rðcÞ < rðbÞ < rðdÞ, the ROC
curve shown in Fig. 1a will be obtained. If the ranking
function is modified so that values of rðbÞ and rðcÞ are
swapped, the ROC curve shown in Fig. 1b will be obtained.
A similar technique was used earlier by earlier by Flach and
Wu [24] to create better prediction models for classifiers.

This property of the ROC spaces helps to remove the
concavities in an ROC curve, resulting in a larger AUC. To
obtain the maximum AUC value, the ROC curve has to be
convex. Hence, we will show how to construct the ranking
function so that the resulting ROC curve is guaranteed to
be convex.

Note that the slope of the line segment between two
consecutive ROC points Ri and Riþ1 is

si ¼
TPRi � TPRiþ1

FPRi � FPRiþ1
: ð2Þ

In order for the ROC curve to be convex, the slopes of all
line segments connecting consecutive ROC points starting
from the trivial ROC point (1, 1) must be nondecreasing, as
shown in Fig. 2. Therefore, the condition for a convex ROC
curve is

8i
1�i<k

si � siþ1: ð3Þ

2358 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 10, OCTOBER 2013

Fig. 1. Effect of swapping the values of the ranking function of two

feature values.

Using (2),

8i
1�i<k

TPRiþ1 � TPRiþ2

FPRiþ1 � FPRiþ2
� TPRi � TPRiþ1

FPRi � FPRiþ1
:

By definition,TPRi ¼ TPi
P , whereTPi is the number of true

positives with value vi. Further, due to the ordering of values,
TPi ¼ Pi þ TPiþ1, where Pi is the number of p-labeled
instances with value vi. Hence,

TPRi � TPRiþ1 ¼
TPRi

P
� TPRiþ1

P

¼ 1

P

�
Pi þ TPiþ1 � TPiþ1

�
¼ Pi
P
:

Similarly,

FPRi � FPRiþ1 ¼
Ni

N
:

TPRiþ1 � TPRiþ2 ¼ Piþ1

P and

FPRiþ1 � FPRiþ2 ¼
Niþ1

N
:

Therefore, the condition in (3) can be rewritten as

8i
1�i<k

Piþ1=P

Niþ1=N
� Pi=P

Ni=N
:

Finally,

8i
1�i<k

Piþ1

Niþ1
� Pi
Ni
: ð4Þ

That is, to obtain a convex ROC curve, the condition in
(4) must be satisfied for all ROC points. In other words, to
achieve the maximum AUC, the ranking function has to
satisfy the following condition:

8i
1�i<k

rðviþ1Þ > rðviÞ iff
Piþ1

Niþ1
� Pi
Ni
: ð5Þ

Further, any ranking function that satisfies (5) will result
in the same ROC curve and achieve the maximum AUC.
For example, the ranking function defined as rðviÞ ¼ Pi

Ni
will

result in a convex ROC curve.
It is also important to note that, given a data set with a

single categorical feature, there exists exactly one convex
ROC curve, and it corresponds to the best ranking.

The general assumptions for ranking problems are
given below:

8i
1�i�k

Pi � 0; 8i
1�i�k

Ni � 0;

P ¼
Xk

1

Pi > 0; N ¼
Xk

1

Ni > 0:

Although the data set is guaranteed to have at least one
instance with class label p and one instance with label n, it
is possible that for some values of i, Ni may be 0. In such
cases the ranking function defined as rðviÞ ¼ Pi=Ni will
have an undefined value. To avoid such problems, the
RIMARC algorithm defines the ranking function as

rðviÞ ¼
Pi

Pi þNi
: ð6Þ

Note that, since 8i1�i�k Pi þNi > 0 , r(vi) is defined for all
values of i. To see that the ranking function defined in (6)
satisfies the condition in (5), note that if

8i
0�i<n

Piþ1

Piþ1 þNiþ1
� Pi
Pi þNi

;

then

8i
0�i<n

Piþ1 Pi þNið Þ � Pi Piþ1 þNiþ1ð Þ;

and

8i
0�i<n

Piþ1

Niþ1
� Pi
Ni
:

The ranking function given in (6) has another added
benefit, in that it is simply the probability of the p label
among all instances with value vi. Such a probability value
is easily interpretable by humans.

However, note that the commonly used Laplace esti-
mate, defined as Piþ1

PiþNiþ2 does not satisfy the condition in (5).

4.1.1 The Effect of the Choice of the Class Labeling on

the AUC

To calculate the P and N values, one of the classes should
be labeled as p and the other class as n, but one can question
the effect this choice has on the AUC value. It is possible to
show that the AUC value of a categorical feature is
independent from the choice of class labels by using the
value from the Wilcoxon-Mann-Whitney statistics.

In (7), the AUC formula based on the Wilcoxon-Mann-
Whitney statistics is given. The set Dp represents the p-
labeled instances and Dn represents the n-labeled instances.
Dpi is the ranking of the ith instance in the Dp set, similarly,
Dnj, is the ranking of the ith instance in the Dp set

AUC ¼
PP

i¼1

PN
j¼1 fðDpi;DnjÞ
PN

;

f ¼
1 if Dpi > Dnj

0 if Dpi < Dnj

0:5 if Dpi ¼ Dnj

2
64

3
75:

ð7Þ

The dividend part of the AUC formula in (7) counts the
number of p-labeled instances for each element of the Dp set
whose ranking is higher than any element of the Dn set.
Then, AUC is calculated by dividing this summation by the
multiplication of the p-labeled and n-labeled elements.

