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Abstract—An affine invariant function for object recognition is constructed from

wavelet coefficients of the object boundary. In previous works, undecimated

dyadic wavelet transform was used to construct affine invariant functions. In this

paper, an algorithm based on decimated wavelet transform is developed to

compute an affine invariant function. As a result computational complexity is

reduced without decreasing recognition performance. Experimental results are

presented.

Index Terms—Affine transformation, decimated wavelet transform, shape

recognition, computational efficiency.
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1 INTRODUCTION

OBJECT recognition is an important problem in computer vision
and pattern analysis [1], [2], [3], [4], [5], [6]. In this paper,
recognition of objects from their boundaries that are subject to
affine transformations is considered. The affine transformation
includes rotation, scaling, skewing, and translation. It preserves
parallel lines and equispaced points along a line. In some cases, the
affine transformation can also be used to approximate the
perspective transformation [1].

Several features that are linear under an affine transformation

were developed in the literature. The most commonly used ones

are affine arc length [7], affine invariant Fourier descriptors [2],

and moment invariants [3]. Recently, dyadic wavelet transform

was also used to develop several affine invariant functions [5], [10].

These functions are constructed from undecimated wavelet

coefficients, which are produced after computing the wavelet

transform of a curve corresponding to the boundary of the object.

Unlike the fast discrete wavelet transform, the number of

coefficients in these schemes is not halved by decimation at each

resolution level [13]. In other words, if the input signal is of length

N, then the number of wavelet coefficients at each resolution level

is also N. In this paper, a new algorithm based on decimated

wavelet transform is developed to compute the affine invariant

functions proposed in [5]. This algorithm leads to a more

computationally efficient object recognition scheme due to the fact

that the number of wavelet coefficients handled is decreased by a

factor of two at each resolution level.
The paper is organized as follows: In Section 2, some back-

ground information on affine invariant functions is presented. In

Section 3, the proposed computationally efficient algorithm is

presented. In Section 4, experimental results are presented. In

addition, a new object recognition scheme based on linear

combination of affine invariant functions constructed from multi-

ple resolution wavelet coefficients is presented. It is observed that

recognition performance is comparable to other wavelet based

schemes.

2 BACKGROUND

Consider a parametric curve fxðtÞ; yðtÞg with parameter t on a

plane. A point on the curve under an affine transformation

becomes

~xxðtÞ ¼ a0 þ a1xðtÞ þ a2yðtÞ; ð1Þ

~yyðtÞ ¼ b0 þ b1xðtÞ þ b2yðtÞ: ð2Þ

Equations (1) and (2) can be rewritten in matrix form as follows:

~xxðtÞ
~yyðtÞ

� �
¼ a1 a2

b1 b2

� �
xðtÞ
yðtÞ

� �
þ a0

b0

� �
¼ A

xðtÞ
yðtÞ

� �
þ B; ð3Þ

where the nonsingularmatrixA represents the scaling, rotating, and

skewing transformation and the vectorB corresponds to the transla-

tion. Jacobean,J , of the transformation isJ ¼ a1b2 � a2b1 ¼ detðAÞ.
Let IðtÞ be an affine invariant function and ~IIðtÞ be the same

invariant function calculated using the points that are subject to the

affine transformation. The relation between the two invariant

functions can be formulated as:

~II ¼ IJ!: ð4Þ

The exponent ! is called the weight of the invariance. If ! ¼ 0, then

I is called an absolute invariant, else it is called a relative invariant.

3 AFFINE INVARIANT FUNCTIONS USING DECIMATED

WAVELET COEFFICIENTS

Wavelet transform was used to recognize planar objects under the

similarity transformation in [8], [9]. Affine invariant functions

using the dyadic wavelet transform was derived by Tieng and

Boles [10] and Khalil and Bayoumi [5]. The main difference

between [10] and [5] is that, in [10], two dyadic levels were used,

whereas in [5], a wavelet-based conic equation was introduced.

This leads to an affine invariant function of six or more dyadic

levels.
Discrete dyadic wavelet transform (DWT) of a signal is

implemented using halfband lowpass and highpass filters forming

a filterbank together with downsamplers [11]. The filterbank

produces two sets of coefficients: orthogonal detail (or wavelet)

coefficients which are the even outputs of the highpass filter, and

the approximation coefficients which are the even outputs of the

lowpass filter. Samples with odd indices are dropped by the

downsamplers in decimated implementation. Due to downsam-

pling computational cost of implementing DWT drops to

O(NlogN) (even to O(N) for some wavelets).
Let us denote the wavelet transform of the signal xðtÞ at the

