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Abstract—We study the bicriteria load balancing problem on two independent parameters under the allowance of object reallocation.

The scenario is a system of M distributed file servers located in a cluster, and we propose three online approximate algorithms for

balancing their loads and required storage spaces during document placement. The first algorithm is for heterogeneous servers. Each

server has its individual trade-off of load and storage space under the same rule of selection. The other two algorithms are for

homogeneous servers. The second algorithm combines the idea of the first one and the best existing solution for homogeneous

servers. Using document reallocation, we obtain a smooth trade-off curve of the upper bounds of load and storage space. The last one

bounds the load and storage space of each server by less than three times of their trivial lower bounds, respectively; and more

importantly, for each server, the value of at least one parameter is far from its worst case. The time complexities of these three

algorithms are OðlogMÞ plus the cost of document reallocation.

Index Terms—Scheduling, distributed file server, document placement, heterogeneous computing, nonuniform requirement.

Ç

1 INTRODUCTION

INTERNET and network services nowadays are unquestion-
ably essential. In order to achieve reliability, scalability,

efficiency, and availability, we cannot rely on stand-alone
servers to provide internet services. Such inadequacy is
commonly filled by distributed solutions due to the higher
computing power and fault tolerance with graceful degra-
dation. However, having more resources often leads to
more difficulties in coordinating entities. If coordination is
not done well, there can be much waste in resources. For
example, the computing power of most servers in a
distributed Web server system is wasted, if only the
documents inside few servers are popular. Thus, the need
for efficient systems can be converted into the need for
better coordinations between entities.

Load balancing is a common technique to achieve better
coordination between entities. It aims at distributing the
workload to entities as evenly as possible. The problem
becomes NP-hard if an optimal distribution of the workload
is required, and, therefore, approximate solutions are
expected. The load on an entity can be its access rate, the
number of executions of important steps for each access, the
number of bits transferred for each request, etc.. There are
different types of approximate solutions for load balancing.
One common type is to bound the load of each entity by a
limit [2], [5], [13]. Its variant is to set the limit according to
the capacity of each individual entity [3]. These are often
referred to as homogeneous and heterogeneous systems,
respectively. In reality, there is often more than one

parameter to be balanced. For example, execution time
and memory utilization are two common parameters
requiring simultaneous balancing. In this paper, we address
the problem of online balancing two independent criteria
with the allowance of a limited amount of object realloca-
tions. Object reallocation is referred to moving a subset of
objects to their new positions within the system. The
scenario is a system of distributed file servers in a cluster,
and the parameters to be balanced are the load and storage
space. The load of a document stored in the file server
system can be one of the quantities discussed above, and
the storage space can be its physical size, its compressed
physical size, or the effective memory pages it occupies. The
system designer can also make other reasonable choices.

1.1 Related Works

The problem we address is a variant of the classical NP-
hard File Allocation Problem (FAP) [6]. It is to allocate files to
entities in a distributed environment for optimizing a
certain performance metric. Based on the classical Knapsack
Problem, which is also NP-hard, Ceri et al. solved the
optimal FAP in 1982 [4]. As expected in solving an NP-hard
problem, this optimal solution takes exponential time and is
not feasible as an online solution. A survey given by Dowdy
and Foster [6] contains many results before 1982.

Here are some results for bicriteria load balancing in
homogeneous servers without applying document realloca-
tion. Chen and Choi [5] gave two algorithms and one of
them bounds the load by 4L using at most 4S storage space,
where L and S (defined in Section 2) are commonly used as
the trivial worst case lower bounds for load and storage
space, respectively. In [13], we proposed four offline and
one online algorithms. The first offline one is to place the
document into any server in which load and storage space,
respectively, are below certain levels. The other three offline
algorithms use document replication, sorting, and a
combination of both, respectively. The online algorithm
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uses the greedy technique; it executes in OðlogMÞ time and
bounds the load and storage space of each server by klL

and ksS, respectively, where kl, ks > 2, 1
kl�1þ 1

ks�1 � 1, and
M is the number of servers. Bilǒ et al. [2] gave a
ð 2M�k
M�kþ1 ;

Mþk�1
k Þ-competitive algorithm, where k can be any

integer from 1 to M. It bounds the load and storage space
by 2M�k

M�kþ1L and Mþk�1
k S, respectively. Note that there are

M points for the choices of trade-off between load and
storage space. This result is originally for bicriteria
scheduling problem and can be directly applied to load
balancing. Asymptotically, the bounds are the same as
those from the online algorithm in [13].

The load balancing problem is similar to the classical

scheduling problem in many aspects. In particular, the

minimization of the overall completion time for a set of

independent tasks in the scheduling problem is basically the

same as the minimization of the upper bound of loading in the

load-balancing problem. The latest result given by Fleischer

and Wahl [7], which is a ð1þ
ffiffiffiffiffiffiffiffiffiffi
1þln 2

2

q
Þ-competitive algorithm,

can be applied to load balancing. For bicriteria scheduling,

Rasala et al. gave many results [11]. The first parameter is

maximum flowtime, makespan, or maximum lateness;

whereas the second one is average flowtime, average

completion time, average lateness, or number of on-time

jobs. The two parameters are not independent; thus, these

results and techniques cannot be used for our problem.
For a single parameter, a common model of hetero-

geneity is to allow for different capacities among servers.
Brinkmann et al. proposed an algorithm for balancing the
number of identical objects in a system of servers of various
capacities [3]. They applied adaptive hashing for reducing
the time complexity and assigning more balls to a server of
higher capacity, proportionally, with high probability. In
contrast, our algorithms are deterministic, and the hetero-
geneity among servers is reflected by their individual load
and storage space bounds.

Reallocation is a typical technique for load balancing and
is used in this paper. It can also be applied in areas such as
distributed database systems [1], online processor schedul-
ing [8], or distributed memory management [9]. As extra
communication cost is inevitably imposed on the network,
it should be kept to a reasonable amount.

1.2 Our Contribution

In this paper, we design online algorithms for balancing
(or scheduling) two independent parameters by allowing
object reallocation, which has not been used for the existing
results in the literature. The time complexities for a single
document placement in all algorithms given in this paper
are OðlogMÞ plus the reallocation cost. We assume that the
reallocation cost is the sum of the sizes of objects needed to
migrate. This assumption is practical in our scenario of
clusters of distributed file servers as reallocation cost is
almost directly proportional to the number of bits trans-
ferred. Moreover, upon each document placement in our
first two algorithms, the documents to be reallocated are
grouped together into a bucket; and at most two buckets are
needed in the third algorithm. A bucket is an atomic unit for

reallocation. Document reallocation will then be done at
most twice, and it does not push our algorithm to offline.