It is straightforward that the divisor part of the AUC
formula is independent of the choice of the class labels.

GÜVENIR AND KURTCEPHE: RANKING INSTANCES BY MAXIMIZING THE AREA UNDER ROC CURVE 2359

Fig. 2. Relation between the slopes of two consecutive line segments in

a convex ROC curve.

Assume that the ranking function given in (6) is used on the
data set D, and Dp and Dn sets are formed. Let ni be the
number of n-labeled instances whose ranking is lower than
the ith element of the Dp set and let ri be the score assigned
to this element. When the classes are swapped, the new
ranking score r0i is equal to 1� ri. Using this property, all
instance scores are subtracted from 1. However, this
operation simply reverses the ranking of the instances. So
the formula in (7), which calculates the value of AUC, using
the ranking of the instances, is independent of the choice of
class labeling.

4.1.2 An Example Toy Data Set

Consider a toy training data set with a single categorical
feature given in Table 1. To calculate the AUC value of this
particular feature, assume that the ranking scores are
calculated by the function in (6). The ranking scores of the
categorical values are as follows: rðaÞ ¼ 0:25; rðbÞ ¼
0:33; rðcÞ ¼ 0:67, and rðdÞ ¼ 1. The version of the data set
sorted by the ranking function is given in Table 2. In this
example, the value of P is 7 and the value of N is 6. The
AUC value of this feature is calculated by using (7), as
34:5
7�6 ¼ 0:82. When the class labels are swapped (n labels are
replaced by p labels and vice versa) the ranking scores are
also swapped. The sorted version of the swapped toy data
set is given in Table 3. Since the relative ranking of the
instances does not change, the AUC value of the new
ranking is also is 0.82.

4.2 Handling Continuous Features

Having determined the requirement for a ranking function
for a categorical feature to achieve the maximum possible
AUC, the next problem is to develop a mechanism for
handling the continuous features. An obvious and trivial
ranking function maps each real value seen in the training
set with the class label p to 1 and each real value with the
class label n to 0. This risk function will result in the
maximum possible value for AUC, which is 1.0. However,
such a risk function will over fit the training data, and will
be undefined for unseen values of the feature, which are
very likely to be seen in a query instance. The first
requirement for a risk function for a continuous feature is
that it must be defined for all possible values of that
continuous feature. A straightforward solution to this
requirement is to discretize the continuous feature by
grouping all consecutive values with the same class value

to a single categorical value. The cut off points can be set to
the middle point between feature values of differing class
labels. The ranking function, then, can be defined using the
function given in (6) for categorical features. Although this
would result in a ranking function that is defined for all
values of a continuous function, it would still suffer from
the over fitting problem. To overcome this problem, the
RIMARC algorithm makes the following assumption.

Assumption. For a continuous feature, either the higher values
are indicators of the p class and lower values are indicators of
the of the n class, or vice versa.

Although there exist some features in real-world
domains that do not satisfy this assumption, in the data
sets we examined this assumption is satisfied in general.

This assumption is also consistent with the interpreta-
tions of the values of continuous features in many real-
world applications. For example, in a medical domain, a
high value of fasting blood glucose is an indication for
diabetes. On the other hand, low fasting blood glucose is an
indication of another health problem, called hypoglycemia.

4.2.1 The MAD2C Method

As explained above, the RIMARC algorithm requires all
features to be categorical. Therefore, the continuous features
in a data set need to be converted into categorical ones,
through discretization. The aim of a discretization method
is to find the proper cut-points to categorize a given
continuous feature.

The MAD algorithm given in [35] is defined for multiclass
data sets. It is designed to maximize the AUC value by
checking the ranking quality of values of a continuous
feature. A special version of the MAD algorithm, called
MAD2C, defined for two-class problems, is used in RIMARC.

The MAD2C algorithm first sorts the training instances
in ascending order. Sorting is essential for all discretization
methods to produce intervals that are as homogenous as
possible. After the sorting operation, feature values are
used as hypothetical ranking score values and the ROC
graph of the ranking on that feature is constructed. The
AUC of the ROC curve indicates the overall ranking quality
of the continuous feature. To obtain the maximum AUC
value, only the points on the convex hull must be selected.
The minimum number of points that form the convex hull
is found by eliminating the points that cause concavities on
the ROC graph. In each pass, the MAD2C method
compares the slopes in the order of the creation of the
hypothetical lines, finds the junction points (cut-points) that
cause concavities and eliminates them. This process is
repeated until there is no concavity remaining on the graph.
The points left on the graph are the cut-points, which will
be used to discretize the feature.

2360 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 10, OCTOBER 2013

TABLE 1
Toy Training Data Set with One Categorical Feature

TABLE 2
Toy Training Data Set with Score Values

The ranking scores of the instances are calculated and they are sorted in
ascending order.

TABLE 3
Training Data Set with Class Labels Swapped

The ranking scores are recalculated and instances are sorted in
ascending order.

