
Site-Based Partitioning and Repartitioning
Techniques for Parallel PageRank Computation

Ali Cevahir, Cevdet Aykanat, Ata Turk, and B. Barla Cambazoglu

Abstract—The PageRank algorithm is an important component in effective web search. At the core of this algorithm are repeated
sparse matrix-vector multiplications where the involved web matrices grow in parallel with the growth of the web and are stored in a
distributed manner due to space limitations. Hence, the PageRank computation, which is frequently repeated, must be performed in
parallel with high-efficiency and low-preprocessing overhead while considering the initial distributed nature of the web matrices. Our
contributions in this work are twofold. We first investigate the application of state-of-the-art sparse matrix partitioning models in order to
attain high efficiency in parallel PageRank computations with a particular focus on reducing the preprocessing overhead they
introduce. For this purpose, we evaluate two different compression schemes on the web matrix using the site information inherently
available in links. Second, we consider the more realistic scenario of starting with an initially distributed data and extend our algorithms
to cover the repartitioning of such data for efficient PageRank computation. We report performance results using our parallelization of a
state-of-the-art PageRank algorithm on two different PC clusters with 40 and 64 processors. Experiments show that the proposed
techniques achieve considerably high speedups while incurring a preprocessing overhead of several iterations (for some instances
even less than a single iteration) of the underlying sequential PageRank algorithm.

Index Terms—PageRank, sparse matrix-vector multiplication, web search, parallelization, sparse matrix partitioning, graph

partitioning, hypergraph partitioning, repartitioning.

Ç

1 INTRODUCTION

PAGERANK [13] is a very well-known algorithm that
attracted the attention of the information retrieval

community in the last decade. This algorithm acts as a
meaningful component in enabling accurate ranking of web
search results by imposing an order on web pages according
to their importance. The idea behind PageRank is basically
an application of the academic citation literature to the web.
This involves deriving a Markov chain matrix from the
hyperlink structure of the web and computing its principle
eigenvector in a series of iterations.

Although the PageRank algorithm is quite effective, it
may be computationally expensive due to the following three
reasons: First, the size of the web is enormous. As of July
2008, it is estimated that the web contains 1 trillion unique
pages [28]. Even with the fastest computers, PageRank
computations using a web matrix of this size would take
unacceptably long. Second, the web is constantly evolving
[21]. New pages are added, existing pages are deleted, and
links within the pages are modified constantly. This
essentially requires recomputation of PageRank values in a
continuous manner, or otherwise, computed page impor-
tance values quickly become obsolete. Third, in some cases, it
may be necessary to compute more than one PageRank
vector, e.g., if there are multiple preferred views for page

importance [31]. These reasons show the need for efficient
PageRank computations.

Broadly, the research efforts trying to speedup the
PageRank computations are based on numerical techniques
or parallelization. Among numerical approaches, there are
various acceleration techniques such as extrapolation [12],
[38], adaptive [39], [52], block-structure [40], and aggrega-
tion-disaggregation [46], [52]. These techniques mainly aim
to increase the convergence rate of the power method [30],
which is the de-facto method for PageRank computation
with low memory requirement. Among the recently pro-
posed linear system approaches, there are Krylov subspace
methods [22], [25], which are applied together with various
preconditioners. These methods decrease the number of
iterations for convergence at the expense of increased
computation per iteration and increased space consumption.
At the core of all these iterative PageRank algorithms, there
are repeated sparse matrix-vector multiplication (SpM�V)
operations. Also, recently, the lumpability of the dangling
pages (i.e., pages with no outlinks) has been noticed and
exploited to devise several algorithms that significantly
reduce the per-iteration computation time [23], [36], [45],
[48]. These algorithms achieve computational savings by
excluding the SpMxVs associated with the dangling pages
from the iterative computations without degrading the
convergence rate. Hence, the total running time becomes
proportional to the number of nondangling pages.

Despite the recent and rich literature on numeric
approaches, research on parallelization of PageRank is
relatively rare [25], [41], [42], [50]. A parallelization of the
power method is discussed in [50], and various linear system
formulations are compared in terms of parallel runtime
performance in [25]. Asynchronous computation models for
parallel PageRank are proposed in [42] and [43]. In [42], a
multithreading scheme is investigated. In [43], asynchronous
schemes are investigated for parallel architectures but very
low speed-up values are reported even for small numbers of

786 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. 5, MAY 2011

. A. Cevahir is with the Tokyo Institute of Technology, Tokyo, Japan.
E-mail: ali@matsulab.is.titech.ac.jp.

. C. Aykanat and A. Turk are with the Computer Engineering Department,
Bilkent University, Ankara 06800, Turkey.
E-mail: {aykanat, atat}@cs.bilkent.edu.tr.

. B.B. Cambazoglu is with Yahoo! Research, Barcelona, Spain.
E-mail: barla@yahoo-inc.com.

Manuscript received 27 Jan. 2009; revised 17 Nov. 2009; accepted 18 Mar.
2010; published online 1 June 2010.
Recommended for acceptance by M. Yamashita.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2009-01-0039.
Digital Object Identifier no. 10.1109/TPDS.2010.119.

1045-9219/11/$26.00 � 2011 IEEE Published by the IEEE Computer Society

processors. A Gauss-Jacobi-based parallel PageRank algo-
rithm, which utilizes the site information for straightforward
matrix partitioning, is proposed in [41]. All these studies are
based on 1D rowwise partitioning of the web matrix and
consider only the load balancing issue in parallel SpMxVs.
None of these studies apart from [41] involve any effort for
minimization of the communication overhead, whereas the
use of site information in [41] provides an implicit effort in
this direction. However, if the number of sites is much larger
than the number of processors, the benefit of this implicit
effort diminishes. Finally, there are some works [55] on
approximate Page-Rank computations in a distributed
setting, but they are not in the scope of our work.

Bradley et al. [11] have applied hypergraph-partitioning-
based (HP-based) parallel SpMxV models of Catalyurek
and Aykanat [15], [16] and Ucar and Aykanat [58], for
parallelization of PageRank computations. These models
are based on 1D rowwise and 2D fine-grain partitioning of
the web matrix and are quite successful in formulating the
load balancing constraint and the total communication
volume requirement during the repeated parallel SpMxVs
involved in PageRank computations. However, given the
vast size of the web matrix, these techniques are not
affordable in practice due to the high partitioning overhead
introduced by HP. Bradley et al. [11] try to tackle this
performance issue using the parallel HP tool Parkway [56].

In this paper, we first focus on reducing the above-
mentioned partitioning overhead. For this purpose, we
propose two different web matrix compression schemes,
namely, 1D and 2D compression, by exploiting the site
information inherently available in page links. The 1D
scheme compresses the n�n web matrix along only one
dimension, i.e., either along rows or columns, thus obtain-
ing an m�n or n�m matrix, where n is the number of pages
and m is the number of sites. These matrices are then
partitioned using HP. 1D rowwise and 1D columnwise
partitioning models are discussed under this 1D compres-
sion scheme. The 1D rowwise partitioning model has been
briefly introduced in our earlier works [2], [20]. The 2D
scheme compresses the matrix in both dimensions, obtain-
ing an m�m matrix, which is then partitioned using graph
partitioning (GP). 1D rowwise and 1D columnwise parti-
tioning models are formulated and discussed under this 2D
compression scheme. These partitioning models signifi-
cantly decrease the preprocessing overhead of partitioning
the n�n matrix, without sacrificing the parallel efficiency.

Partitioning models discussed in the literature generally
assume the availability of a global web graph, possibly stored
as a single file or data set in a host machine. However, in a real-
world scenario, this assumption may not be valid since the
initial web data set is likely to be distributed among many
processors. In such a setup, the data have to be redistributed
among processors for the sake of efficient parallel PageRank
computations. Hence, partitioning models should encapsu-
late the initial data redistribution overhead as well as the
communication overhead that will be incurred during the
parallel PageRank computations. This problem constitutes a
typical instance of the repartitioning (remapping) problem. In
this paper, we adopt the recently proposed repartitioning
models [3], [14], [18], whicharebasedonGPandHP withfixed
vertices, and apply them on top of our above-mentioned site-
based GP and HP models in order to encapsulate the initial
redistribution overhead in parallel PageRank computations.