Our first result is an algorithm for placing documents in
heterogeneous server systems. After each placement, for all
j 2 f1; . . . ;Mg, the load and storage space of the jth server
are bounded by pjlL and pjsS, respectively, where pjl , p

j
s are

any real constants satisfying ½pjl � 2 and pjs � 3� or ½pjl � 3
and pjs � 2�. The cost for document reallocation is bounded
by three times of the average storage space S.

For homogeneous servers, the second result is designed
for at least 18 servers. It combines the ideas of our first
result and the algorithm of Bilǒ et al. Recall that their
algorithm allows M discrete points for the choices of trade-
off between load and storage space, and these points are
lying on a curve, as discussed later. Except for two extreme
points and at most two points in the middle portion of the
curve, almost all these discrete points are improved by our
first algorithm. With a different strategy for document
reallocation, the middle portion is smoothed into a
continuous segment. The cost for document reallocation
is bounded by 3S

q , where q � 4.

The last algorithm bounds the load and storage space of
each server by 3L and 3S, respectively, with a feature that
dictates if the load is higher than 2L, then the storage space
is less than 2S (and vice versa). Namely, at most one of load
and storage space in each server can be higher than twice its
trivial lower bound. The cost for document reallocation is
bounded by 1:5S. The constant factor 1.5 can be improved
to 1þ � at the expense of a factor of 1

� in the time
complexity, where 0 < � < 1

2 .
The technique of document reallocation cannot be used

directly in geographically distributed server systems in
which the communication overhead is no longer predict-
able. As uncertainty is inevitable in this kind of systems,
further research could be done on reasonable models and
the feasibility for applying document reallocation on them.

1.3 Remarks on Practicability

The first algorithm in this paper has 2M parameters, namely,
pjl and pjs, j 2 f1; . . . ;Mg, which satisfy the corresponding
equation specified later. In considering the system require-
ments and constraints, the system designer can determine
their values, which are intuitively a trade-off between load
and storage space for each individual server. For example, a
smaller pjl means that load is more important or that some
resources concerning load are very tight.

The practicability of our results is based on their simplicity
and online property. By simplicity, we mean that their
implementations are not difficult. By online, we mean that the
time cost for each operation is reasonably bounded, and the
reallocation costs are reasonable, as S decreases with M. In
the case of documents of small loads or sizes, the performance
must be much better than our upper bounds, and the solution
to such systems must be simpler. However, unless all special
cases are filtered out, proven upper bounds are still needed as
a guarantee of the practical performance.

1.4 Organization of the Paper

Section 2 gives the system model and related definitions.
The first algorithm is in Section 3, and the second one is in
Section 4. Section 5 is for the third algorithm, and it is
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followed by a refinement for tuning down the reallocation
cost in Section 5.1. Section 6 concludes our results and states
some possible directions for future research.

2 DEFINITIONS AND MODELS

Each document has two fundamental attributes, namely, load
and size. The load of a document can be measured by its
access rate, and the size can be its physical size. There are
M servers andN documents. The value ofN increases by one
upon each placement. The ith document has positive load li
and size si, 8i 2 f1; . . . ; Ng. The load and storage space of a
server is the summation of the loads and sizes of all
documents stored, respectively. For all j 2 f1; . . . ;Mg, the
load of the jth server is denoted asLj and the storage space as
Sj. We do not assume any fixed limit on their values.

Let L and S be the average load and storage space of

all servers in the system. Therefore, L ¼
P

i2f1;...;Ng li

M , and

S ¼
P

i2f1;...;Ng si

M . As S is highly related to the upper bound of

the cost of document recollocation, in order to keep its value

reasonably small, M is assumed to be large enough

although our algorithms also work for small M.

Let L be maxðmaxi2f1;...;Ng li; LÞ and S be maxðmaxi2f1;...;Ng
si; SÞ. Clearly, L and S are the trivial lower bounds on the

highest load and storage space of each server, respectively.

We define the capacity indexCj for the jth server to be
Lj
L þ

Sj
S ,

for each j 2 f1; . . . ;Mg. It is a metric that measures the

combined effect of the loads and storage spaces of the servers,

and the lower bound of its worst case is obviously two. It is

basically the sum of the normalized load and normalized

storage space and, therefore, less affected by absolute values

of the two individual parameters. Obviously,
P

j2f1;...;Mg Cj
� 2M. The purpose of the capacity index is to enhance further

balancing among servers. For example, if Lj � 3L, Sj � 3S,

and Cj < 4, for all j 2 f1; . . . ;Mg, one can conclude that

although the worst case of the load and storage space can be

three times of L and S, respectively, only one of them can be

close to its worst case. For convenience, we also define C-

value Cj to be
Lj
L
þ Sj

S
, for each j 2 f1; . . . ;Mg. Obviously,P

j2f1;...;Mg Cj ¼ 2M and Cj � Cj, for each j 2 f1; . . . ;Mg.
We apply a tree structure like Bþ-tree [10], which is

widely employed in this paper for storing the information
of the servers. We call it B0-tree, as in [13]. A B0-tree stores a
set fðx; yÞjx; y 2 Rþg. The values of x and y in each pair can
be taken, in any order, from the load, storage space, and
their variants, of a server. We assume that the elements
stored in a B0-tree are unique. (Precisely, we can organize
the information in the format of ðB1; B2; . . . ; BM 0 Þ, where
Bi ¼ ðx; yÞ for some x, y 2 Rþ, 8i 2 f1; . . . ;M 0g.) As in
Bþ-tree, data (keys) are stored in leaves, and all leaves are
located at the bottom level. Except for the root, each internal
node has K

2 to K children. The root has 1 to K children. Like
Bþ-tree, the data in the bottom level are sorted according to
y-values, and unlike Bþ-tree, a parent node stores a copy of
one of its children with the smallest x-value. If there are two
children with the smallest x-value, choose the one with

smaller y-value. Hence, the root contains the copy of the
datum with minimum x-value. The normal operations are
similar to those of Bþ-tree. To keep the time for main-
tenance in Oðlog tÞ, where t is the number of data stored in
the tree, there is an auxiliary Bþ-tree for storing the y-values
only. For simplicity, we skip the discussion of those trivial
steps for operations like lookup, insertion, and deletion on
the data structure.

Let SE be the algorithm for performing searching and
updating on a B0-tree. For any input X 2 Rþ, SE can search
an element ðx; yÞ in a B0-tree and perform updating within
Oðlog tÞ time, where y is the smallest possible value such
that x < X. If there are two elements with the smallest
y-value, choose the one with smaller x-value. In other words,
for any other element ðx0; y0Þ in T such that x0 < X, we have
either y0 > y or [y0 ¼ y and x � x0]. In the case that x � X for
each ðx; yÞ 2 T , SE will output false. Intuitively, if the
servers’ information is stored as (load, storage space), SE
can be used to find the server of minimum storage space
with load bounded by a certain value. Similar to (storage
space, load).