It has been proven that the MAD2C method finds the
cut-points that will yield the maximum AUC. It is also
shown that the cut-points found by MAD2C never separate
two consecutive instances of the same class. This is an
important property, expected from a discretization method.
The MAD2C method is preferred among other discretiza-
tion methods since it has been shown in empirical
evaluations that MAD2C has lower running time in two-
class data sets and helps the classification algorithms to
achieve a higher performance than other well-known
discretization methods on AUC basis [35].

4.2.2 A Toy Data Set Discretization Example

To visualize the discretization process using the MAD2C
method, a toy data set is given in Table 4. After the sorting
operation, the ROC points are formed. The ROC graph for
the example in Table 4 is given in Fig. 3. In this example, the
higher F1 values are indicators of the p class. If the lower
values of feature F1 were indicators of the p class, then the p

and n class labels would be swapped and the ROC graph
below the diagonal would have been obtained. Note that
these two ROC graphs are symmetric about the diagonal.

The first pass of the MAD2C algorithm is shown in Fig. 4.
All points below or on the diagonal are ignored since they
have no positive effect on the maximization of AUC. Then
the points causing concavities are eliminated. MAD2C
converged to the convex hull in one pass for this example,
as shown in Fig. 4. The set of points left on the graph are
reported as the discretization cut-points.

4.3 The RIMARC Algorithm

The training phase of the RIMARC algorithm is given in
Algorithm. 1. In the training phase, first, using the MAD2C
algorithm, all continuous features are discretized and

converted into categorical features. Ranking scores are
calculated for each value of a given categorical feature,
including discretized continuous features. In this step, the
ranking function defined in (6) is used to obtain the optimal
ranking for the features. Then, the training instances are
sorted according to their ranking values computed in the
previous step. Since the ranking function used by RIMARC
always results in a convex ROC curve, the AUC is always
equal to or greater than 0.5.

The AUC of a feature indicates its relevance in the
ranking of an instance. For example, if a feature has 1 as its
AUC, than the ranking score of a new instance can be
computed by considering only that feature. On the other
hand, a feature with 0.5 as its AUC should be ignored.
Therefore, the RIMARC algorithm uses a function of AUC
to determine the weight of a feature in ranking. Since it is
easier for human experts to interpret the weight values in
the range of 0 to 1, the RIMARC algorithm uses a weight wf
for a feature f computed as

wf ¼ 2ðAUCf � 0:5Þ: ð8Þ

The ROC curve of an irrelevant feature is simply a
diagonal line from (0, 0) to (1, 1), withAUC ¼ 0:5. The weight
function in (8) assigns 0 to such irrelevant features to ignore
them in computing the ranking function. The score values
and weights of the features are stored for the querying phase.

The model learned for the single function for the toy data
set in Table 4 is shown in Fig. 5. The model contains the
weight of the feature and a nonlinear ranking function.

The testing phase of the RIMARC method is straightfor-
ward, as shown in Algorithm 2. For each feature, the
ranking score corresponding to the value of the feature in

GÜVENIR AND KURTCEPHE: RANKING INSTANCES BY MAXIMIZING THE AREA UNDER ROC CURVE 2361

TABLE 4
A Toy Data Set for Visualizing MAD2C

Fig. 3. Visualization of the ROC points in two-class discretization.

Fig. 4. Final cut-points after the first pass of convex hull algorithm.

Fig. 5. The model learned for the single feature in Table 5.

the query instance is used. The ranking score of this feature
is weighted by its weight computed in the training phase.
The computation of the ranking function for a query
instance q is given in (9).

rðqÞ ¼
P

f wf : Prðp j qfÞP
f wf

;

wf ¼
2ðAUCf � 0:5Þ; qf is known;

0; qf is missing:

� ð9Þ

The maximization of AUC for the whole feature set is a
challenging problem. Cohen et al. [11] showed that the
problem of finding the ordering that agrees best with a
learned preference function is NP-Complete. As a solution,
this weighting mechanism is used as a simple heuristic to
extend this maximization over the whole feature set.

In (9), Prðp j qfÞ is the probability that the query instance
q being p-labeled, given that the value of feature f in q is qf
and wf is the weight of the feature f , computed by (8).
Finally, to obtain the weighted average, the sum of all
weighted score values is divided by the sum of the weights
of all used (known) features. That is, rðqÞ is the weighted
probability of the instance q has the label p.

4.4 Time Complexity

The training time complexity of the MAD2C algorithm is
Oðn2Þ, in the worst case and Oðn lognÞ in the best case,
where n is the number of training instances. Since the
distribution of the data is not known, calculation of the
average-case is not possible theoretically. However, in
empirical evaluations, the MAD2C method converged to
the convex hull in very close to linear time [35] excluding
sorting time. After discretizing the numerical features,
the time complexity of the RIMARC algorithm is
Oðm � v � logvþ nÞ, where m is the number of features and
v is the average number of categorical values per feature.
That is, the training time complexity of the RIMARC is
bounded by that of the MAD2C algorithm. The time
complexity of the querying step is simply O(m).

4.5 Interpretation of the Predictive Model of
RIMARC

The RIMARC method not only provides the ranking score
as a single real value for a given query instance, but also
reports the model used for ranking, which can provide
useful information to domain experts. For example, a high
feature weight value indicates that the corresponding
feature is a highly effective factor in the given domain.
On the other hand, domain experts may choose to ignore
features with low weights, potentially reducing the cost of
record keeping.