resolution level (or scale) i as WixðtÞ, then the wavelet transform of

(1) and (2) will be

Wi~xxðtÞ ¼ a1WixðtÞ þ a2WiyðtÞ; ð5Þ

Wi~yyðtÞ ¼ b1WixðtÞ þ b2WiyðtÞ: ð6Þ

Note that Wia0 ¼ Wib0 ¼ 0 because of the highpass filter.
Let the signal pair xðtÞ and yðtÞ represent the boundary of an

object. An affine invariant function for an object using the wavelet

coefficients of signals xðtÞ and yðtÞ for two scale levels i; j ði 6¼ jÞ
can be defined as

fijðtÞ ¼ WixðtÞWjyðtÞ �WiyðtÞWjxðtÞ: ð7Þ
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It can be easily shown that

~ffijðtÞ ¼ Wi~xxðtÞWj~yyðtÞ �Wi~yyðtÞWj~xxðtÞ ¼ detðAÞfijðtÞ: ð8Þ

This invariant function fijðtÞ defined in [5] uses only the detail

coefficients calculated at two different levels. In [10], another affine

invariant function using both the detail and approximation

coefficients of the same dyadic level is defined. In [5], (7) is also

used to construct a wavelet-based conic equation leading to an

affine invariant function based on six dyadic levels.
All of the invariant functions defined in [5], [10] are computed

using the undecimated implementation of the wavelet transform

(WT) which does not use downsampling operation after filtering.

This does not use the potentials of decreasing the computational

cost of the wavelet transform by decimation. If the length of the

original signal is N, then for the undecimated wavelet transform,

length-N signals are filtered at each level. However, in the

decimated implementation of the wavelet transform, the signal

length is halved due to downsampling operation performed after

each filtering step. In this paper, we develop an algorithm to

compute the affine invariant function defined in (7) using the

orthogonal decimated wavelet transform scheme. The wavelet

signal WixðtÞ, at resolution scale i ¼ 1 can be expressed as

WixðtÞ ¼
X

dkwðt� kÞ;i ¼ 1; ð9Þ

where dk are the wavelet coefficients computed using a decimated

filterbank at resolution scale i ¼ 1 and wðtÞ is the so-called mother

wavelet. If the length of the data is N (N ¼ 512 is chosen in this

paper) then the limits of summation in (9) go from k ¼ 0 to k ¼
N � 1 assuming a circular computation of the WT. Similarly,

WjyðtÞ, can be expressed for j ¼ 2 as follows:

WjyðtÞ ¼
X

elwðt=2� lÞ; ð10Þ

where el are the wavelet coefficients at resolution scale j ¼ 2. In this

case, the limits of the summation go from l ¼ 0 to l ¼ N=2� 1 due

to downsampling. Let us assume that wðtÞ is the Haar wavelet, i.e.,

wðtÞ ¼ 1 for 0 < t < 0:5; wðtÞ ¼ �1 for 0:5 < t < 1;

wðtÞ ¼ 0; otherwise:
ð11Þ

The first term of (7) can be expressed as

WixðtÞWjyðtÞ ¼
XX

dkelwðt� kÞwðt=2� lÞ for i ¼ 1; j ¼ 2:

ð12Þ

Direct computation of (12) and the affine invariant function defined

in (7) requires N �N=2 multiplications, respectively. However,

notice that wðtÞwðt=2Þ ¼ wðtÞ, wðtÞwðt=2� kÞ ¼ 0, for k > 1, since

the Haar wavelet has a compact support with length 1. Similarly,

wðt� 2Þwðt=2� 1Þ ¼ wðt� 2Þ, wðt� 3Þwðt=2� 1Þ ¼ �wðt� 3Þ, etc.
By taking advantage of these relations the double sum in (12) can

be reduced to a single summation as follows:

WixðtÞWjyðtÞ ¼
XN

k¼0;even

dkek=2wðt� kÞ

�
XN

k¼1;odd

dkeðk�1Þ=2wðt� kÞ; for i ¼ 1; j ¼ 2:

ð13Þ

Computation of the right hand side of (13) requires only N

multiplications. The affine invariant function, fijðtÞ for j ¼ iþ 1,

can be expressed as

fijðtÞ ¼
X
k;even

dike
iþ1
k=2wiðt� kÞ �

X
k;odd

dike
iþ1
ðk�1Þ=2wiðt� kÞ

þ
X
k;even

eikd
iþ1
k=2wiðt� kÞ �

X
k;odd

ekd
iþ1
ðk�1Þ=2wiðt� kÞ;