Another algorithm SE� is used to search for ðx; yÞ, for any
input ðX;Y Þ, where x � X and y � Y . Like SE, both
algorithms update x and y, if needed, and output false if
searching is not successful. Each algorithm takes Oðlog tÞ
time. These two basic algorithms are used to simplify the
pseudocodes in this paper. For conciseness, all B0-trees
used in this paper are automatically updated and main-
tained, unless specified.

Our results are for synchronous networks; that is, before
the completion of updating the data structures and
reallocating the necessary documents for the previous input
document, the next input is not read. Last, the reallocation
cost of a document is defined as its size. In particular,
reallocating all documents in the jth server, j 2 f1; . . . ;Mg,
needs cost Sj.

3 DOCUMENT PLACEMENT FOR HETEROGENEOUS

SERVERS

For all j 2 f1; . . . ;Mg, let pjl ; p
j
s be two numbers in R,

satisfying

pjl � 2 and pjs � 3
h i

or pjl � 3 and pjs � 2
h i

: ð1Þ

The problem is to bound the load and storage space of the

jth server by pjlL and pjsS, respectively, 8j 2 f1; . . . ;Mg,
upon each document placement. Define T1 ¼ fð Ljpj

l
�1
;
Sj
pjs�1
Þjj

2 f1; . . . ;Mgg, T2¼fðLj;SjÞjj 2 f1; . . . ;Mgg, and T3 ¼ fðSj;
LjÞjj 2 f1; . . . ;Mgg, which are stored in separate B0-trees.

For each input document, algorithm HETER below first
searches for a server with load and storage space bounded
by ðpjl � 1ÞL and ðpjs � 1ÞS, respectively. If found (in Step 2),
place the new document into this server. Assume no such
server exists. Find a server X, indexed j in Step 3.1, of
minimum storage space SX with load bounded by L, and a
server Y , indexed k in Step 3.2, of minimum load LY with
storage space bounded by S. We now have four cases.
Case 1 is [SX < 2S and LY < 2L]. Swap their contents, and
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both of them can accept the new document. Case 2 is

[SX < 2S and LY � 2L]. Find a server Z, indexed i in

Step 3.4.1, of minimum storage space, and transfer a

minimal subset of documents to Y such that Z can accept

the new document. Case 3 is [SX � 2S and LY < 2L], which

is similar to Case 2. Case 4 is [SX � 2S and LY � 2L], which

is impossible.

Algorithm HETERðp1
l ; p

1
s; p

2
l ; p

2
s; . . . ; pMl ; p

M
s Þ:

Upon the arrival of a document d with load l and size s

1. Perform SE� on T1 with input ðL; SÞ and get output;

2. If output is ð Lj
pj
l
�1
;
Sj
pjs�1
Þ

2.1 Place d into the jth server;
3. If output is false

3.1 Perform SE on T2 with input L and get output ðLj;SjÞ;
3.2 Perform SE on T3 with input S and get output ðSk;LkÞ;
3.3 If Sj < 2S and Lk < 2L // case (1)

3.3.1 Swap the content of the jth and kth servers;

3.3.2 Place d into the jth server;

3.4 If Sj < 2S and Lk � 2L // case (2)

3.4.1 Perform SE on T2 with input 1 and get output
ðLi;SiÞ;

3.4.2 Take out a minimal subset R of documents from the

ith server such that the total load in R is at least

minðLi; L; lÞ;
3.4.3 Place R into the jth server; Place d into the

ith server;

3.5 If Sj � 2S and Lk < 2L // case (3)

3.5.1 Perform SE on T3 with input 1 and get output
ðSi;LiÞ;

3.5.2 Take out a minimal subset R of documents from the

ith server such that the total size in R is at least

minðSi; S; sÞ;
3.5.3 Place R into the kth server; Place d into the

ith server;

4. Update L and S;

When a new document comes, if there exists a

j 2 f1; . . . ;Mg such that Lj � ðpjl � 1ÞL and Sj � ðpjs � 1ÞS,

Step 1 outputs it, and the new document is placed into it in

Step 2.1. The load and storage space of the server are then

no more than ðpjl �
pj
l
�1

M ÞL and ðpjs �
pjs�1
M ÞS, respectively,

where L and S are referred to their postplacement values.

To avoid any ambiguities, we assume that L and S are

updated with L and S in the algorithms proposed in this

paper, unless specified otherwise.
Consider the case in which no such server exists. That

means, for all j 2 f1; . . . ;Mg, we have

Lj > pjl � 1
� �

L or Sj > pjs � 1
� �

S: ð2Þ

Therefore, there exist a server with load less than L and a

server with storage space less than S, and Steps 3.1 and 3.2

will not output false.

Lemma 1. Just after the execution of Step 3.2, we have Sj < 2S

or Lk < 2L, where j 6¼ k.

Proof. Recall that Lj < L and Sk < S. If j ¼ k, (2) will be

violated.

Assume the contrary that Sj � 2S and Lk � 2L. It
suffices to prove that Ci > 2 for all i 2 f1; . . . ;Mg, which
implies a contradiction of

PM
i¼1 Ci > 2M.

For all i 2 f1; . . . ;Mg, by Algorithm SE, we have
Li < L) Si � 2S, and Si < S ) Li � 2L; and by (2),
we have Li ¼ L) Si > S, and Si ¼ S ) Li > L. The
C-value for each of these cases is greater than two. We
have two more cases: 1) Li > L, and 2) Si > S. Both
cases lead to Ci > 2. Consider the first case. If Li > L
and Ci � 2, then Si < S, which implies Li � 2L as
stated above and, therefore, Ci > 2. This is a contra-
diction, and hence, Li > L implies Ci > 2. Similarly,
Si > S implies Ci > 2. tu

Lemma 1 shows that the if-conditions of Steps 3.3, 3.4,
and 3.5 are complete. For the case in which Sj < 2S and
Lk < 2L, Step 3.3.1 swaps the content of the servers, and
Step 3.3.2 places the new document into one of them. We
argue that the loads and storage spaces of these two servers
are bounded properly. Before swapping, we have Lj < L
and Sj < 2S. By (2), ðpjs � 1ÞS < Sj < 2S. It implies that
pjs < 3, and by (1), we have pjl � 3. Similarly, we have pkl < 3
and pks � 3. After swapping, both servers are available for
the new document. Hence, after placing the new document
in Step 3.3.2, their loads and storage spaces are bounded as
required. The cost of reallocation for this case is 3S.

Lemma 2. If Step 3.4.1 is executed, it outputs ðLi;SiÞ such that
Si þ Sj < 2S.

Proof. We argue Si < S just after Step 3.4.1. Assume the
contrary that Si � S. According to Algorithm SE, all
servers have storage space S. Then, Sj ¼ S. Together
with the fact that Lj < L, (2) is violated. Therefore,
Si < S. Let Si ¼ �S, for some � 2 ð0; 1Þ.