Some of the categorical features are formed by dis-
cretizing continuous features. Assume that the effect of age
is investigated on a real-world domain, such as medicine.
Although such a feature can be discretized into child,
youth, adult, and elderly, by some experts, the intervals
should be chosen carefully since they can affect the
ranking performance of the system. Further, in some
experimental domains this kind of prior knowledge may
not even be available. The MAD2C method used in
RIMARC learns the proper intervals to maximize the
AUC during the training phase.

5 EMPIRICAL EVALUATIONS

To support the theoretical background of the RIMARC
algorithm with empirical results, it is compared with
27 different machine learning algorithms on AUC basis.
To experiment with real-life domains, we selected some of
the two-class data sets from the UCI machine learning
repository [25]. We chose 10 data sets with two class labels.
The properties of the data sets are given in Table 5.

To perform the comparisons, 27 different classification
algorithms are selected from the WEKA package [28]. Since
the AUC values are used for the measure of the predictive
performance, only the classification methods that provide
prediction probability estimates are employed in experi-
mental results. However, the SVM algorithms do not
provide these probabilities directly. Therefore, the LibSVM
library is used for the SVM algorithm [9], since it provides
probability estimates using the second approach proposed
by Wu et al. [50]. To compare RIMARC with ranking
algorithms that try to maximize the AUC directly, the SVM-
Perf is also chosen, since the source code is available from
the author [34].

Although RIMARC is a nonparametric method, it
would be unfair not to optimize the parametric classifiers
used in the evaluation. Therefore, the parameters of the
SVM-based classifiers (SVM-RBF and SVM-Perf-RBF),
naı̈ve Bayes and J48 (decision tree) algorithms are
optimized. For all other classifiers, their default settings
in the WEKA package are used.

5.1 Predictive Performance

Researchers have reported that some of the algorithms that
aim to maximize AUC directly do not obtain significantly
better AUC values than the ones designed to maximize
accuracy [13], [29]. Therefore, it is important to show that
RIMARC can outperform accuracy-maximizing algorithms
statistically significantly, as well the ranking algorithms
based on classifiers.

Stratified tenfold cross validation is used to calculate
AUC values for each data set. As shown in Table 6,
the RIMARC method outperformed all algorithms on the
average AUC metric. Further, Wilcoxon signed-rank test
is used to determine whether the differences in averages
are significant [48]. This statistical method is chosen, since it
is a nonparametric method and does not assume normal
distribution as paired t-test does. According to the Wilcoxon

2362 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 10, OCTOBER 2013

TABLE 5
Real Life Data Sets for Evaluation

Properties of the data sets used in the empirical evaluations.

signed-rank test on a 95 percent confidence level (the same
level will be used for other statistical tests), RIMARC
statistically significantly outperforms 17 of the 27 machine
learning algorithms. These algorithms include naı̈ve Bayes,
decision trees (PART, C4.5) and SVM with an RBF kernel
and SVM-Perf with an RBF kernel. The RIMARC algorithm
outperformed the other 10 algorithms, as well, but the
differences between the averages for these algorithms are
not statistically significant.

One important point should be mentioned about the
SVM algorithms. As seen in Table 6, SVM has the worst
predictive performance among all the classification algo-
rithms because of the absence of parameter tuning. There-
fore, we optimized the SVM-RBF and SVM-Perf-RBF by
using an inner cross validation to find the optimum gamma
value for the RBF kernel. The optimized versions of SVM
are called SVM-RBF-Opt and SVM-Perf-RBF-Opt. Gamma
value ranged from 0.01 up to 0.1 in 10 steps. As seen in
Table 6, optimization boosted the performance of SVM-RBF
significantly (0.701 versus 0.887). However, SVM-Perf-RBF
did not gain such a significant improvement by optimiza-
tion (0.754 versus 0.763). As a result, it can be claimed that
the nonparametric RIMARC algorithm outperforms SVM-
based methods significantly, even when they are optimized
on the gamma value.

Entropy-MDLP discretization method by Fayyad and
Irani [19] is used on the naı̈ve Bayes method to improve
predictive performance. Since Dougherty et al. [16]
showed that using discretization improves naı̈ve Bayes
predictive performance, an improvement was expected.

However, as Table 6 shows, the discretization did not
improve the performance of naı̈ve Bayes at all. The C
parameter is optimized by using inner cross validation for
J48 algorithm (decision tree). The C-value is ranged from
0.1 up to 0.5 in 10 steps.

The classifier with the highest AUC after RIMARC was
the Adaboost method. As an ensembling algorithm,
Adaboost uses a base classifier, which is DecisionStump
by default in the WEKA package.

The classification algorithms such as Logistic (multi-
nomial logistic regression model) and ClassViaReg (classi-
fication via regression) achieve high AUC values. As
mentioned above, these models are highly used in the
domain of medicine, and in this work their predictive
performance is validated.

Another point that deserves mentioning is that the
average standard deviation among the individual AUC
values of the RIMARC algorithm is the smallest among all
the algorithms we tested.