Moreover, in this paper, we propose a simple yet
effective method to handle pages with no in-links. This
method avoids the SpMxVs associated with the submatrices

corresponding to the pages with no in-links throughout the
iterations by only performing two SpMxVs at the beginning.
Also, for the power-method-based parallel PageRank
algorithms, we implement an improvement, which reduces
the number of global communications due to the norm
operations from two to one [20]. All of our contributions are
presented in the context of a state-of-the-art sequential
PageRank algorithm proposed by Ipsen and Selee [36],
whereas our contributions can be easily extended to other
iterative PageRank algorithms. This power-method-based
algorithm [36] utilizes the lumping method to handle the
dangling pages efficiently via applying the power method
only to the smaller lumped matrix, where the convergence
rate remains the same as that of the power method applied
to the full matrix. It also has the advantage of allowing the
dangling node vectors and personalization vectors to be
different, thus enabling the implementation of TrustRank
[29]. This algorithm is parallelized and tested on two PC
clusters with 40 and 64 processors in order to verify the
validity of the proposed techniques. PageRank computa-
tions conducted on eight well-known large web data sets
indicate the effectiveness of the proposed techniques. These
techniques result in considerably high speedups while
incurring a preprocessing overhead of several iterations (for
some instances even less than a single iteration) of the
underlying sequential PageRank algorithm.

The organization of the paper is as follows: Section 2
provides background material. The proposed parallel
PageRank algorithm is given in Section 3. The proposed
compression schemes and partitioning models are given in
Section 4. Section 5 presents the proposed repartitioning
models. Experimental results are reported and discussed in
Section 6. Section 7 concludes the paper.

2 BACKGROUND

2.1 PageRank Algorithm

PageRank can be explained with a probabilistic model,
called the random surfer model [54]. In this model, the
PageRank of page i is defined as the steady-state probability
that the surfer is at page i at some particular time step. In
the Markov chain induced by a random walk on the web
(containing n pages), the states of the chain correspond to
the pages in the web, and the n�n transition matrix P¼
ðpijÞ is defined as pij¼1=degðiÞ if page i contains outlink(s)
to page j, or 0, otherwise. Here, degðiÞ denotes the number
of outlinks of page i.

In the web, there exist pages with no outlinks to other
pages. Such pages are called dangling pages. We can
decompose the link structure of the web, as shown in
Fig. 1a, where ND and D, respectively, represent sets of n1

nonangling and n2 dangling pages, and n1 þ n2 ¼ n. In
accordance with the link structure given in this figure, we

CEVAHIR ET AL.: SITE-BASED PARTITIONING AND REPARTITIONING TECHNIQUES FOR PARALLEL PAGERANK COMPUTATION 787

Fig. 1. (a) Decomposition of the web link structure according to dangling

(D) and nondangling (ND) pages [36]. (b) Extended decomposition

according to pages with in-links (WI) and with no in-links (WNI).

decompose the P matrix by permuting the rows and columns
corresponding to the dangling pages to the end as:

where Q is the n�n permutation matrix. Here, P1 is an
n1 � n1 matrix representing the links among nondangling
pages, P2 is an n1 � n2 matrix representing the outlinks
from nondangling to dangling pages, and Z is an n2 � n
zero-matrix.

A row-stochastic transition matrix S is constructed
from bP as:

via handling of dangling pages according to the random
surfer model. That is, a surfer visiting a dangling page
randomly jumps to another page in the next time step
according to the distribution given by the dangling page
vector u, where kuk1 ¼ 1. Here, en2

denotes a column vector
of size n2 containing all ones, and k � k1 denotes the L1-
norm. Although S is row stochastic, it may not be
irreducible. An irreducible Markov matrix G, which is also
known as the Google matrix [48], is constructed as:

G ¼ �Sþ ð1� �ÞentT: ð1Þ

Here, � represents the probability that the surfer chooses to
follow one of the outlinks of the current page and (1� �)
represents the probability that the surfer makes a random
jump instead of following the outlinks. t is the teleportation
(personalization) vector, which denotes the probability
distribution of destination pages for a random jump. A
uniform teleportation vector t, where ti ¼ 1=n for all i, is
used for general PageRank computation. Nonuniform
teleportation vectors can be used for topical or personalized
PageRank computation [31], [54].

Given G, PageRank vector p can be determined by
computing the stationary distribution for the Markov chain
that satisfies GT � p ¼ p. This corresponds to finding the
principal eigenvector of matrix G. Applying the power
method directly for the solution of this eigenvector problem
leads to a sequence of SpMxVs piþ1 ¼ GT�pi, where pi is
the ith iterate towards the PageRank vector p. However,
unlike P, the G matrix is completely dense. The power
method applied to G can be implemented with SpMxVs on
the original sparse bPT matrix without forming dense S and
G matrices by the following iterative formula [38], [45]:

piþ1 ¼ GT � pi ¼ �ST � pi þ ð1� �Þt
�
en

Tpi
�

ð2Þ

¼ �bPT � pi þ �uðdTpiÞ þ ð1� �Þt ð3Þ

¼ �bPT � pi þ �
�
1� kpi1k1

�
uþ ð1� �Þt: ð4Þ

In (2), eT
npi ¼ 1 since pi is a probability vector. In (3), dTpi ¼

½0 eT
n2
� ½pi

1
T

pi
2

T�T ¼ kpi
2k1 ¼ 1� kpi

1k1, where pi1 and pi2
are the ith iterates of the PageRank vectors corresponding to
nondangling and dangling pages, respectively.

Herein, we choose to parallelize the PageRank algorithm

given in [36], which handles dangling pages via lumping

method. In the rest of the paper, we will use A ¼ bPT
since our

discussions about parallelization are based on matrix-vector

multiplication rather than vector-matrix multiplication. That

is:

where A1 ¼ P1
T and A2 ¼ P2

T are submatrices of sizes n1 �
n1 and n2 � n1, respectively. The lumping method avoids the
A2 � p1 SpMxV associated with the dangling pages through-
out the power method iterations. After the convergence of the
power method iterations, the PageRank vector for the
dangling pages is computed by a single A2 � p1 SpMxV.

Fig. 2 displays a sample subset of the web, which contains
three dangling pages (i.e., pages 12, 22, and 29). Fig. 3 displays
sparsity patterns of PT, A ¼ bPT and A1 ¼ PT

1 matrices,
nonzeros of which represent the link structure of the sample
web. In Figs. 3a and 3b, gray columns, which contain no
nonzeros, correspond to dangling pages. In Fig. 3b, solid
horizontal and vertical lines show the decomposition of the A

matrix into A1 and A2 submatrices. Finally, Fig. 3c shows the
A1 matrix.

2.2 Sparse Matrix Partitioning Models

Partitioning of irregularly sparse matrices for paralleliza-
tion of SpMxVs is formulated as K-way GP [33] and K-way
HP [15], for a K-processor parallel system. In these models,
the partitioning objective of minimizing the cutsize, which
is defined over the edges or nets, relates to minimizing the
total communication volume. The partitioning constraint of
maintaining the balance on part weights corresponds to
maintaining the computational load balance. HP models
have the following advantages over GP models: First, the
partitioning objective in HP models is an exact measure of
the total communication volume, whereas the objective in
GP models is an approximation. Second, HP models are
capable of partitioning rectangular matrices, whereas GP
models can only partition square matrices. Third, elegant
HP models exist for 2D matrix partitioning [16].

In the GP models for 1D rowwise and columnwise
partitioning, a square matrix is represented as a graph,
which contains a vertex for each row/column and an edge
for each nonzero. Weights of vertices are set equal to the
number of nonzeros in the respective rows or columns for
rowwise or columnwise partitioning, respectively. The cost
of each edge is set equal to 2 for structurally symmetric

788 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. 5, MAY 2011

Fig. 2. A sample subset of the web with seven sites, 30 pages, and

56 links.

matrices, whereas it is set to either 1 or 2 for structurally
unsymmetric matrices [15].

In the column-net HP model for 1D rowwise partitioning
[15], a given matrix is represented as a hypergraph, which
contains a vertex for each row and a net for each column.
Each net corresponds to a column and connects vertices that
correspond to the rows with at least one nonzero in that
column. In the row-net HP model for 1D columnwise
partitioning [15], there exists a vertex for each column and a
net for each row such that the net corresponding to a row
connects the vertices corresponding to the columns that
have a nonzero at that row. The vertex weighting schemes
for rowwise and columnwise HP models are the same as the
respective GP models. All nets are associated with a unit
cost in both row-net and column-net models.