Divide the servers into three types. For type-1 servers,

their loads are less than L. For type-2 servers, their loads

are at least L, but less than 2L. A type-3 server has load at

least 2L. By AlgorithmSE,Si andSj are the smallest values

among all the choices, respectively. Hence, we have

different lower bounds of storage spaces for the servers
of different types as follows: For type-1 servers, their

storage spaces are at leastSj. AsLk � 2L, by AlgorithmSE,

for all r 2 f1; . . . ;Mg, we haveLr � 2L orSr � S. Hence, a

type-2 server has storage space at least S. For type-3

servers, their storage spaces are at least �S, as this is the

lowest storage space among all servers.
Assume for contradiction that Si þ Sj � 2S. Then,

Sj � ð2� �ÞS. Let M1, M2, and M3 be the number of
servers of the three types, respectively. Consider the
total storage space. We have ðM1 þM2 þM3ÞS �
ðM1ð2� �Þ þM2 þM3�ÞS. It implies M3 �M1. Consid-
er the total C-value. We have 2ðM1 þM2 þM3Þ >
ð2� �ÞM1 þ 2M2 þ ð2þ �ÞM3. Both sides cannot equal,
as the loads of the type-1 servers are not taken into
account in the right-hand side, and the existence of the
jth server guarantees that the set of type-1 servers is
nonempty. Thus, we have M1 > M3, which is a
contradiction. tu

For the case in which the condition in Step 3.4 is true,
Step 3.4.1 finds another server, the ith server, with
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minimum storage space, and Step 3.4.2 reallocates a
minimal subset R of documents, which load is at least
minðLi; L; lÞ, from the ith server to the jth server. (Recall
that l is the load of the new document.) After document
reallocation, the ith server has room for the new document,
and the resulting load is bounded by pilL. The storage space
is decreased and bounded by pisS, obviously.

Consider the jth server. The size of R is at most Si, and
the resulting Sj is still less than 2S � pjsS by Lemma 2. If we
can prove that the load of R is at most minðLi; 2 maxðL; lÞÞ,
we can conclude that the final Lj is less than
LþminðLi; 2 maxðL; lÞÞ � 3L, which is then less than pjlL,
where L stores its postplacement value. This result is
because [Lj < L and Sj < 2S] implies pjs < 3 by (2) and
further gives pjl > 3 by (1).

The cost of reallocation is bounded by Si, which is less
than S, as discussed in the proof of Lemma 2. We now
prove that the load of R is bounded by minðLi; 2 maxðL; lÞÞ.
If Li ¼ minðLi; L; lÞ, R is the set of all documents in the ith
server, and the claim is true. Consider the case
l ¼ minðLi; L; lÞ. Searching for an optimal subset of docu-
ments such that its total load is at least and closest to l is
NP-hard. Therefore, we use a heuristic to perform a linear
search for a minimal contiguous subset R, which total load
is just at least l. Then, the load of R is at most
minðLi;maxðL; 2lÞÞ. (L is for the case that l is less than the
load of the largest load document in the ith server, and 2l is
for the opposite case.) Hence, the claim is true. For the case
L ¼ minðLi; L; lÞ, by similar arguments, the load of R is at
most minðLi; 2LÞ.

On the other hand, the reallocation cost is at most
minðSi; 2S; 2sÞ � Si < S if Step 3.5.1 is executed. Combining
all cases, the reallocation cost is less than 3S.

Theorem 1. After placement of an input document, we have
Lj < pjlL and Sj < pjsS, for all j 2 f1; . . . ;Mg, and the cost
of document reallocation is less than 3S.

The reallocation cost is a concern in the performance of
the algorithms because it will be transformed into time
cost. High reallocation cost can incur high response time
and low throughput of the system and is certainly
unfavorable. In our algorithm, the cost 3S is 3

M of the total
storage space. We believe that it is acceptable especially for
large M. On the other hand, by document reallocation, the
algorithm can handle heterogeneous servers and give an
observable improvement on the result by Bilǒ et al. [2] in
almost all the range of the load-storage space trade-off for
homogeneous systems (Section 4).

4 A BETTER TRADE-OFF FOR HOMOGENEOUS

SERVERS

Consider the best existing online algorithm for bicriteria

scheduling [2], which is a (parametric) ð 2M�k
M�kþ1 ;

Mþk�1
k Þ-

competitive algorithm, where k 2 f1; . . . ;Mg. It is called

Algorithm AðkÞ and is designed for homogeneous server

systems without using document reallocation. We rewrite the

load and storage space bounds in a different way as follows:

The load and storage space of each server are bounded by tlL

and tsS, respectively, where tl ¼ 2M�k
M�kþ1 and ts ¼ Mþk�1

k . In

particular, when k ¼ 1, ðtl; tsÞ ¼ ð2� 1
M ;MÞ, and when k ¼ 2,

ðtl; tsÞ ¼ ð2; Mþ1
2 Þ. As there are M values for k, there are

M pairs of ðtl; tsÞ, which can be used by Algorithm AðkÞ. It is

easy to check that they satisfy 1
tl�1þ 1

ts�1 ¼ 1þ 2
M�1 . We call

this equation Curve CAk. In the curve, there are obviously

M � 1 gaps separated by the M discrete pairs of Algorithm

AðkÞ (Fig. 1). Clearly, the points in the gaps cannot be used by

Algorithm AðkÞ.
The interaction point between Curve CAk and the

horizontal line ts ¼ 3 is ð3��; 3Þ and that between B and

the vertical line tl ¼ 3 is ð3; 3��Þ, where � ¼ 8
Mþ3 . It implies

that for each ðtl; tsÞ, from ð2; Mþ1
2 Þ to ð3��; 3Þ and from

ð3; 3��Þ to ðMþ1
2 ; 2Þ, along Curve CAk, Algorithm HETER

outperforms1 AðkÞ. The reallocation cost is no more than S

when HETER is applied in homogeneous servers, as the

condition in Step 3.3 is never true, and the costS follows from

any one of Steps 3.4 and 3.5. We combine the advantages

from each algorithm and form a new one. Fig. 1 shows the

new set of upper bound pairs.

In the figure, the resulting upper bound pairs are shown

by the solid dots. The white dots on Curve CAk are not used,

as better solutions are (2, 3) and (3, 2). As a result, there are

five portions for ðtl; tsÞ as labeled in the figure. Portions (II)

and (IV) are the two points from Algorithm HETER.

Portions (I) and (V) are the extreme cases from

Algorithm AðkÞ. As the little improvement of an additive

term 1
M in one parameter does not justify the large cost of a

factor M
3 on another one, these two pairs of values will

probably not be used in practice.2 For portion (III),

directly from the boundary condition of tl, we have
M
2 � 1

2 < k < M
2 þ 3

2 . Hence, ifM is even, there are two discrete

points ð 3M
Mþ2 ;

3M�2
M Þ and ð3M�2

M ; 3M
Mþ2Þ. IfM is odd, there is only a
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Fig. 1. A comparison between AðkÞ and HETER (not to scale).