Similar to the naı̈ve Bayes classifier, the RIMARC
algorithm assumes that the features are independent of
each other. Holte [32] has pointed out that most of the data
sets in the UCI repository are such that, for classification,
their attributes can be considered independently of each
other, which explains the success of the RIMARC algorithm
on these data sets. Similar observation is also made by
Güvenir and Şirin [27].

5.2 Running Time

The RIMARC method is designed to be simple, effective, and
fast. It computes the scores for each value for a categorical

GÜVENIR AND KURTCEPHE: RANKING INSTANCES BY MAXIMIZING THE AREA UNDER ROC CURVE 2363

TABLE 6
Predictive Performance Comparison

The comparison of the predictive performance of RIMARC algorithm with other algorithms on the AUC metric. Ten data sets are used during
evaluation. Standard deviation values are given in parenthesis. Algorithms marked with ++ are outperformed by RIMARC on average, with a
statistically significant difference. Algorithms marked with + are outperformed by RIMARC on average, with no statistically significant difference
(higher is better).

feature in close to linear time. MAD2C requires more time
since it uses sorting. Although the time complexity of the
RIMARC algorithm is shown to be low, empirical experi-
ments were conducted to support this claim.

The overall running times of the training phase of
25 different algorithms on the data sets are compared with
that of RIMARC. The training times of all algorithms are
measured using Java Virtual Machine’s CPU time and
100 results are averaged.

Since the outsourced libraries were used for the SVM-
RBF and SVM-Perf-RBF algorithms, they are not included in
the running time experiments. The results of the overall
running time for the other algorithms are shown in Table 7.

The RIMARC algorithm, on the basis of running times,
significantly outperformed 13 of the algorithms according
to the Wilcoxon signed-rank test [49]. These methods
outperformed by RIMARC are indicated by the ++ symbol
in Table 7. Seven algorithms significantly outperformed
RIMARC. These algorithms are shown with a �� symbol.
The differences between the other five methods in the table
and RIMARC are not significant. Note that all of the
algorithms that significantly outperformed the RIMARC
algorithm in terms of the running time are outperformed by
RIMARC in terms of the AUC metric.

6 RELATED WORK

The problem of learning a real-valued function that induces
a ranking or ordering over an instance space has gained
importance in machine learning literature. Information
retrieval, credit-risk screening or estimation of risks

associated with a surgery are some examples of the
application domains. In this paper, we consider the ranking
problem with binary classification data. It is known as the
bipartite ranking problem, which refers to the problem of
learning a ranking function from a training set of examples
with binary labels [2], [10], [26]. Agarwal and Roth [2]
studied the learnability of bipartite ranking functions and
showed that learning linear ranking functions over Boolean
domains is NP-hard. In the bipartite ranking problem, given
a training set of instances with labels either positive or
negative, one wants to learn a real-valued ranking function
that can be used for an unseen case to associate a measure of
being close to positive (or negative) class. For example, in a
medical domain, a surgeon may be concerned with
estimating the risk of a patient who is planned to undergo
a serious operation. A successful ranking (or scoring)
function is expected to return a high value if the operation
carries high risks for that patient. Specific ranking functions
have been developed for particular domains, such as
information retrieval [18], [47], finance [6], medicine [12],
[14], [44], fraud detection [20], and insurance [17]. Some of
these methods are dependent on statistical models while
some are based on machine learning algorithms. A binary
classification algorithm that returns a confidence factor
associated with the class label can be used for bipartite
ranking, where the confidence factor associated with a
positive label (or the complement associated with a negative
label) can be taken as the value of the ranking function.

The area under the receiver operating characteristic
curve (AUC) is a widely accepted performance measure
for evaluating the quality of a ranking function [5], [22]. It
has been shown that the AUC represents the probability
that a randomly chosen positive instance is correctly
assigned a higher rank value than a randomly selected
negative instance. Further, this probability of correct
ranking is equal to the value estimated by the nonpara-
metric Wilcoxon statistic [30]. Also, AUC has important
features such as insensitivity to class distribution and cost
distributions [5], [22], [33]. Agarwal et al. [1] showed what
kind of classification algorithms can be used for ranking
problems and proved theorems about generalization prop-
erties of AUC.

Some approximation methods aiming at maximizing the
global AUC value directly have been proposed by
researchers [31], [39], [51]. For example, Ataman et al. [3]
proposed a ranking algorithm by maximizing AUC with
linear programming. Brefeld and Scheffer [7] presented an
AUC maximizing support vector machine. Rakotomamonjy
[43] proposed a quadratic programming-based algorithm
for AUC maximization and showed that under certain
conditions 2-norm soft margin support vector machines
can also maximize AUC. Toh et al. [46] designed an
algorithm to optimize the ROC performance directly
according to the fusion classifier. Ferri et al. [23] proposed
a method to locally optimize AUC in decision tree
learning, and Cortes and Mohri [13] proposed boosted
decision stumps. To maximize AUC in rule learning,
several algorithms have been proposed [4], [21], [40]. A
nonparametric linear classifier based on the local max-
imization of AUC was presented by Marrocco et al. [38]. A
ROC-based genetic learning algorithm has been proposed
by Sebag et al. [44]. Marrocco et al. [37] used linear