ð14Þ

where wiðtÞ ¼ wðt=2iÞ is the wavelet of the resolution scale i, dik,
and eik are the wavelet coefficients of the signals x and y at
resolution level i, respectively. An important feature of this
equation is that it can be computed using the computationally
efficient orthogonal wavelet transform as the wavelet coefficients
dik, and eik can be computed using a filterbank having down-
samplers. Equations (13) and (14) are developed for the specific
case of i ¼ 1; j ¼ iþ 1. However, similar equations with O(N)
complexity can be easily developed to any i; j values because there
may not be any time overlap between the wavelet at resolution i

and its delayed versions at resolution level j. Such terms in (12)
will disappear leading to an equation which can be implemented
in a computationally efficient manner. For example, in Haar
wavelet case, wðtÞwð4t� 4Þ ¼ wðtÞwð4t� 5Þ ¼ . . . ¼ 0; in addition,

wðtÞwðt=2jÞ ¼ wðtÞ; . . . ; wðt� jÞwðt=2jÞ ¼ �wðt� jÞ;

etc. Since all the affine invariant functions developed in [5] are
based on fijðtÞ they can be computed using decimated wavelet
transform. As a result significant amount of computational savings
can be achieved. In the undecimated WT implementation, length-
N signals are filtered at each level whereas in decimated
implementation length�N=2i signals are filtered at resolution
level i and the final stage of constructing fijðtÞ requires only O(N)
arithmetic operations.

Equation (14) is obtained by taking advantage of the fact Haar

wavelet has compact support. Some computationally efficient

signal reconstruction algorithms from WT also take advantage of

this fact [12]. In fact, all wavelets constructed from FIR filters have

compact support. Therefore the double summation in (7) can be

reduced to a set of single summations as in (13) for all compactly

supported wavelets and equations similar to (14) can be obtained

as well. For example, the widely used Daubechies-4 wavelet has a

compact support of length of 6, i.e., wðtÞ ¼ 0; for t > 6, and t < 0.

In the case of Daubechies-4 wavelet, wðtÞwðt=2� kÞ ¼ 0, for k > 3.

This leads to a slightly higher computational cost than Haar

wavelet but longer wavelets are more robust to noise compared to

Haar wavelet. In general, the length of data N (e.g., N ¼ 512) is

much higher than the support length of most wavelets. Therefore,

computational savings are significant.

Although the decimated wavelet coefficients are translation

variant (14) is translation invariant as the continuous-time function

fijðtÞ can be computed for all t values using the right hand side of

(14). Because the wavelet functions wiðt� kÞ as interpolation

functions in (14), in practice fijðtÞ is computed for uniformly

spaced N ¼ 512 points t ¼ 0; 1; . . . ; 511 in [10] and in this paper.

Equation (7) can be implemented in 2ðp�N þ q�N þNÞ multi-

plications where p and q are the lengths of the FIR filters to

implement WixðtÞ and WjyðtÞ, respectively. Undecimated filter

orders can get quite high even for short wavelet filters and small

i; j values [11]. For example, filter orders p and q for undecimated

wavelet decompositions are p ¼ Lþ ð2L� 1Þ � 1 ¼ 10 for i ¼ 2

and q ¼ pþ ð4L� 3Þ � 1 ¼ 22 for j ¼ 3, respectively, where L ¼ 4

and Daubechies-4 wavelets are assumed to be used. As a result,

f2;3ðtÞ can be implemented with 66N multiplications using (7).
In our case, i = 2nd and j = 3rd order decimated wavelet

transform coefficients can be computed in L�N=2þ L�N=4 and
L�N=2þ L�N=4þ L�N=8 multiplications, respectively. Each term
of (14) requires 2 �N=8 multiplications for i ¼ 2 and j ¼ 3 case
with the assumption that values of the wavelet function is
retrieved from a table. In the Haar wavelet case, fijðtÞ consists of
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four terms because the support of the Haar wavelet is one unit.

Daubechies-4 wavelet has a support of six, thus, fijðtÞ consists of

6�2�2 ¼ 24 terms. Therefore, the overall computational cost is

about 24�N�1=8þ 2�N þN þ 2�N þN þN=2 ¼ 12:5N which is

significantly lower than 66N. Savings are higher for larger i, j

values because undecimated filter orders increase as the decom-

position level increases.

4 EXPERIMENTAL RESULTS

A computationally efficient algorithm is proposed in the previous

section for calculating an affine invariant function for object

recognition. In this section, a set of experiments similar to those in

[5] were carried out. The aim of performing these experiments is to

measure the recognition efficiency of the proposed affine invariant

function in (14). This affine invariant function makes use of two
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Fig. 1. Model airplane images (numbered from 1 to 20; left to right, top to bottom).

Fig. 2. Test images (numbered from 1 to 10; left to right, top to bottom).