1. For any two distinct points ðx; yÞ and ðx0; y0Þ, ðx; yÞ outperforms ðx0; y0Þ
if and only if x � x0 and y � y0.

2. Theoretically, they remain the best pairs, as there is no existing
solution that outperforms them.



point ð3M�1
Mþ1 ;

3M�1
Mþ1 Þ. As shown in the figure,HETER does not

outperform this/these point(s). Possible reasons are that

HETER is basically designed for heterogeneous servers and

that the bounds are independent ofM. (AlgorithmAðkÞ is for

homogeneous servers with parameter M.)
In this section, we emphasize on homogeneous servers.

With the help of document reallocation, we form a contin-
uous set of realizable upper bound pairs along Curve CAk of
the middle portion, for allM � 18. Formally, given any ðtl; tsÞ
such that 3�� < tl < 3 and 1

tl�1þ 1
ts�1 � 1þ 2

M�1 , we give an
algorithm to perform online placement such that Lj < tlL
and Sj < tsS, for all j 2 f1; . . . ;Mg.

Within this range of tl in Curve CAk, for each ðtl; tsÞ not
used by Algorithm AðkÞ, there exists an integer k laying
between bM2 � 1

2c and dM2 þ 3
2e such that

2M � k
M � kþ 1

< tl <
2M � k� 1

M � k and

M þ k
kþ 1

< ts <
M þ k� 1

k
;

ð3Þ

as ð 2M�k
M�kþ1 ;

Mþk�1
k Þ and ð2M�k�1

M�k ; Mþkkþ1 Þ are the two nearest
points surrounding ðtl; tsÞ on B.

Upon the arrival of a document of load l and size s, if we

can find a server with load at most M
M�1 ðtl � 1ÞL and storage

space at most M
M�1 ðts � 1ÞS, then the new document can be

placed into this server. Thus, the resulting load is at

most tlL, and storage space is at most tsS, where L and S

store the preplacement values, and L and S store the

postplacement ones. It is because the new load is at most
M
M�1 ðtl � 1ÞLþ l ¼ M

M�1 ðtl � 1ÞðL0 � l
MÞ þ l ¼ M

M�1 ðtl � 1ÞL0 þ
ð1� tl�1

M�1Þl � M
M�1 ðtl � 1ÞLþ ð1� tl�1

M�1ÞL ¼ tlL, where L
0

is

the new average load of the server. A similar argument can

be made for the storage space.

Let P be the set of servers with loads more than
M
M�1 ðtl � 1ÞL, and Q be the set of servers with storage

spaces more than M
M�1 ðts � 1ÞS. They are stored in

separate B0-trees. Then, we have jP j < ML
M
M�1ðtl�1ÞL ¼

M�1
tl�1 ,

and similarly, jQj < M�1
ts�1 . We try to find a server not in

P [Q. If P \Q 6¼ ;, then jP [Qj ¼ jP j þ jQ� P j < M�1
tl�1 þ

ðM�1
ts�1 � 1Þ ¼M þ 1� 1 ¼M. That is, there is at least one

server not in P [Q. If one of M�1
tl�1 and M�1

ts�1 is an integer,

say, M�1
ts�1 , then jQj � M�1

ts�1 � 1, and it also implies the

existence of one server outside P [Q.

Suppose that there is no server outside P [Q. In other

words, jP [Qj ¼M. We then have P \Q ¼ ; and both M�1
tl�1

and M�1
ts�1 are not integers. As M�1

tl�1 þ M�1
ts�1 ¼M þ 1, we have

bM�1
tl�1 c þ bM�1

ts�1c ¼M. Because there is no available server for

the new document, we apply document reallocation to

vacate a server, and Theorem 2 below shows this possibility.

Theorem 2. There exists an algorithm such that for all M � 18,
it finds a server in P and a server in Q in OðlogMÞ time such
that the sum of their loads and their storage spaces are less
than tlL and tsS, respectively.

The idea of the algorithm can be illustrated by the fact
that if almost all the load and storage space of the whole

system are in P and Q, respectively, we can find a server in

P with little storage space and a server in Q with little load.

Then, it will be safe to move the documents in the server of

P to the server of Q with little reallocation cost. In practice,

we simply take away the minimal number of documents to

avoid the excessive reallocation cost.

Proof. We first claim that

jP j ¼ M � 1

tl � 1

� �
and jQj ¼ M � 1

ts � 1

� �
: ð4Þ

Assume for contradiction that jQj < bM�1
ts�1c. As P \Q ¼ ;,

we have M ¼ jP [Qj ¼ jP j þ jQj. Recal l ing that

bM�1
tl�1 c þ bM�1

ts�1c ¼M, we have jP j > bM�1
tl�1 c, which implies

jP j � bM�1
tl�1 c þ 1 > M�1

tl�1 . This is a contradiction. If

jQj > bM�1
ts�1c, then jQj > M�1

ts�1 , which is also a contra-

diction. Therefore, jQj ¼ bM�1
ts�1c. We can use similar

arguments for jP j.
Let �PS be the total storage space of servers in P and

�QL be the total load of servers in Q. Taking �P and �Q
into account, we have

jP j < ML� �QL
M
M�1 ðtl � 1ÞL

¼ ðM � �QÞðM � 1Þ
Mðtl � 1Þ and

jQj < MS � �PS
M
M�1 ðts � 1ÞS

<
ðM � �P ÞðM � 1Þ

Mðts � 1Þ :

ð5Þ

We claim that
�Q
tl�1þ

�P
ts�1 <

1
tl�1þ 1

ts�1 . Assume the

contrary, and by (5), we have M ¼ jP [Qj ¼ jP j þ jQj <
ðM��Qtl�1 þ

M��P
ts�1 ÞM�1

M �ðM�1
tl�1þ M�1

ts�1ÞM�1
M ¼

ðMþ1ÞðM�1Þ
M ¼M� 1

M .

This is a contradiction. Hence, the claim is true, and it

implies that �Q < 1þ tl�1
ts�1 < 1þ 2

2�� � 3, for M � 5, and

similarly, �P < 3.

The following algorithm is for searching the target

servers for document reallocation. Let q be an integer

less than minðjP j; jQjÞ, and its value will be determined

later. Set integer c ¼ 0. Loop c ¼ cþ 1 until the storage

space of the cth smallest load server in P is no more

than �P S
q . Output the cth smallest load server X. In other

words, X is the smallest load server with storage space

no more than �P S
q . Obviously, X exists and the loop

terminates. Similarly, find the smallest storage space

server Y in Q with load no more than
�QL
q . Without loss

of generality, assume that Y is the c0th smallest storage

space server in Q.