2364 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 10, OCTOBER 2013

TABLE 7
Running Time Performance Comparison

The comparison of the average running time performance of RIMARC
with other algorithms (in ms). Ten data sets are used during evaluation.
Algorithms marked with ++ are outperformed by RIMARC on running
time basis with a statistically significant difference. Algorithms marked
with -- outperformed RIMARC on running time basis with a statistically
significant difference. Algorithms marked with + are outperformed by
RIMARC on average, and the ones marked with - outperform RIMARC
on average, but with no significant difference. (Lower is better).

combinations of dichotomizers for the same purpose.
Freund et al. [26] gave a boosting algorithm combining
multiple rankings. Cortes and Mohri [13] showed that this
approach also aims to maximize AUC. A method by Tax et
al. [45] that weighs features linearly by optimizing AUC
has been applied to the detection of interstitial lung
disease. Ataman et al. [3] advocated an AUC-maximizing
algorithm with linear programming. Joachims [34] pro-
posed a binary classification algorithm by using SVM that
can maximize AUC. Ling and Zhang [36] compared AUC-
based tree-augmented naı̈ve Bayes (TAN) and error-based
TAN algorithms; the AUC-based algorithms are shown to
produce more accurate rankings. More recently, Calders
and Jaroszewicz [8] suggested a polynomial approximation
of AUC to optimize it efficiently. Linear combinations of
classifiers are also used to maximize AUC in biometric
scores fusion [46]. Han and Zhao [29] proposed a linear
classifier based on active learning that maximizes AUC.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we presented a supervised algorithm for
learning a ranking function, called RIMARC.

We have shown that for a categorical feature, there is
only one ordering that gives the maximum AUC. Then, we
showed the necessary and sufficient condition that a
ranking function for a single categorical feature has to
satisfy to achieve this ordering. As a result, we proposed a
ranking function that achieves the maximum possible AUC
value on a single categorical feature. This ranking function
is based on the probability of p class for each value of that
feature. The MAD2C algorithm used by RIMARC discre-
tizes continuous features in a way that yields the maximum
AUC, as well. The RIMARC algorithm used AUC values of
features as their weights in computing the ranking function.
With this simple heuristic, we computed the weighted
average of all feature value scores to achieve maximum
AUC over the whole feature set. Since the RIMARC
algorithm uses all available feature values and ignores the
missing ones, it is robust to missing feature values.

We presented the characteristics of the ranking function
learned by the RIMARC algorithms and how it can be
interpreted. The ranking function is in a human readable
form that can be easily interpreted by domain experts. The
feature weights learned help the experts to determine how
they affect the ranking.

We compared RIMARC with 27 different algorithms.
According to our empirical evaluations, RIMARC signifi-
cantly outperformed 17 algorithms on an AUC basis and
13 algorithms on a time basis. It also outperformed all
algorithms on the average AUC and 16 of them on an
average running time basis.

It is also worth noting that the RIMARC algorithm is a
non-parametric machine learning algorithm. As such, it
does not have any parameters that need to be tuned to
achieve high performance on a given data set; hence, it can
be used by domain experts who are not experienced in
tuning machine learning algorithms.

To improve the performance of RIMARC, instead of
using the weighted average, other approaches can be
investigated. Another possible direction for future work
would be to experiment with methods that ensemble
RIMARC with other ranking algorithms.

REFERENCES

[1] S. Agarwal, T. Graepel, R. Herbrich, S. Har-Peled, and D. Roth,
“Generalization Bounds for the Area under the ROC Curve,”
J. Machine Learning Research, vol. 6, pp. 393-425, 2005.

[2] S. Agarwal and D. Roth, “Learnability of Bipartite Ranking
Functions,” Proc. 18th Ann. Conf. Learning Theory, 2005.

[3] K. Ataman, W.N. Street, and Y. Zhang, “Learning to Rank by
Maximizing AUC with Linear Programming,” Proc. IEEE Int’l
Joint Conf. Neural Networks (IJCNN), pp. 123-129, 2006.

[4] H. Boström, “Maximizing the Area under the ROC Curve Using
Incremental Reduced Error Pruning,” Proc. Int’l Conf. Machine
Learning Workshop (ICML ’05), 2005.

[5] A.P. Bradley, “The Use of the Area under the ROC Curve in the
Evaluation of Machine Learning Algorithms,” Pattern Recognition,
vol. 30, no. 7, pp. 1145-1159, 1997.

[6] B.O. Bradley and M.S. Taqqu, “Handbook of Heavy-Tailed
Distributions in Finance,” Financial Risk and Heavy Tails,
S.T. Rachev, ed., pp. 35-103, Elsevier, 2003.

[7] U. Brefeld and T. Scheffer, “AUC Maximizing Support Vector
Learning,” Proc. ICML Workshop ROC Analysis in Machine Learning,
2005.

[8] T. Calders and S. Jaroszewicz, ”Efficient AUC Optimization
for Classification,” Proc. 11th European Conf. Principles and
Practice of Knowledge Discovery in Databases (PKDD ’07), pp. 42-
53, 2007.

[9] C.C. Chang and C.C. Lin, “LIBSVM: A Library for Support Vector
Machines,” http://www.csie.ntu.edu.tw/~cjlin/libsvm, 2001.