To enforce symmetric partitioning in the 1D framework,
both input and output vectors of the SpMxV are partitioned
conformally with the given rowwise or columnwise parti-
tion of the matrix. Consistency of HP models for symmetric
partitioning depends on the existence of nonzero diagonals
in the matrix [15], [16]. If the matrix contains zero diagonals,
virtual nonzeros are inserted into the diagonal of the matrix,
and then the respective HP model is applied. Although
these virtual nonzeros do not have weights, they affect the
topology of the constructed hypergraphs.

2.3 Repartitioning Models

In many scientific computing applications, although the
initial mapping of tasks to processors may be satisfactory in
terms of both computational load balance and communica-
tion overheads, the quality of this initial mapping typically
tends to deteriorate in successive phases as the computa-
tional structure or the application parameters change. This
has the potential to reduce the efficiency of parallelization.
One solution is to rebalance the load distribution of the
processors as needed by rearranging the assignment of
tasks to processors via repartitioning.

Recently, a number of successful models [4], [14], [18],
based on GP and HP with fixed vertices, are proposed as
solutions to repartitioning problems in different applica-
tions. In these models, tasks and interactions among them
are represented as an interaction graph/hypergraph, where
vertices model tasks and the associated data, and edges/
nets model interactions. This interaction graph/hypergraph
is augmented by fixed processor vertices and edges/nets,
which connect original vertices with appropriate processor
vertices in order to represent the initial task and data
distribution. Then, the repartitioning problem is formulated
as K-way GP/HP with fixed vertices on this augmented
graph/hypergraph, referred to as the repartitioning graph/
hypergraph [4], [18]. In this repartitioning model, the

cutsize defined over the original edges/nets shows the
total communication volume due to assigning interacting
tasks to different processors, whereas the cutsize defined
over the newly added edges/nets shows the communica-
tion overhead due to data redistribution.

3 PARALLEL PAGERANK ALGORITHM

In addition to dangling pages, the web may also contain
many pages with no in-links [6]. Based on this fact, the web
link structure given in Fig. 1a can be further refined, as
shown in Fig. 1b. In Fig. 1b, P11 represents the links among
nondangling pages with in-links, P21 represents the links
from nondangling pages with in-links to dangling pages,
P12 represents the links from nondangling pages with no in-
links to nondangling pages with in-links, and P22 repre-
sents the links from nondangling pages with no in-links to
dangling pages. The extended decomposition given in
Fig. 1b can be considered as a special case of the strongly
connected component decomposition approach proposed in
[49]. However, identifying pages with no in-links is very
easy and their PageRank values can be computed very
efficiently as described below.

In accordance with the link structure given in Fig. 1b, we
can decompose P1 by permuting its rows and columns
corresponding to the pages with no in-links to the end, and
we can decompose P2 by permuting its rows corresponding
to the pages with no in-links to the end as follows:

where O is the n1�n1 permutation matrix, P01 and P02 are
the permuted versions of P1 and P2, respectively. Here,
columns of zero submatrix Z and rows of submatrix P12

correspond to pages with no in-links. Since A1 ¼ ðP1ÞT and
A2 ¼ ðP2ÞT, A1 and A2 can be decomposed as:

leading to the following decomposition on A:

CEVAHIR ET AL.: SITE-BASED PARTITIONING AND REPARTITIONING TECHNIQUES FOR PARALLEL PAGERANK COMPUTATION 789

Fig. 3. Sparsity patterns of matrices (a) PT, (b) A ¼ bPT, (c) A1 ¼ P1
T, (d) A01, (e) A11.

Here, A11 and A12 are submatrices of sizes n11�n11 and
n11�n12, respectively, and A21 and A22 are submatrices of
sizes n2�n11 and n2�n12, respectively. n12 denotes the
number of nondangling pages with no in-links and
n1 ¼ n11 þ n12. Reordering pages with no in-links to the end
may cause new zero rows to appear. Hence, it is possible to
investigate A11 in a recursive manner for further reductions.
This recursive scheme is not investigated in this paper.

For the q1 ¼ A1 � p1 multiplication, entries of the p1 and
q1 vectors are permuted according to this row/column
reordering:

q01 ¼ O� q1 ¼
q1ðA11Þ
q1ðZÞ

� �
; p01 ¼ O� p1 ¼

p1ðA11Þ
p1ðZÞ

� �
:

ð5Þ

In further discussions, for readability, q01, p01, A01, and A02
will be referred to as q1, p1, A1, and A2, respectively. In (6),
q1ðA11Þ and p1ðA11Þ are column vectors of size n11, and
q1ðZÞ and p1ðZÞ are column vectors of size n12. As pages
with no in-links correspond to zero rows of A1, the
q1ðZÞ ¼ Z�p1 multiplication results in a zero vector. Hence,
the q1 ¼ A1�p1 multiplication can be performed as the sum
of the results of two SpMxVs:

q1ðA1Þ ¼ A11 � p1ðA11Þ þA12 � p1ðZÞ:

Since q1ðZÞ ¼ 0, we have p1ðZÞ ¼ ð1� �Þt1ðZÞ þ ��u1ðZÞ.
Hence, the A12�p1ðZÞ multiplication reduces to:

A12 � p1ðZÞ ¼ 0þ ð1� �ÞA12 � t1ðZÞ þ ��A12 � u1ðZÞ:

Note that t1ðZÞ and u1ðZÞ do not change throughout the
iterations. Thus, SpMxVs A12 � t1ðZÞ and A12 � u1ðZÞ can
be avoided by computing the SpMxVs bt1ðA12;ZÞ ¼ A12 �
t1ðZÞ and bu1ðA12;ZÞ ¼ A12 � u1ðZÞ only once at the very
beginning and computing q1ðA11Þ as:

q1ðA11Þ ¼ A11 � p1ðA11Þ þ ð1� �Þbt1ðA12;ZÞ
þ ��bu1ðA12;ZÞ

at every iteration. That is, SpMxV A12 � p1ðZÞ is replaced by
the less expensive DAXPY operation ð1� �Þbt1ðA12;ZÞ þ
��bu1ðA12;ZÞ. Since scalar ð1� �Þ and vector bt1; ðA12;ZÞ are
constant, the scalar-vector multiplication ð1� �Þbt1ðA12;ZÞ
can also be avoided by computing bt1ðA12;ZÞ ¼ ð1�
�Þbt1ðA12;ZÞ only once at the very beginning. The scalar-
vector multiplies ð1� �Þt1ðA11Þ and ð1� �Þt1ðZÞ can also be
avoided, in a similar manner. Fig. 4 displays the PageRank
algorithm for efficient handling of pages with no in-links.

Three basic types of operations are performed repeatedly
at each iteration: 1) SpMxV performed at step 7. 2) Linear
vector operations performed on the input and output
vectors p1 and q1 of the SpMxV and the teleportation and
dangling page vectors t1 and u1. These operations include
the DAXPY-like operations at steps 8 and 9, and the vector
subtraction at step 10. 3) L1-norm operations performed at
steps 6 and 10.

As the input vector of the current iteration is obtained from
the output vector of the previous iteration through linear
vector operations at steps 8 and 9(a), a symmetric partitioning
scheme is adopted to avoid communication of vector entries
during the linear vector operations. Hence, all vectors that
participate in steps 7, 8, and 9(a) (i.e., p1ðA11Þ, q1ðA11Þ,
t1ðA11Þ, u1ðA11Þ, bt1ðA12;ZÞ, bu1ðA12;ZÞ) are partitioned

conformally with the partition induced by partitioning of
A11. In particular, p1ðA11Þand q1ðA11Þvectors are partitioned
as ½pT

11ðA11Þ � � �pT
1KðA11Þ�T and ½qT

11ðA11Þ � � �qT
1KðA11Þ�T, re-

spectively, where processor Pk is also responsible for the
linear vector operations on the kth blocks of the vectors. That
is,Pk performs linear vector operations on p1kðA11Þ, q1kðA11Þ,
t1kðA11Þ, u1kðA11Þ, bt1kðA12;ZÞ, bu1kðA12;ZÞ. The Z-vectors
p1ðZÞ, t1ðZÞ, u1ðZÞ involved in the linear vector operation at
step 9(b) do not participate in linear vector operations with
other vectors. Hence, they can be partitioned independent of
partitioning of the A11 matrix. It is sufficient to partition these
vectors conformally with each other. Parallelization of the L1-
norm operations at steps 6 and 10, which compute the global
scalars � and �, requires global communication operations in
the form of all-to-all reduction. Here, we adopt our efficient
parallelization scheme [2], [20] to reduce the number of global
communication operations at each iteration from 2 to 1 by
rearranging the computations. Note that the use of compen-
sated summation scheme [61] can be considered for these norm
operations to achieve better accuracy in large data sets.
However, we do not use compensated summation, since we
believe it will not substantially change our discussions.