Before document reallocation, the load of X is less

than ðM��Q�ðc�1Þ M
M�1ðtl�1Þ

jP j�ðc�1Þ ÞL, and the storage space of Y is

less than ðM��P�ðc
0�1Þ M

M�1ðts�1Þ
jQj�ðc0�1Þ ÞS. Both c and c0 are no more

than q, and the time complexity of this searching

algorithm is Oðq logMÞ, which is OðlogMÞ, as q will be

set as a constant.
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If X is vacated and its documents are reallocated to Y ,

then the reallocation cost is at most �P Sq , and the resulting

load of Y is less than ð�Qq þ
M��Q�ðc�1Þ M

M�1ðtl�1Þ
jP j�ðc�1Þ ÞL

� �Q
q
þ
M � �Q � ðc� 1Þ M

M�1 ðtl � 1Þ
M�1
tl�1

j k
� ðc� 1Þ

0
@

1
AL

by ð4Þ

� �Q
q
þ
M � �Q � ðq � 1Þ M

M�1 ðtl � 1Þ
M�1
tl�1

j k
� ðq � 1Þ

0
@

1
AL

since
M � 1

tl � 1

� �
<

M � �Q
M
M�1 ðtl � 1Þ

and c � q

<
�Q
4
þ
M � �Q � ð3Þ M

M�kþ1

M � k� 3

 !
L

by ð3Þ; and setting q ¼ 4

� 3

4
þ
M � 3� 3M

M�kþ1

M � k� 3

 !
L

by �Q < 3 and 4 �M � k� 3 ðas M � 18Þ

< 1þ M � 1

M � kþ 1

	 

L

by k <
M

2
þ 3

2

� �
< tlL;

by ð3Þ

and by similar arguments, the resulting storage space is
less than tsS. tu
Below is the algorithm mentioned in Theorem 2.

Algorithm Find:

1. Let SP be the total storage space in P , and

LQ be the total load in Q;

2. q :¼ minðjP j; jQj; 4Þ; c :¼ 0; c0 :¼ 0;

3. Loop c :¼ cþ 1; X :¼ the cth smallest load server in P ;

Quit if the storage space of X is no more than SP
q ;

4. Loop c0 :¼ c0 þ 1;

Y :¼ the c0th smallest storage space server in Q;
Quit if the load of Y is no more than

LQ
q ;

5. Return X and Y ;

Because the theorem bridges the gaps between the discrete
points, we now redefine portion (III) by removing the
constraint of k and give an algorithm SMOOTH for this
new portion as follows: Steps 1 and 2 first check if
document reallocation can be avoided. For the discrete
points used by Algorithm AðkÞ, placement of d must be
done in Step 2.1 without reallocation. Step 3 focuses on the
points that cannot be handled by AðkÞ. We use Find to find
X and Y from P and Q, respectively. Move all the
documents in X to Y , while Theorem 2 guarantees that
Y ’s bounds will not be violated. Then, X is available for d.
Note that, in order to reduce the reallocation cost, only
minimal documents in X will be reallocated in practice.

Algorithm SMOOTHðtl; tsÞ: // 1
tl�1þ 1

ts�1 ¼ 1þ 2
M�1 and

3�� < tl < 3.

Upon the arrival of a document d

1. Perform SE� on T2 with input

ð M
M�1 ðtl � 1ÞL; M

M�1 ðts � 1ÞSÞ and get output;

2. If output is ðLj;SjÞ
2.1 Place d into the jth server;

3. If output is false

3.1 Perform Find and get output X � P , and Y � Q;
3.2 Move all documents in X to Y ;

3.3 Place d into X;

4. Update L and S;

4.1 Remarks

In our algorithm, M � 18 when q ¼ 4, as M � k� 3 � 4 is

true in proving of Lj < tlL. If we choose q ¼ 5, then M � 20,

and M � 22 when q ¼ 6, etc. Recalling that the reallocation

cost is bounded by 3S
q , for any M, we must use the greatest q

in order to reduce the reallocation cost. For the case that M

is a parameter during the system design, choosing the value

of M is to decide a trade-off between the reallocation cost

and the other parameters such as the maintenance cost

incurred. (If M increases, the maintenance cost increases,

but the reallocation cost �P S
q monotonically decreases.) As

M !1, the interaction points ð3��; 3Þ and ð3; 3��Þ
converge at (3, 3), and the extreme points ð2� 1

M ;MÞ and

ðM; 2� 1
MÞ converge at ð2;1Þ and ð1; 2Þ, respectively. It

means that, asymptotically, Algorithm HETER outper-

forms AðkÞ everywhere.

5 A SPECIAL CASE FOR HOMOGENEOUS SERVERS

In this section, our aim is to bound the load, the storage
space, and the capacity index of each server by 3L, 3S,
and 4, respectively, after each document placement.

Recall that the two points (2, 3) and (3, 2) are

asymptotically the best results at present. The result in this

section implies that if we sacrifice one parameter and set the

upper bounds of load and storage space to 3L and 3S,

respectively, then we gain in the capacity index. The

capacity index measures the integrated effect of load and

storage space on each server. Directly from (1), the trivial

upper bound for a capacity index is 5 and will be improved

to 4 in this section. It is important to note that with this

improvement on the capacity index, if one parameter in a

server is near its worst case ð3L=3SÞ, the other one must be

close to its trivial lower bound ðS=LÞ. For example,

algorithm HETER allows a server’s load to be close to 2L

and its storage space to be close to 3S, simultaneously.

Algorithm CAPACITY allows the load to grow close to 3L,

but if the load really does, then the storage space will be

bounded near S, regardless of its upper bound 3S. The

improvement in capacity index also gives hope that both

parameters could be very close to twice of their trivial lower

bounds simultaneously, which is compatible with the

asymptotic latest known upper bound of 1.9201 [7] and

the lower bound of 1.88 [12] for balancing a single

TSE: ONLINE BICRITERIA LOAD BALANCING USING OBJECT REALLOCATION 385



parameter. The price for it is the cost 1:5S in reallocating

documents. It could be improved to ð1þ �ÞS in Section 5.1,

where � is an arbitrary positive constant less than 0.5, and

the time needed would increase by a constant factor 1
� . As

there always exists a j 2 f1; . . . ;Mg such that Lj � 2L,

Sj � 2S, and Cj � 2 (otherwise,
P

j¼1;...;M Cj > 2M), an

OðMÞ-time algorithm can be applied to search this server

in order to avoid any document reallocation. For small M,

the average storage space is large, and this trivial approach

is a better choice. However, when M is large or the cost of

document reallocation is minor, an OðlogMÞ-time algorithm

CAPACITY will be given. Its idea is given as follows:

Upon the arrival of a new document d, if there is a server in

which load and storage space are bounded by L and S,

respectively, the algorithm will find it and place d into it.