[10] S. Cleménçon, G. Lugosi, and N. Vayatis, “Ranking and Scoring
Using Empirical Risk Minimization,” Proc. 18th Ann. Conf.
Learning Theory (COLT ’05), pp. 1-15, 2005.

[11] W.W. Cohen, R.E. Schapire, and Y. Singer, “Learning to Order
Things,” J. Artificial Intelligence Research, vol. 10, pp. 243-270, 1998.

[12] R.M. Conroy, K. Pyörälä, and A.P. Fitzgerald, “Estimation of Ten-
Year Risk of Fatal Cardiovascular Disease in Europe: The SCORE
Project,” European Heart J., vol. 11, pp. 987-1003, 2003.

[13] C. Cortes and M. Mohri, “AUC Optimization versus Error Rate
Minimization,” Proc. Conf. Neural Information Processing Systems
(NIPS ’03), vol. 16, pp. 313-320, 2003.

[14] R.B. D’Agostino, S.V. Ramachandran, and J. Pencina, “General
Cardiovascular Risk Profile for Use in Primary Care: The
Framingham Heart Study,” Circulation, vol. 17, pp. 743-753, 2008.

[15] P. Domingos, “MetaCost: A General Method for Making
Classifiers Cost-Sensitive,” Proc. Fifth ACM SIGKDD Int’l Conf.
Knowledge Discovery and Data Mining, pp. 155-164, 1999.

[16] J. Dougherty, R. Kohavi, and M. Sahami, “Supervised and
Unsupervised Discretization of Continuous Features,” Proc. 12th
Int’l Conf. Machine Learning, pp. 194-202, 1995.

[17] K. Dowd and D. Blake, “After VaR: The Theory, Estimation, and
Insurance Applications of Quantile-Based Risk Measures,” The
J. Risk and Insurance, vol. 73, no. 2, pp. 193-229, 2006.

[18] W. Fan, M.D. Gordon, and P. Pathak, “Discovery of Context-
Specific Ranking Functions for Effective Information Retrieval
Using Genetic Programming,” IEEE Trans. Knowledge and Data
Eng., vol. 16, no. 4, pp. 523-27, Apr. 2004.

[19] U. Fayyad and K. Irani, “On the Handling of Continuous-Valued
Attributes in Decision Tree Generation,” Machine Learning, vol. 8,
pp. 87-102, 1992.

[20] T. Fawcett and F. Provost, “Adaptive Fraud Detection,” Data
Mining and Knowledge Discovery, vol. 1, pp. 291-316, 1997.

[21] T. Fawcett, “Using Rule Sets to Maximize ROC Performance,”
Proc. IEEE Int’l Conf. Data Mining (ICDM ’01), pp. 131-138, 2001.

[22] T. Fawcett, “An Introduction to ROC Analysis,” Pattern Recogni-
tion Letters, vol. 27, pp. 861-874, 2006.

[23] C. Ferri, P. Flach, and J. Hernandez, “Learning Decision Trees
Using the Area under the ROC Curve,” Proc. 19th Int’l Conf.
Machine Learning (ICML ’02), pp. 139-146, 2002.

[24] P. Flach and S. Wu, “Repairing Concavities in ROC Curves,” Proc.
UK Workshop Computational Intelligence, pp. 38-44, 2003.

[25] A. Frank and A. Asuncion, “UCI Machine Learning Repository,”
School of Information and Computer Science, Univ. of California,
http://archive.ics.uci.edu/ml, 2010.

[26] Y. Freund, R. Iyer, R.E. Schapire, and Y. Singer, “An Efficient
Boosting Algorithm for Combining Preferences,” J. Machine
Learning Research, vol. 4, pp. 933-969, 2003.

[27] H.A. Güvenir and _I. Şirin, “Classification by Feature Partitioning,”
Machine Learning, vol. 23, no. 1, pp. 47-67, 1996.

GÜVENIR AND KURTCEPHE: RANKING INSTANCES BY MAXIMIZING THE AREA UNDER ROC CURVE 2365

[28] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I.H. Witten, “The WEKA Data Mining Software: An Update,”
SIGKDD Explorations, vol. 11, no. 1, pp. 10-18, 2009.

[29] G. Han and C. Zhao, “AUC Maximization Linear Classifier Based
on Active Learning and Its Application,” Neurocomputing, vol. 73,
nos. 7-9, pp. 1272-1280, 2010.

[30] J.A. Hanley and B.J. McNeil, “The Meaning and use of the Area
under a Receiver Operating Characteristic (ROC) Curve,” Radi-
ology, vol. 143, pp. 29-36, 1982.

[31] A. Herschtal and B. Raskutti, “Optimising the Area under the
ROC Curve Using Gradient Descent,” Proc. Int’l Conf. Machine
Learning, pp. 49-56, 2004.

[32] R.C. Holte, “Very Simple Classification Rules Perform Well on
Most Commonly Used Data Sets,” Machine Learning, vol. 11,
pp. 63-91, 1993.

[33] J. Huang and C.X. Ling, “Using AUC and Accuracy in Evaluating
Learning Algorithms,” IEEE Trans. Knowledge and Data Eng.,
vol. 17, no. 3, pp. 299-310, Mar. 2005.