Fig. 5 displays the proposed parallel PageRank algorithm.
In Fig. 5, the superscript k of a matrix (e.g., Ak

11) denotes the
portion of that matrix stored in processorPk. The superscriptk
of a global scalar denotes the partial result computed by Pk,
e.g., �k is the partial result for the global scalar �, where
� ¼

PK
k¼1 �

k. Note that two global norms (� and �) are
accumulated at all processors by the single all-to-all reduction
performed at step 9(c). The bottom part of Fig. 5 displays the
row and column-parallel implementations [57] of the Par-
MatVecMult function. The row-parallel and column-parallel
algorithms are applied to partitions obtained using the 1D
rowwise and columnwise schemes, respectively. In the row-
parallel algorithm, Expand represents the multicast-like

790 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. 5, MAY 2011

Fig. 4. PageRank algorithm, which handles dangling pages via the

lumping method [36] and pages with no in-links.

operation performed by the processors for sending their local
x-vector entries to other processors according to sparsity
patterns of respective columns of A. x0k denotes x-vector
entries that are needed by Pk for its local SpMxV. In the
column-parallel algorithm, Fold corresponds to the multinode
accumulation performed by the processors on local y-vector
entries according to sparsity patterns of respective rows of A.

4 PARTITIONING MODELS FOR PARALLEL

PAGERANK

We investigate two distinct frameworks for partitioning:
page based and site based. In page-based partitioning, the
page-by-page (PP) matrix A11 is partitioned directly without
compression. This approach introduces unacceptable parti-
tioning overhead due to size issues. However, we still present
the page-based models for a better understanding of the site-
based models. In site-based partitioning, the site information
is utilized in order to reduce the partitioning time. For this
purpose, we propose 1D page-by-site (PS), 1D site-by-page
(SP), and 2D site-by-site (SS) compression schemes on A11.
Fig. 6 displays the taxonomy of the partitioning models. Here,
RW and CW denote 1D rowwise and 1D columnwise matrix
partitioning schemes, respectively.

4.1 Page-Based Partitioning Models

We obtain aK-way 1D rowwise and 1D columnwise partition
of matrix A11 by partitioning the appropriate graph or
hypergraph representation of A11. For computational load
balancing, vertices of the graph/hypergraph are weighted to
incorporate the floating point operations (flops) associated
with the SpMxV A11 � p1ðA11Þ as well as the flops associated
with the linear vector and norm operations. The local linear
vector operations performed at step 8(b) of Fig. 5 should be
balanced separately since partitioning of the Z-vectors are
independent of partitioning of A11. We achieve this balancing
by adopting the best-fit decreasing heuristic used in solving
the K-feasible bin-packing problem [34].

In RW, there is need to balance local computations between
the local synchronization due to the point-to-point expand
operation at step 6(a) and the global synchronization due to
the all-reduce-sum operation at step 9(c). A single-constraint
formulation becomes sufficient for load balancing as local
SpMxV and linear vector operations remain as a single block
between successive synchronization points throughout the
iterations. Thus, the weight of vertex vi is set equal to:

wðviÞ ¼ 2� nnz ðrow i of A11Þ þ 10: ð6Þ

The first term accounts for the number of flops associated
with row i during an SpMxV since each matrix nonzero
incurs a scalar multiply-and-add operation. The second
term accounts for the number of flops associated with the
linear vector and norm operations performed on the ith
entries of the vectors at steps 7, 8(a), 9(a), and 9(b).

In CW, the local SpMxV and the linear vector operations
remain in separate blocks throughout the iterations. The
SpMxV operations performed at the processors remain
between the global all-reduce-sum operation [step 9(c)] of
the previous iteration and the fold operation [step 6(b)] of
the current iteration, whereas the linear vector operations
remain between the fold operation [step 6(b)] of the current
iteration and the global all-reduce-sum operation [step 9(c)]
of the current iteration. Hence, a two-constraint formulation
is needed for load balancing. The two weights associated
with vertex vi are:

w1ðviÞ ¼ 2� nnz ðcol i of A11Þ; w2ðviÞ ¼ 10: ð7Þ

4.2 Site-Based Partitioning Models

For the sake of clarity of the following discussions, we
assume that the A11 matrix is permuted symmetrically into
an m�m block structure ðA11ÞBL, where rows and columns
representing the pages belonging to the same site are
ordered consecutively. The sample A11 matrix obtained in

CEVAHIR ET AL.: SITE-BASED PARTITIONING AND REPARTITIONING TECHNIQUES FOR PARALLEL PAGERANK COMPUTATION 791

Fig. 5. Parallel PageRank algorithm (pseudocode for processor Pk).

Fig. 6. A taxonomy for the partitioning models used.

Fig. 3e is redrawn in Fig. 7 with vertical and horizontal
dashed lines indicating the boundaries of the sites to make
the site-based row/column ordering clear.

4.2.1 1D Site-by-Page and Page-by-Site Compression

We propose both an SP compression of A11 to construct the
Asp

11 matrix and a PS compression of A11 to construct the Aps
11

matrix. The rows and columns of Asp
11 correspond to sites and

pages, respectively, whereas this relation is transposed for
Aps

11. The weights associated with the nonzeros of Asp
11 and

Aps
11 correctly summarize the computational requirements of

row-parallel and column-parallel A11�p1ðA11Þ SpMxVs,
respectively. The sparsity patterns of Asp

11 and Aps
11 correctly

summarize the communication requirements of row-parallel
and column-parallel A11�p1ðA11Þ SpMxVs, respectively.
Hence, it is meaningful to partition a compressed matrix
along the dimension of compression. That is, the rowwise
compressed Asp

11 matrix is partitioned rowwise to induce a
rowwise partition on A11, whereas the columnwise com-
pressed Aps

11 matrix is partitioned columnwise to induce a
columnwise partition on A11.

In SP compression, for each site Sr, we compress the
rows of A11 corresponding to the pages in site Sr into a
single row r of Asp

11. Here, the sparsity pattern of row r is
set equal to the union of the sparsities of all rows
representing the pages in site Sr. A weighted union is
performed so that the weight wðasp

rj Þ associated with a
nonzero of Asp

11 shows the number of nonzeros of A11

combined into the nonzero asp
rj . This rowwise compression

corresponds to coalescing the nonzeros representing out-
links of a page pointing to the pages in the same site into a
single nonzero. The nonzeros in row r of Asp

11 identify the
pages that contain outlinks pointing to site Sr. PS
compression is the dual of the SP compression and
employs a columnwise compression on A11. This column-
wise compression corresponds to coalescing the nonzeros
representing the in-links of a page pointed by the pages in
the same site into a single nonzero. The nonzeros in
column r of Aps

11 identify the pages that are pointed by the
outlinks in the pages of site Sr. Figs. 9a and 8a,
respectively, show the Aps

11 and Aps
11 matrices for the sample

A11 matrix given in Fig. 7.
To enforce symmetric partitioning, zero diagonals of A11

can be replaced by virtual nonzeros with zero weights
before compression. A more efficient scheme is to add fewer
virtual nonzeros to the compressed matrices to obtain the
same effect. In Asp

11, in a row r, zeros in the columns

corresponding to the pages of Sr are replaced with virtual

nonzeros. In Aps
11, in a column r, zeros in the rows

corresponding to the pages of Sr are replaced with virtual

nonzeros. As seen in Figs. 8a and 9a, aM;4 and aY;13 are

virtual nonzeros inserted in Asp
11, and a14;Y is the virtual

nonzero inserted in Aps
11 to enforce symmetric partitioning.

Each row r of Asp
11 is associated with a weight wðasp

r�Þ ¼P
asp
rj 6¼0 wða

sp
rjÞ, which is equal to the sum of the number of

nonzeros in A11-rows that correspond to the pages of Sr.

wðasp
r�Þ represents the total number of in-links of the pages of

site Sr. In a similar manner, each column r of Aps
11 is

associated with a weight wðaps
�rÞ ¼

P
aps
ir 6¼0 wða

ps
ir Þ. which is

equal to the sum of the number of nonzeros in A11-columns

that correspond to the pages of Sr. wðaps
�rÞ represents the

total number of outlinks from the pages (with inlinks) of Sr.

These weights associated with the rows and columns of Asp
11

and Aps
11 are shown in parantheses next to the row and

column identifiers in Figs. 8 and 9.