After placement, the load will clearly be no more than 2L,

the storage space no more than 2S, and the capacity index

no more than four. Suppose no such server exists in the

system. That is, 8i 2 f1; . . . ;Mg, Li > L or Si > S. As the

sum of all C-values is 2M, there must be a server, say,

the ith server, which C-value is at most two. Therefore, we

have [Li < L and S < Si < 2S] or [Si < S and L < Li < 2L].

The former case is tackled by Phase A and the latter by

Phase B. Since they are symmetric, we only discuss the first

case. Without loss of generality, we assume the ith server

has the smallest storage space, i.e., if another server has a

smaller storage space and its load is less than L, then its C-

value is greater than two.

Algorithm CAPACITY :

Upon the arrival of a document d with load l and size s

1. Perform SE� on T2 with input ðL; SÞ and get output;

2. If output is ðLj;SjÞ
2.1 Place d into the jth server;

3. If output is false

3.1 Perform Phase A; (as defined later)

3.2 If d cannot be successfully placed in Phase A
3.2.1 Perform Phase B;

4. Update L and S;

For simplicity, two procedures, namely, PLACEðD;�Þ
and GET ðxÞ, will be used in Phase A. PLACEðD;�Þ
performs the following steps: If C� � 4� CD, where CD is

the C-value contributed by a set D of documents, then place

D into the �th server; else, quit the current phase. The

procedure GET ðxÞ is given below.

Procedure GET ðxÞ:
G1. Perform SE on T2 with input x and get output;

G2. If output is false

G2.1 Quit the current phase;

G3. If output is ðL�;S�Þ
G3.1 If S� � 2S Quit the current phase;
G3.2 If C� � 2

G3.2.1 Place d into the �th server;

Quit the current phase;

G3.3 If C� > 2 return �;

Phase A is given below:

A1. Perform GET ðLÞ and get output j;

A2. Perform GET ðLjÞ and get output k;

A3. Perform GET ðLkÞ and get output q;

A4. Partition the jth server in the following way: If there is

a document with size more than S, store it in a bucket
and the rest of documents in another bucket;

Else, store all documents in at most three buckets such

that each bucket has storage space at most S; Let B

and B0 be the buckets which C-values c and c0 are the

largest and the second largest ones no more than 1.5,

respectively;

A5. If B exists

A5.1 If Ck � 4� c
A5.1.1 Pick the bucket B; PLACEðB; kÞ;
A5.1.2 If the new Cj > 2 (i.e., the old Cj � c > 2) and B0

exists

A5.1.2.1 Pick the bucket B0; PLACEðB0; qÞ;
A5.2 Else

A5.2.1 Perform GET ðLk � ð2� cÞLÞ and get output p;

A5.2.2 Pick the bucket B; PLACEðB; pÞ;
A6. Place d into the jth server;

In procedure GET ðxÞ, Step G1 searches for a server
with the smallest storage space and load bounded by x.
GET will quit from the current phase without placement
if no such server exists, or it exists with storage space at
least 2S. If Step G1 outputs a server with C-value at most
two, GET places d into this server and quits the current
phase; it will return this server to Phase A if its C-value is
greater than two.

In Phase A, Steps A1 to A3 output three servers, namely,
jth, kth, and qth servers, if none of them can accept d.
(Otherwise, it is done.) Then, the remaining task of Phase A
is to place d into the jth server after reallocating some of its
documents.

The documents are partitioned into at most three buckets
based on the criteria in Step A4, and at most two of them,
namely,BandB0 if they exist, will be reallocated. IfBdoes not
exist, the jth server has only one document and d is directly
placed in the jth server. SupposeB exists. If the kth server can
accept B without violating the limit on C-value, then
reallocation of B will be done in Step A5.1.1, and if the C-
value of the jth server is still higher than 2, andB0 exists, then
B0will be reallocated to the qth server in Step A5.1.2.1. For the
case that B0 does not exist, there is only one “big” document
left in the jth server after B has been reallocated, and
therefore, it can accept d. If the kth server cannot acceptBdue
to the violation on C-value,Bwill be moved to another server
returned byGET in Step A5.2.1. For both cases, the resulting
jth server can accept d.

In practice, if Step A5.1.2.1 is executed, then Step A5.1.1
does not reallocate B before B0 is successfully reallocated.
Phase A is designed for the case [Li < L and S < Si < 2S].
If this condition is not true, GET and PLACE may quit the
current phase without any placement and reallocation.
Phase B will then perform the placement.

Phase B can be obtained by the following steps: 1) Swap
the positions of load and storage space, L and S, and L�
and S� in Phase A, and PLACE and GET . 2) Use T3

instead of T2. 3) Skip the testing in PLACE and Step G3.1
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of GET , as Phase B must succeed in placing d after

Phase A fails to do so.

Theorem 3. Suppose Li < L and S < Si < 2S. The document d
can be placed into a server in Phase A, and after the completion
of the algorithm, each server has load less than 3L, storage
space less than 3S, and capacity index no more than four. The
reallocation cost is no more than 1:5S.

Proof. Suppose d is placed in Step G3.2.1 in GET . By

Steps G3.1 and G3.2, the resulting S� is less than 3S,

and C� is no more than four. As for load, if GET is

invoked in Step A1, before placement, L� < L. Simi-

larly, we have L� < Lj < L if GET is called in Step A2,

and L� < Lk < Lj < L if GET is called in Step A3.

Hence, L� < 2L after placing d.
It now suffices to prove that if d is not placed in Steps A1

to A3 and A5.2.1, then it will be successfully placed into
the jth server without violating the bounds of loads,
storage spaces, and capacity indices of all the servers.

Since Li < L, Step G1 in GET ðLÞ does not return
false. By algorithm SE, the only reason why GET ðLÞ
does not return i is Sj < Si. As Lj < L, by the choice
of i, we have Cj > 2. As S < Si < 2S, we have Sj < 2S,
and therefore, GET ðLÞ will not quit Phase A but will
return j. Considering Ci < 2, we have Li < Lj < L and
S < Sj < Si < 2S. Similarly, by considering the fact
that GET ðLjÞ does not return i but k, and GET ðLÞ
does not return k but j, we have Ck > 2, Li < Lk <
Lj < L and S < Sj < Sk < Si < 2S. By similar argu-
ments, we have Cq > 2, Li < Lq < Lk < Lj < L, and
S < Sj < Sk < Sq < Si < 2S. Hence, Steps A1 to A3 do
not quit Phase A but return j, k, and q, respectively.

If B does not exist in Step A4, here is only one

document in the jth server. Step A6 places d into the

server without violating the bounds. Suppose B exists. If

Ck � 4� c, Step A5.1.1 reallocates B to the kth server.