[34] T. Joachims, “A Support Vector Method for Multivariate
Performance Measures, “ Proc. Int’l Conf. Machine Learning (ICML),
2005.

[35] M. Kurtcephe and H.A. Güvenir, “A Discretization Method Based
on Maximizing the Area under ROC Curve,” Int’l J. Pattern
Recognition and Artificial Intelligence, vol. 27, no. 1, article 1350002,
2013.

[36] C.L. Ling and H. Zhang, “Toward Bayesian Classifiers with
Accurate Probabilities,” Proc. Sixth Pacific-Asia Conf. Advances in
Knowledge Discovery and Data Mining, pp. 123-134, 2002.

[37] C. Marrocco, M. Molinara, and F. Tortorella, “Exploiting AUC for
Optimal Linear Combinations of Dichotomizers,” Pattern Recogni-
tion Letters, vol. 27, no. 8, pp. 900-907, 2006.

[38] C. Marrocco, R.P.W. Duin, and F. Tortorella, “Maximizing the
Area under the ROC Curve by Pairwise Feature Combination,”
Pattern Recognition, vol. 41, pp. 1961-1974, 2008.

[39] M.C. Mozer, R. Dodier, M.D. Colagrosso, C. Guerra-Salcedo, and
R. Wolniewicz, “Prodding the ROC Curve: Constrained Optimi-
zation of Classifier Performance,” Proc. Conf. Advances in Neural
Information Processing Systems, vol. 14, pp. 1409-1415, 2002.

[40] R. Prati and P. Flach, “Roccer: A ROC Convex Hull Rule Learning
Algorithm,” Proc. ECML/PKDD Workshop Advances in Inductive
Rule Learning, pp. 144-153, 2004.

[41] F. Provost and T. Fawcett, “Analysis and Visualization of
Classifier Performance: Comparison under Imprecise Class and
Cost Distributions,” Proc. Third Int’l Conf. Knowledge Discovery and
Data Mining, pp. 43-48, 1997.

[42] F. Provost, T. Fawcett, and R. Kohavi, “The Case against Accuracy
Estimation for Comparing Induction Algorithms,” Proc. 15th Int’l
Conf. Machine Learning, pp. 445-453, 1998.

[43] A. Rakotomamonjy, “Optimizing Area under ROC Curve with
SVMS,” Proc. Workshop ROC Analysis in Artificial Intelligence,
pp. 71-80, 2004.

[44] M. Sebag, J. Aze, and N. Lucas, “ROC-Based Evolutionary
Learning: Application to Medical Data Mining,” Artificial Evolu-
tion, vol. 2936, pp. 384-396, 2004.

[45] D.J.M. Tax, R.P.W. Duin, and Y. Arzhaeva, “Linear Model
Combining by Optimizing the Area under the ROC Curve,” Proc.
IEEE 18th Int’l Conf. Pattern Recognition, pp. 119-122, 2006.

[46] K.A. Toh, J. Kim, and S. Lee, “Maximizing Area under ROC Curve
for Biometric Scores Fusion,” Pattern Recognition, vol. 41, pp. 3373-
3392, 2008.

[47] F. Wang and X. Chang, “Cost-Sensitive Support Vector Ranking
for Information Retrieval,” J. Convergence Information Technology,
vol. 5, no. 10, pp. 109-116, 2010.

[48] M. Wasikowski and X. Chen, “Combating the Small Sample Class
Imbalance Problem Using Feature Selection,” IEEE Trans. Knowl-
edge Discovery and Data Eng., vol. 22, no. 10, pp. 1388-1400, Oct.
2010.

[49] F. Wilcoxon, “Individual Comparisons by Ranking Methods,”
Biometrics, vol. 1, pp. 80-83, 1945.

[50] T.-F. Wu, C.-J. Lin, and W.C. Wen, “Probability Estimates for
Multi-Class Classification by Pairwise Coupling,” J. Machine
Learning Research, vol. 5, pp. 975-1005, 2004.

[51] L. Yan, R. Dodier, M.C. Mozer, and R. Wolniewicz, “Optimizing
Classifier Performance via the Wilcoxon-Mann-Whitney Statis-
tics,” Proc. 20th Int’l Conf. Machine Learning, pp. 848-855, 2003.

H. Altay Güvenir received the BS and MS
degrees in electronics and communications
engineering from Istanbul Technical University,
in 1979 and 1981, respectively, and the PhD
degree in computer engineering and science
from Case Western Reserve University in 1987.
He joined the Department of Computer Engi-
neering at Bilkent University in 1987. He has
been a professor and serving as the chairman of
the Department of Computer Engineering since

2001. His research interests include artificial intelligence, machine
learning, data mining, and intelligent data analysis. He is a member of
the IEEE and the ACM.

Murat Kurtcephe received the first MSc degree
in computer science from Bilkent University,
Ankara, Turkey, where he worked on machine
learning and data mining, especially on dis-
cretization and risk estimation methods with
Prof. H. Altay Güvenir. He received the second
MSc degree from the Computer Science De-
partment at Case Western University, where he
worked with Professor Meral Ozsoyoglu on
query visualization and pedigree data querying.

Currently, he is working at NorthPoint Solutions, New York, focusing on
regulatory compliance reporting applications.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

2366 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 10, OCTOBER 2013

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