792 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. 5, MAY 2011

Fig. 7. A 7� 7 site-based block structure ðA11ÞBL of the sample A11

matrix obtained in Fig. 3e.
Fig. 8. Site-by-page compressed Asp

11 matrix: (a) After SP compression

of ðA11ÞBL given in Fig. 7, (b) after elimination of the columns that have a

single nonzero, (c) after coalescing columns with identical sparsity

patterns.

Fig. 9. Page-by-site compressed Aps
11 matrix: (a) after PS compression of

ðA11ÞBL given in Fig. 7, (b) after elimination of rows that have a single

nonzero, (c) after coalescing rows with identical sparsity patterns.

We propose single-nonzero and sparsity-pattern coalescing
optimizations to sparsen and further compress the com-
pressed Asp

11 and Aps
11 matrices.

The single-nonzero optimization is based on the removal
of Asp

11-columns and Aps
11-rows that have a single nonzero,

because such Asp
11-columns and Aps

11-rows cannot incur
communication in a row-parallel and column-parallel
A11�p1ðA11Þ SpMxV. Such a column of Asp

11 corresponds
to a page whose all outlinks are to its own site and such a
row of Aps

11 corresponds to a page whose all in-links are
from its own site. The weight of each discarded nonzero is
still accounted in the weight of the respective row or
column of Asp

11 or Aps
11. Figs. 8b and 9b show the Asp

11 and Aps
11

matrices obtained after discarding the columns and rows
that have a single nonzero, respectively. As seen in the
figures, 15 columns in Asp

11 and 12 rows in Aps
11 are discarded

out of 24 rows/columns.
The sparsity-pattern optimization is based on the observa-

tion that the columns and rows that have the same sparsity
patterns incur the same communication requirement in row-
parallel and column-parallel A11�p1ðA11Þ SpMxVs, respec-
tively. Hence, the columns that have the same sparsity pattern
are coalesced into a single column in Asp

11, and the rows that
have the same sparsity pattern are coalesced into a single row
in Aps

11. The weights of the coalesced nonzeros are still
accounted in the weights of the respective rows or columns
of Asp

11 or Aps
11 matrices. Furthermore, each representative row

or column is associated with an identical-row or identical-
column count, which show the number of rows or columns
represented by that row or column. Rows and columns that
have the same sparsity patterns are efficiently identified by
adapting the algorithms given in [32]. Figs. 8c and 9c,
respectively, display the further compressed versions of the
Asp

11 and Aps
11 matrices obtained by identifying and coalescing

the rows and columns that have the same sparsity patterns.
Only the HP models are considered for partitioning Asp

11
and Aps

11 since the GP models are not suitable for
partitioning rectangular matrices. For RW, the column-net
hypergraph representation of Asp

11 is constructed. The
identical-column count associated with a column of Asp

11 is
assigned as the cost of the respective net of the hypergraph.
The weight wðvrÞ of a vertex vr corresponding to site Sr is
computed as:

wðvrÞ ¼ 2� wðasp
r�Þ þ 10jSrj; ð8Þ

where jSrj is equal to the number of nondangling pages
with in-links in site Sr. For CW, the row-net hypergraph
representation of Aps

11 is constructed. The identical-row
count associated with a row of Aps

11 is assigned as the cost of
the respective net of the hypergraph. The two weights of a
vertex vr are computed as:

w1ðvrÞ ¼ 2� wðaps
�rÞ; w2ðvrÞ ¼ 10jSrj: ð9Þ

4.2.2 2D Site-by-Site Compression

We propose an SS compression of A11 to construct the Ass
11

matrix. Ass
11, which is as an unsymmetric square matrix, is

expected to be more compact than the site-by-page and
page-by-site compressed matrices. Ass

11 can easily be
obtained by performing an SP compression on A11 to
obtain Asp

11 and then performing a PS compression on Asp
11 to

obtain Ass
11, or vice versa. In Ass

11, a nonzero ass
rs means that

there exists wðass
rsÞ outlinks from the pages in site Sr to the

pages in site Ss. Since compression is performed along both

dimensions, rowwise and columnwise partitioning of Ass
11

are both meaningful for inducing a rowwise and a

columnwise partition on A11, respectively. Fig. 10 shows

the Ass
11 matrix for the sample A11 matrix given in Fig. 7.

Since Ass
11 is a square matrix, both HP and GP models can be

used for partitioning. Even though the weights of the

nonzeros of Ass
11 correctly summarize the computational

requirements of both row-parallel and column-parallel

A11�p1ðA11Þ SpMxVs, the sparsity pattern of Ass
11 does not

correctly summarize the communication requirements.

Hence, as the superiority of the HP models depends on the

correct modeling of the communication volume, it is not

meaningful to use the HP models for partitioning Ass
11.

However, by assigning proper edge costs as described below,

the GP model can be successfully adopted within the same

approximation factor it achieves in the page-based GP model.
For RW and CW schemes, only vertex weights differ in

the graph representations of Ass
11, whereas the topology and

the edge costs remain the same. For RW, the weight of a
vertex vr is computed according to (9). For CW, the two
weights of vr are computed according to (10). The edge cost
costðvr; vsÞ associated with nonzero(s) ass

rs and/or ass
sr is

computed as:

costðvr; vsÞ ¼ w
�
ass
rs

�
þ w

�
ass
sr

�
: ð10Þ

That is, costðvr; vsÞ is equal to the sum of the number of

nonzeros in the off-diagonal blocks ðA11Þrs and ðA11Þsr of

ðA11ÞBL.

5 REPARTITIONING MODELS FOR PARALLEL

PAGERANK

In a real-world setup, distribution of URLs based on a hash
value among the processors could be assumed as a starting
point for parallel PageRank computations. In such a setup,
the data have to be redistributed among the processors for
the sake of efficient parallel PageRank computations. So, the
partitioning models should encapsulate the initial data
redistribution overhead as well as the communication
overhead that will be incurred during the parallel PageRank
computations. For this scenario, we propose repartitioning
models based on HP and GP with fixed vertices. The URL-
based hashing naturally induces either a columnwise or a
rowwise partition on A and hence A11 matrices. Since it is
easier to construct the outlink information of pages, we
assume a columnwise partitioning. That is, each processor
initially stores distinct column slices of A11.

CEVAHIR ET AL.: SITE-BASED PARTITIONING AND REPARTITIONING TECHNIQUES FOR PARALLEL PAGERANK COMPUTATION 793

Fig. 10. Site-by-site compressed Ass
11 matrix.

5.1 Page-Based Repartitioning Models

The row-net HP model used for columnwise partitioning of
A11 is augmented by K fixed vertices and n11 2-pin nets to
construct a row-net repartitioning hypergraph. Fixed
vertices represent processors, whereas all other original
vertices (herein, called free vertices) represent columns of
A11. Newly added two-pin nets encode the initial column-
to-processor distribution. That is, each free vertex vi is
connected by a two-pin net to the fixed vertex representing
the processor to which column i is initially assigned. The
cost of that net is set equal to the number of nonzeros in
column i. Each fixed vertex is fixed to a distinct vertex part
during the partitioning process.

The column-net HP model used for rowwise partitioning
of A11 is augmented by K fixed vertices and l2-pin nets,
where l varies between n11 and K�n11, to construct a
column-net repartitioning hypergraph. Fixed vertices re-
present processors, whereas free vertices represent rows of
A11. Newly added two-pin nets encode the initial column-
based nonzero-to-processor distribution. That is, each free
vertex vi is connected by a distinct two-pin net to each of the
fixed vertices representing the processors among which the
nonzeros of row i are initially distributed. The cost of a net
connecting vi to a fixed vertex is set equal to the number of
nonzeros of row i initially residing in the processor
corresponding to that fixed vertex.

In both row-net and column-net repartitioning HP
models, the vertex partition obtained as a result of the HP
process is decoded such that the free vertices in a part
denote the columns/rows that will be assigned to the
processor corresponding to the unique fixed vertex residing
in that vertex part. In a partition of the row-net/column-net
repartitioning hypergraph, the cutsize defined over the
original nets still shows the communication volume to be
incurred during the column-/row-parallel SpMxV of a
single PageRank iteration, respectively. The cutsize defined
over the newly added two-pin nets shows the communica-
tion volume to be incurred during the redistribution of the
nonzeros of A11. Proper scaling between the costs of newly
added two-pin nets and the unit costs of the original nets
should be considered depending on both the expected
number of iterations for convergence, and the number of
times different PageRank vectors will be computed.