The resulting Ck is clearly no more than four. Since Lj <
L and Lk < L before reallocation, we have Lk < 2L after

reallocation. If B has more than one document, its

storage space is bounded by S; else, it is bounded by S.

Hence, the resulting Sk < 2S þ S � 3S. The same argu-

ments apply to the qth server, if Step A5.1.2.1 is executed.

After Step A5.1.1, if Cj > 2, and B0 does not exist, then

there is only one document left in the jth server, and this

server can accept d. If B0 exists and needs to be

reallocated, there is at most one bucket left inside the

jth server after the second reallocation. Then, Cj becomes

less than two, and the jth server can accept d.

Consider Ck > 4� c. Since Sk < 2S, we have

Lk > ð2� cÞL. Recalling that Sk < Si < 2S, L > Lk > Li,
and Ck � ð2� cÞ > 2 > Ci, we have Li < Lk � ð2� cÞL.

Hence, the existence of the ith server guarantees that

GET in Step A5.2.1 can return the pth server such that

Lp < Lk � ð2� cÞL. If p ¼ i, d can be placed in the ith

server directly. If p 6¼ i, then we have Li < Lp <
Lk � ð2� cÞL < Lk < L and Sk < Sp < Si < 2S. Then,

Cp ¼ LpL þ
Sp
S
< Lk�ð2�cÞL

L
þ 2 < Lk

L
þ c < 1þ c. Hence, B is

successfully reallocated to the pth server, because Cp will

be less than 1þ cþ c � 4 and Lp less than Lþ L ¼ 2L �
2L and Sp less than 2S þ S ¼ 3S � 3S, after B is

reallocated to the pth server. Recalling Ck > 4� c and

Ck ¼ LkL þ
Sk
S
< 3, we have c > 1. As Cj < 3 initially, Cj is

less than two after reallocating B, and therefore, the jth

server can now accept d.
Consider the reallocation cost. If only B is reallocated,

the cost is bounded by 1:5S, as c � 1:5. IfB0 exists and will
be reallocated, cmust be less than one; otherwise, the new
Cj will not be more than two, and Steps A6.3.1 and A6.3.2
will not be executed. Hence, c0 � c < 1. There should be a
third bucket, because Cj is still more than two. We call
this bucket B2. After B is taken away, the C-value
contributed by B0 and B2 is more than two. It means that
the C-value of B2 is more than one, and by Step A4, it
must be no less than 1.5. As the load of B2 is less than L,
the storage space of B2 is more than S

2 . It implies that the
total storage space ofB and B0 is less than 1:5S. For Phase
B, the storage space of jth server is less than S, and hence,
the reallocation cost is bounded by 1:5S. tu

5.1 Improving the Reallocation Cost

The upper bound, 1:5S, of the reallocation cost can be

reduced to ð1þ �ÞS, for any positive constant � 2 ð0; 1
2Þ. We

first change the upper bound for c to 2� �. Consider that

there is no document with size greater than S. If both B and

B0 exist and will be reallocated, the C-value of the remaining

documents is greater than 2� �. The storage space of B2 is

more than ð1� �ÞS, and the total storage space of B and B0

will then be less than ð1þ �ÞS. This is done in Steps A5.1.1

and A5.1.2.1. If only B is reallocated, its storage space is less

than S, and its C-value is less than 2� �. For the case of a

document with size greater than S, let B be the bucket with

storage space less than ð1þ �ÞS and the smallest C-value.

Its C-value is obviously less than 2� �. Note that if the

storage space is greater than S, B contains only one

document and will not violate the bound of storage space

upon reallocation. Combining all cases, it remains to find a

server to accept a bucket with C-value less than 2� �.

Recall in the proof of Theorem 3 that we have Cp < 1þ c,
and, therefore, it may not be possible to reallocate B to the

pth server, as well as the kth one, for c � 2� �. We now

modify Phase A and argue that we can find a server for B. If

the condition in Step A6.1 is false, as mentioned, Li < Lk �
ð2� cÞL < Lk � �L. Similarly, if Cp > 4� c, we have

Li < Lp � ð2� cÞL, where Lp < Lk � ð2� cÞL. Hence, Li <
Lk�2ð2� cÞL<Lk�2�L. Note that initially, Li <Lk��L,

and after one execution of Step A5.2.1, if the pth server

cannot accept B, we have Li < Lk � 2�L. Repeat Step A5.2.1

(with a modification of the subscripts) for d1�e times; if there

is no suitable server found, then Li < Lk � L, which is a

contradiction. Intuitively, the gap between Li and Lk can be

as large as L, but the gap between Li and Lp is at most

L� ð2� cÞL < ð1� �ÞL. It suffices to test at most d1�e
servers with loads between Li and Lk. Hence, the time

needed is Oð1� logMÞ.
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6 CONCLUSION

We give three results for balancing the loads and storage

spaces among servers using document reallocation. In order

to obtain the best trade-off, we need to equalize both sides

of each inequality in (1). The system designer can then

determine the trade-off between load and storage space for

each server in the heterogeneous case or for the whole

system in the homogeneous case.
For heterogeneous servers, the first algorithm guarantees

that for all j 2 f1; . . . ;Mg, Lj < pjlL and Sj < pjsS, where
½pjl � 2 and pjs � 3� or ½pjl � 3 and pjs � 2�. We assume that
the heterogeneity among servers can be translated into
different choices of pjl and pjs, j 2 f1; . . . ;Mg. The realloca-
tion cost is less than 3S.

For homogeneous servers, our second result is a combina-

tion of our first algorithm and Algorithm AðkÞ in [2]. With

document reallocation, it gives Lj � tlL and Sj � tlS, for all

j 2 f1; . . . ;Mg, where ðtl; tsÞ 2 fð2� 1
M ;MÞ; ðM; 2� 1

MÞg [
fð2; 3Þ; ð3; 2Þg [ fðtl; tsÞj 1

tl�1þ 1
ts�1 � 1þ 2

M�1g. Graphically,

our contribution is to smooth the middle portion (Fig. 1).

The document reallocation required is only 3S
q , where q is

some integer at least four. Together with the points

ð2� 1
M ;MÞ, ðM; 2� 1

MÞ, (2, 3), and (3, 2), the reallocation cost

is less than 3S, which is dominated by the first result.
Our last algorithm gives Lj < 3L, Sj < 3S and Cj � 4, for

all j 2 f1; . . . ;Mg. It implies that in each server, at least one

of load and storage space is no more than twice its trivial

lower bound, although the upper bounds of load and

storage space are not as tight as those of the first and second

results. The reallocation cost is ð1þ �ÞS, where � is any

arbitrary positive constant less than 1
2 .

Our solutions are based on large values of M, which

implies small values of S, and hence, small reallocation

costs. Further research is needed to reduce the reallocation

cost for general values of M. Another direction may be to

study different models of server heterogeneity.
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