TABLE 1
The Model Images Used to Produce the Test Images



resolution levels i and j, such that j ¼ iþ 1. The similarity between

any two affine invariant functions I1ðtÞ and I2ðtÞ is measured by a

correlation function, R, as follows:

RðI1ðtÞ; I2ðtÞÞ ¼
R
I1ðtÞI2ðtÞdt
I1k k I2k k : ð15Þ

The experiment uses the same set of twenty model plane images

used in [5]. Fig. 1 illustrates these model plane images. The

boundaries of the 10 of these model plane images were subject to

random affine transformations to produce the test images, which

are illustrated in Fig. 2. The model images that were used to

produce the test images are given in Table 1.
Correlation between two affine invariant functions was

calculated using (15). This value was then used to discriminate

the two objects. However, a linear combination of two or more

correlation values, each calculated from affine invariant functions

by using different resolution levels, could be used to increase the

robustness of the scheme. In this scheme, k invariant functions for

a given test object are calculated by using consecutive pairs of

resolution levels ði1; i1þ1Þ; ði2; i2þ1Þ; . . . ; ðik; ikþ1Þ. Corresponding k

invariant functions for each model object are kept in a database.

Correlations between the k invariant functions of the test object

and each model object are then computed to get the correlation

values, R1; R2; . . . ; Rk. The final correlation value is then calculated

by linearly combining the k correlation values as follows: Rfinal ¼
�1R1 þ �2R2 þ . . .þ �kRk; where �1 þ �2 þ . . .þ �k ¼ 1. The model

image whose correlation value becomes the largest is decided to be

identical to the test image. As a rule of thumb, more weight should

be given to resolution levels containing more signal energy to

obtain robustness against noise. This approach gives us also the

flexibility of sampling fijðtÞ in a nonuniform manner; for example,

at the resolution level pair (3,4), f3;4ðtÞ could be computed at M

points but at the next resolution level pair (4,5), f4;5ðtÞ could be

computed at M=2 points, etc., to achieve computational savings in

computing the correlation functions. The recognition experiments

are carried out under two different levels of uniformly distributed

random noise which is added to the boundaries of the test images.

The signal to noise ratio (SNR) is defined as in [5]. In the first set of

experiments, the SNR is about 50 dB, and in the second set of

experiments the SNR is about 20 dB. The boundary signals of all

the objects are normalized to length 512. The two noisy versions of

the first test image are illustrated in Fig. 3. As it could be clearly

observed from Fig. 3, the amount of noise added is sufficiently

high that any numerical errors that could be created due to

imperfect sampling or quantization operations would in fact be

negligible. The type of the wavelet used is also identical to the one

used in [5].
The correlation values for the simulations are tabulated in

tables below. Table 2 gives the highest five correlation values

for each test image with SNR 50 dB, and Table 3 gives the

highest five correlation values for each test image with SNR 20

dB. In all experiments, the test images are identified correctly.

For both high and low noise power levels, the highest

correlation value is produced with the model image from

which the test image is constructed by applying a random

affine transformation. In all experiments summarized in Table 2

and Table 3, resolution level pairs (4,5), (5,6), and (6,7) are used

to calculate the invariant functions and correlation values. The

final correlation value is computed by taking a linear

combination of these correlation values with corresponding

weights chosen as �1 ¼ 0:4; �2 ¼ 0:3; �3 ¼ 0:3, respectively.
The proposed scheme is also compared with the undecimated

wavelet based scheme described in [5] in terms of CPU time in

Matlab implementation. The total CPU time needed to recognize

the ten test images was calculated in both cases. In both schemes,

resolution level pairs of (4,5) were used. It was observed that the

proposed scheme requires about 0.375 seconds to complete the

task, whereas the undecimated wavelet based scheme requires 0.8

seconds in a Pentium IV 2.5 GHz PC. Our Matlab software is not

optimized. The time required by the proposed scheme could be

further decreased by optimizing the Matlab code.
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Fig. 3. Noisy versions of the first test image (left 44 dB, right 23 dB).

TABLE 2
The Best Five Matches between the Test Images and
the Model Images for Small Noise Level (SNR=50 dB)

TABLE 3
The Best Five Matches between the Test Images and
the Model Images for High Noise Level (SNR=20 dB)



5 CONCLUSION

The problem of 2D object recognition using affine invariant
functions is considered. In previous works, undecimated wavelet
transform was used for constructing affine invariant functions. In
this paper, an algorithm based on decimated wavelet transform is
developed to compute the same affine invariant functions. As a
result, computational complexity is reduced without decreasing
recognition performance. It is experimentally shown that the
invariant function detects the affine transformed objects with high
accuracy.
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