5.2 Site-Based Repartitioning Models

The page-based repartitioning model proposed for column-
wise partitioning of A11 extends to site-based columnwise
repartitioning of Aps

11 under the assumption that site-based
URL hashing is used during the initial distribution. That is,
each free vertex vr representing site Sr is connected by a
single two-pin net to the fixed vertex representing the
processor to which Sr is assigned initially. The cost of this
two-pin net is set equal to the sum of the nonzeros of the
columns corresponding to the pages of Sr. However, if site-
based hashing is not used during the initial distribution, the
free vertex vr should be connected by several two-pin nets
to different fixed vertices with appropriate costs according
to the initial distribution of the pages of Sr among the
processors. The proposed repartitioning model can be easily
extends to the site-based GP model for columnwise
partitioning by just replacing each two-pin net of Ass

11 with
a graph edge having the same cost.

Fig. 11a displays the row-net repartitioning hypergraph
representation of the sample Aps

11 matrix shown in Fig. 9c
for a K ¼ 3 processor system. Initial site-based columnwise

distribution is assumed to be according to a round-robin
distribution of the sites in Fig. 9c. That is, initially
processors P1, P2, and P3, respectively, store the columns
corresponding to the pages of site sets {B, E, H}, {C, F}, and
{D, G}. In the figure, seven small circles represent free
vertices corresponding to sites, and three triangles repre-
sent fixed vertices corresponding to processors. Ten dots on
straight lines represent original row-nets and seven dots on
curved lines represent newly added two-pin nets. For
example, n20=21, which connects vertices B and F, represents
the two original row nets n20 and n21, and the two-pin net
nH , which connects free vertex H with fixed vertex f1, is a
newly added net to represent initial assignment of site H to
processor P1. The three large dashed circles in Fig. 11a
represent the initial site distribution, and the three large
solid circles in Fig. 11b represent the final distribution after
the repartitioning. If no repartitioning is applied, the initial
distribution of A11-matrix nonzeros among processors P1,
P2, and P3 are, respectively, 9þ 11þ 4 ¼ 24, 12þ 3 ¼ 15,
and 3þ 2 ¼ 5 nonzeros, with an approximate computa-
tional imbalance of 64 percent, whereas the initial commu-
nication volume is 9 partial yk-vector results due to the cut
nets, for the SpMxV of each PageRank iteration. The cutsize
of the initial partitioning is 9, since it contains six cut-nets
each with a part connectivity of 2 and 3 of these cut-nets
(n5=8, n13=14, n20=21) have a cost of 2.

As seen in Fig. 11b, the repartitioning process improves
the partition by moving site E and H from P1 to P3, site F
from P2 to P1, site G from P3 to P2 with a redistribution
communication volume of 11þ 3þ 4þ 2 ¼ 20 nonzeros.
The newly added two-pin nets nE, nH, nF, and nG, which
connect migrated sites to their original processor vertices,
remain on the cut of the repartition of Fig. 11b, thus correctly
showing the redistribution costs. The redistribution im-
proves the nonzero distribution as 9þ 3 ¼ 12; 12þ 2 ¼ 14,
and 3þ 11þ 4 ¼ 18 nonzeros for processors P1, P2, and P3,
respectively, thus reducing the computational load imbal-
ance from 64 percent to 23 percent for the SpMxV of each
PageRank iteration. The redistribution decreases the com-
munication volume from 9 to 8yk-vector entries for the
SpMxV of each PageRank iteration.

The page-based repartitioning model proposed for
rowwise partitioning of A11 extends to site-based rowwise
repartitioning of Asp

11. The free vertex vr should be
connected by distinct two-pin nets to each of the fixed
vertices representing the processors among which the

794 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. 5, MAY 2011

Fig. 11. (a) Row-net repartitioning hypergraph representation of Aps
11

given in Fig. 9c for an initial site-based columnwise distribution on a

three-processor system, (b) a sample repartition of the hypergraph given

in (a).

nonzeros of the rows corresponding to the pages of site Sr
are initially distributed. That is, a free vertex vr is connected
by multiple distinct two-pin nets to fixed vertices represent-
ing each of the processors which crawled the pages linking
to Sr. The costs of these two-pin nets are set according to the
initial distribution of the pages linking site Sr among
different processors. The proposed repartitioning model
easily extends to the site-based GP model for rowwise
partitioning of Ass

11 by just replacing each two-pin net with a
graph edge having the same cost. Note that we are not
presenting an example for the site-based column-net
repartitioning model due to lack of space.

6 EXPERIMENTAL RESULTS

6.1 Implementation Details

The compression schemes discussed in Section 4.2 are
implemented in C. In the experiments, the two-constraint
formulations ((7) and (9)) proposed for separately balancing
the SpMxV and linear-vector operations are implemented
as single-constraint formulations due to the following two
reasons: First, the relative performances of the GP and HP
tools differ in multiconstraint partitioning. Second, varying
speedup values are obtained depending on the relative
values of the maximum allowable imbalance ratios for the
two constraints. We wanted to avoid such variations since
the main purpose of this paper is to compare the
compression schemes discussed in Section 4. In the adopted
single-constraint implementations, the two vertex weights,
representing the matrix-vector multiplication and linear
vector operations, are added up to form a single vertex
weight that represents an aggregate computational weight.
We conducted limited experiments to compare the relative
performance of two- and single-constraint formulations and
observed that the former gives slightly better speedups than
the latter. For example, in the columnwise partitioning of
the Ass

11 matrices, the two-constraint formulation leads to an
average speedup improvement of 2.16 percent on 40
processors, compared to the single-constraint formulation.

The parallel PageRank algorithm in Fig. 5 is implemen-

ted using a library for parallel SpMxVs [57]. This library

implements both row and column-parallel SpMxV algo-

rithms using MPI. Double-precision (64-bit) arithmetic is

used in the implementations.
In our parallel PageRank algorithm, because of the

adopted site-based partitioning schemes, site-based ordering
is naturally exploited during the local SpMxVs. This is known

to reduce the sequential SpMxV times in PageRank computa-
tions [40], [52]. For the sake of fairness in speedup computa-
tions, we also exploit the site-based row/column ordering for
the SpMxVs in the sequential PageRank computations.

6.2 Data Set Properties

Table 1 summarizes the properties of the data sets used in
the experiments. In Table 1, the data sets are listed in
increasing order of the number of links, and they are
divided into two groups by a horizontal line. The first and
second group of data sets are referred to as the medium and
large data sets. Experiments on medium data sets are
conducted on a small-memory cluster in order to show the
validity of the proposed site-based compression and
partitioning schemes. Experiments on large data sets are
conducted on a large-memory cluster in order to show the
validity of the proposed repartitioning models.

As seen in Table 1, the number of dangling pages varies
between 5.5 percent (balkan) and 51.3 percent (de-fr) of
the total number of pages. The domain specific google and
webbase data sets contain a significant number of pages
without in-links (7.8 percent and 10.1 percent, respectively),
whereas the other data sets (except de-fr) contain no pages
without in-links. In Table 1, the avg and max columns denote
average and maximum number of links per page and the std
column denotes standard deviation in pages’ link distribu-
tion. Existence of high std values complies with the fact that
the web data behaves according to the power law [5]. The last
column displays the number of intrasite links as a percent of
the total number of links. The number of intra-site links varies
between 79.2 percent and 95.5 percent of the total number of
links. These figures conform with the previous observations
[40], indicating that sites constitute natural page clusters.

6.3 Experimental Framework

The validity of proposed site-based (re)partitioning models
are tested in terms of both preprocessing time and
(re)partitioning quality. The (re)partitioning quality is
assessed in terms of computational load imbalance, com-
munication overhead, and speedup.

The communication overhead mainly depends on the
following metrics: total message volume, maximum message
volume handled by a processor, total message count, and
maximum message count handled by a processor [32], [33],
[58]. Since the test matrices are sufficiently large and
speedups are obtained on small-to-medium number of
processors, message volume metrics mainly determine the
communication overhead. In accordance, we also report here

CEVAHIR ET AL.: SITE-BASED PARTITIONING AND REPARTITIONING TECHNIQUES FOR PARALLEL PAGERANK COMPUTATION 795

TABLE 1
Properties of the Data Sets Used in the Experiments

that maximum message counts are observed to be very close
to the upper bound of K � 1 during both parallel matrix-
vector multiplications and initial data redistribution.

The speedup values are measured on two PC clusters.
The first (small-memory) cluster has 40 nodes intercon-
nected by a nonblocking Fast Ethernet switch, and each
node contains a single-core Intel P4 3GHz processor with
2 Gbytes of RAM. The second (large-memory) cluster [53]
has 32 nodes. Each node has 32 Gbytes of RAM and
contains eight AMD Opteron Dual Core 2.4 GHz
processors. This cluster is interconnected by a nonblocking
InfiniBand switch (20 Gbytes/s).

The sequential power method implementation given in
Fig. 4 is used for speedup computations. The sequential
running times are measured as 11.5, 35.1, 96.1, and 68.5 s for
google, balkan, de-fr, and webbase, respectively. We
have also implemented the Gauss-Seidel algorithm [1] so as
to determine the best sequential algorithm to take as a
benchmark. As the conventional Gauss-Seidel algorithm is
not amenable to parallelization, we were able to test its
convergence performance through its sequential implemen-
tation only on the medium data sets. With � ¼ 0:90 and
"" ¼ 10�6, the power method and Gauss-Seidel algorithms
converge in 94, 87, 85, 90, and 46, 52, 45, 46 iterations for the
medium data sets google, balkan, de-fr, and webbase,
respectively. These results conform with the results of [1] in
that Gauss-Seidel usually converges in approximately half
the number of iterations of the power method in PageRank
computations. The parallel power method algorithm given
in Fig. 5 converges in 87, 90, 90, and 88 iterations for the
large data sets indochina, arabic-2005, uk-2005, and
uk-union, respectively.

For partitioning experiments, the medium data sets are
assumed to be available in a single processor of the small-
memory cluster initially. For repartitioning experiments, the

large data sets are assumed to be distributed among the
processors of the large-memory cluster initially.

The sequential GP tool MeTiS [51] and the sequential
HP tool PaToH [3], [17] are used to partition the matrices
of the medium data sets. As the hypergraph representa-
tions of the matrices belonging to the large data sets do not
fit into memory, the parallel HP tool Zoltan [18], which
supports fixed vertices, is used to partition the repartition-
ing hypergraphs proposed in Section 5 for the large data
sets. The maximum allowable imbalance ratio is selected as
10 percent for all partitioning tools.

The performance results are given for K ¼ 4, 8, 16, 24,
32, 40, and 64-way partitioning of the test matrices given in
Table 2. For each K value, the partitioning of each test
matrix under a given model constitutes a partitioning
instance. Since MeTiS, PaToH, and Zoltan use randomized
algorithms, the experiments were run 10 times starting with
randomly selected seeds for every partitioning instance.
Each value (including speedup values) displayed in the
following figures shows the average of 10 values.

6.4 Site-Based Partitioning Experiments on
Medium Data Sets

For the site-based partitioning models, preprocessing times
involve both matrix compression and partitioning times,
whereas for the page-based partitioning models, preproces-
sing times involve only the partitioning time. For the
partitioning experiments, the relative performance of the
analyzed models follow a similar pattern in terms of
maximum and total message volume metrics. Hence, only
total message volumes are reported in this section.

6.4.1 Site-Based Compression Results

Table 2 displays the properties of the matrices obtained
from the medium data sets. Note that the A11 matrix is used
throughout the iterations of the proposed sequential and

796 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. 5, MAY 2011

TABLE 2
Properties of the Matrices

parallel PageRank algorithms, as shown in Figs. 4 and 5.
Comparison of the sizes of A and A11 matrices shows that
handling dangling pages and pages with no in-links leads
to a drastic reduction in row and column sizes as well as
nonzero counts. As expected, A11 matrices are denser than
A matrices for all medium data sets. In both A and A11, the
variation (std values) of the nonzero counts over the rows is
considerably higher than that of the columns. This implies
that there is a greater variation over the in-link counts of the
pages compared to the outlink counts. Note that the
variations of the nonzero counts over both rows and
columns of Ass

11 matrices are significantly less than those
over the rows and columns of Asp

11 and Aps
11 matrices.

Table 3 shows the effect of eliminating rows/columns
that have a single nonzero and coalescing rows/columns
that have identical sparsity patterns. In the table, the
reductions in the number of rows/columns and nonzeros
are given as percentages of the number of rows/columns
and nonzeros of the initial compressed Aps

11 and Asp
11

matrices. As seen in Table 3, a drastic reduction is obtained
in the number of rows/columns due to the elimination of
rows/columns with a single nonzero.

6.4.2 Performance Comparison

of Page and Site-Based Schemes

We present the comparison of the page-based and site-
based partitioning schemes only for the smallest data set
google. Figs. 12 and 13, respectively, display the pre-
processing time and partitioning quality of the page and
site-based partitioning schemes with increasing number of
processors. In these two figures, the results for HP-based
partitioning models are presented.

As seen in Fig. 12, the proposed site-based partitioning
schemes achieve drastic reductions in preprocessing times
compared to the page-based schemes. For example, the site-
based schemes perform the preprocessing approximately 8
and 14 times faster than the page-based schemes in RW and
CW partitioning of the google data set, on average. The

considerable difference between the RW and CW partition-
ing times of the page-based scheme can be explained as
follows: In some parts of the HP partitioning tool PaToH,
the running time increases with the square of the net sizes.
As seen in Table 2, the A11 matrix for the google data set
contains dense rows, which results in nets with high size in
the row-net HP model used for CW partitioning. In Fig. 12,
the number annotated with each bar shows the ratio of the
preprocessing time to the sequential per-iteration time.

As seen in Fig. 13, as expected, the site-based schemes
perform considerably worse than the page-based schemes
(especially in RW partitioning) in terms of load balancing.
On the other hand, the site-based schemes obtain slightly
better partitions than the page-based schemes in terms of
total message volumes. Despite higher load imbalance, the
site-based schemes achieve slightly better speedups. These
findings justify the validity of site-based schemes, which
enable the use of the state-of-the-art sparse matrix partition-
ing models and tools at an affordable preprocessing cost.

6.4.3 Performance Comparison of Site-Based

Compression Schemes

In this section, RW-SS and CW-SS, respectively, refer to
rowwise and columnwise partitioning of the Ass

11 matrices,
and RW-SP and CW-PS, respectively, refer to 1D rowwise
and columnwise partitioning of the Asp

11 and Aps
11 matrices.

Fig. 14 displays a comparison of the preprocessing times of
the site-based partitioning schemes for medium data sets
with increasing number of processors. Similar to Fig. 12, the
number annotated with each bar shows the ratio of the
preprocessing time to the sequential per-iteration time. As
seen in Fig. 14, preprocessing times vary between 0.5 to 10.3
iterations of sequential runs of the PageRank algorithm. It is
nice to observe that the preprocessing time increases very
slowly with increasing number of processors for all compres-
sion schemes. This is due to the fact that only the partitioning
component depends on the number of processors. As seen in
the figure, the SS schemes incur less preprocessing time than

CEVAHIR ET AL.: SITE-BASED PARTITIONING AND REPARTITIONING TECHNIQUES FOR PARALLEL PAGERANK COMPUTATION 797

TABLE 3
Percent Size Reduction in Compressed Matrices

Fig. 12. Comparison of preprocessing times of page-based and site-

based partitioning schemes for the google data set (on the small-

memory cluster).

Fig. 13. Comparison of the partitioning quality of page-based and site-based schemes for the google data set.

the SP and PS schemes. This is because Ass
11 matrices are

considerably smaller than the Asp
11 and Aps

11 matrices, and HP
takes relatively more time than GP.

Fig. 15 displays the relative performance of the compres-
sion and partitioning schemes for the medium data sets,
with increasing number of processors. The factors that
affect the relative computational load balancing perfor-
mance of different partitioning schemes are the partitioning
tools and the data set properties. As seen in the first column
of Fig. 15, load imbalance values are smaller than 10 percent
in all but two partitioning instances (40-way RW-SP and
CW-PS partitionings of balkan). The GP tool MeTiS shows
better load balancing performance than the HP tool PaToH
in partitioning the respective compressed matrices. The
load imbalance values obtained for balkan are consider-
ably higher than those for the other data sets. This is due to
the considerably higher vertex weight variation of balkan.

In Fig. 15, relative performance comparison of RW and CW
partitioning models under the same compression scheme
corresponds to comparing the first and second bars under the
SS compression scheme, and the third and fourth bars under
the SP and PS compression schemes, for a fixed (K, data set)
pair. In terms of the message volume metric (the second
column of Fig. 15), the CW schemes CW-SS and CW-PS,
respectively, perform considerably better than the RW
schemes RW-SS and RW-SP in all partitioning instances. This
finding can be attributed to the expectation that the similarity

among outlink patterns of pages are higher than the similarity
among in-link patterns of pages. Thus, Aps

11 matrices are more
amenable to produce better partitions. In terms of the
speedup metric, (the third column of Fig. 15), CW schemes
lead to better speedups than RW schemes in all partitioning
instances except in four and eight-way partitionings of
google and 40-way partitioning of de-fr under SP/PS
compression. In general, the speedup gap between RW and
CW schemes conforms with the gap observed in message
volumes. Especially, in balkan and webbase, large differ-
ences between RW and CW schemes in message volumes
cause high-speedup differences. In both data sets, speedups
obtained by RW schemes begin to saturate around K ¼ 24,
whereas speedups obtained by CW schemes continue to scale
almost linearly.

In Fig. 15, the relative performance comparison of the
1D compression schemes (SP and PS) and the 2D
compression schemes (SS) under the same partitioning
models corresponds to comparing the first and third bars
under the RW partitioning model, and the second and
fourth bars under the CW partitioning model. In terms of
the message volume metric, RW-SP and CW-PS, respec-
tively, perform better than RW-SS and CW-SS in all
partitioning instances. However, the 2D compression leads
to better load balancing than the 1D compression as
discussed earlier. Thus, 1D and 2D compression schemes
in general lead to comparable speedup performances.

6.5 Repartitioning Experiments on Large Data Sets

Repartitioning experiments are carried out according to an
inital columnwise distribution of the A matrix (which is
obtained by a URL hash-based distribution of the sites as
mentioned in Section 5) to simulate a real-world setup.
Since CW-PS performs better than other schemes for
partitioning instances of medium data sets in general,
experiments for large data sets are conducted only for the
CW-PS scheme.

Fig. 16 displays the variation of the computational-load
rebalancing performance of the repartitioning model with
increasing number of processors. As seen in Fig. 16,
repartitioning reduces the load imbalance significantly.
Comparison of Figs. 15 and 16 shows that considerably
higher load imbalance values are observed for repartition-
ing experiments conducted on large data sets (except for
uk-2005) compared to partitioning experiments conducted
on medium data sets. This observation may be attributed to
high initial imbalances observed on the repartitioning
experiments. A highly imbalanced initial distribution may
restrict the solution space of the repartitioning tool in
finding solutions that have both low imbalance and small
redistribution overhead.

Fig. 17 displays the variation of the maximum message
volume handled by a processor and the total message
volume during the data redistribution and parallel PageRank
computation phases for 16 and 32 processors. As seen, in
both phases, total communication volume increases with
increasing number of processors, whereas maximum mes-
sage volume per processor decreases (except for uk-union)
in the redistribution phase. Hence, a scalable performance
increase can be expected in the redistribution and PageRank
computation phases for nonblocking switches.

Fig. 18 displays the variation of data redistribution and
parallel PageRank computation times with increasing
number of processors. Both redistribution time and parallel
PageRank computation time decreases considerably with

798 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. 5, MAY 2011

Fig. 14. Preprocessing time comparison of site-based schemes for

medium data sets (on the small-memory cluster).

increasing number of processors, where this decrease is
much more pronounced in the parallel PageRank computa-
tion times. The preprocessing overhead due to data
redistribution seems to amortize even for a single PageRank
vector computation up to 64 processors. We should note
here that the communication times both during the data
redistribution and PageRank computations can be much
higher if the repartitioning, data redistribution, and parallel
PageRank computations are to be performed on a slow
communication medium such as a WAN, thus increasing
the parallelization overhead and decreasing the speedup
values. However, since the communication volumes during
the data redistribution and parallel PageRank computation
phases are comparable as seen in Fig. 17, the preprocessing
overhead is still expected to amortize.

Fig. 19 presents the speedup curves for the large data sets.
The parallel PageRank computations for the indochina,
arabic-2005, and uk-2005 data sets can be executed on

K � 4 processors, whereas for uk-union it can be executed
on K � 16 processors. Hence, the speedup values for the
former and latter data set groups are computed with respect
to the parallel computation times on K ¼ 4 and K ¼ 16
processors, respectively. The PageRank computation times
are measured as 61.3, 264.3, and 434.8 seconds on four
processors for the indochina, arabic-2005, and uk-

2005 data sets, respectively, and computation time is
measured as 642.4 seconds on 16 processors for the uk-

union data set. As seen in the figure, almost linear speedups
are obtained in the given range of processors.

6.6 Alternative Approaches

PageRank computations in real-life problems require large
amounts of memory, unless out-of-core algorithms or web-
data compression techniques are used. For example, storing

CEVAHIR ET AL.: SITE-BASED PARTITIONING AND REPARTITIONING TECHNIQUES FOR PARALLEL PAGERANK COMPUTATION 799

Fig. 15. Comparison of the partitioning qualities of the site-based schemes for medium data sets. (Speedup values are taken on the small-memory

cluster.)

Fig. 16. Percent load imbalance values for large data sets. Fig. 17. Communication volumes (Mbytes) for large data sets.

the web matrix for uk-union in CSR format with double
precision values requires approximately 62 Gbytes of
memory, whereas the PageRank vector for these data
requires approximately 1 Gbyte of memory. Considering
billions of pages and trillions of links, terabytes of memory
are required to store the whole web matrix.

One approach to tackle this memory problem for small-
scale parallel systems is disk buffering during PageRank
computations, as proposed in [50]. However, this approach
drastically increases the PageRank computation time. Our
aim in this paper is to reduce PageRank computation time
on large-scale systems via efficient parallelization. Hence,
we avoid demonstrating results with disk buffering, for
better presentation of proposed techniques and fair com-
parisons of speedup values.

Another approach for reducing the memory require-
ment is to store the web matrix in a compressed form. In
[7], an effective compression technique is explained.
Implementation of PageRank using compressed matrices
is publicly available as LAW codes [8]. Using this
implementation, it requires only several Gbytes to calculate
PageRank for the uk-union data set. However, with LAW
codes, it takes more than two hours to complete only one
iteration of PageRank computation on a single processor,
whereas in our implementation, it takes less than 6 min to
complete the whole PageRank computation on 32 proces-
sors (3.8 s/iteration).

Another alternative to manage large web matrices is to
employ distributed PageRank algorithms, for data stored on
geographically distributed data centers. Wang and DeWitt
[60] discuss the scalability problem for central crawling and
propose a PageRank algorithm for a distributed search
engine. The algorithm produces an approximation to the
global PageRank vector. For such a distributed PageRank
algorithm, our proposed techniques can be applied to
calculate PageRank vectors that are local to data centers.

7 CONCLUSION AND FUTURE WORK

Sparse matrix partitioning models are shown to be quite
successful in load balancing and minimizing the total
volume of communication during the repeated parallel
SpMxV in PageRank computations. However, the vast sizes
of the web matrices and the high-preprocessing overhead
incurred by these models render this solution infeasible in
practice. As a remedy, this paper investigated several site-
based compression schemes and sparse matrix partitioning
algorithms, targeting to obtain acceptable preprocessing
overheads compared to the previously used page-based
schemes. The results indicate that with similar load balance
values and total communication volumes achieved, pre-
processing overheads can be drastically reduced in site-
based schemes. Among the several schemes tested, column-
wise partitioning together with page-to-site compression is
found to achieve much better performance. This can be
attributed to the higher similarity among outlink patterns of
pages than the inlink patterns of pages. We should note
here that this finding slightly contradicts with the findings
in a recent work [10], and this discrepancy requires further
study. Furthermore, the proposed matrix repartitioning
algorithms, which handle the data migration costs arising
due to the already distributed nature of web matrices are
also tested on very large scale real-world data and found to
yield good speedups with scalable overheads.

As future work, we are planning to investigate the
following issues: As the LAW codes minimize storage
requirement through compression, the application and
adaptation of the parallelization models and methods in
this paper can be applied for efficient parallelization of
LAW codes for the solution of large problems on parallel
systems with relatively small memory. As the recursive
lumping-based reordered PageRank algorithm of [45]
reduces the size of the iteration matrix significantly, it
should be investigated for efficient parallelization as well.
The models and methods proposed in this work apply to
the efficient parallelization of the first subsystem of [45].
However, the parallelization of the numerous SpMxV
operations to be performed for finding the remaining
subvectors needs research effort because of the highly
sequential nature of the forward substitution scheme.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous referees,
whose comments substantially improved the quality of this
paper. This work is partially supported by The Scientific
and Technological Research Council of Turkey under Grant
EEEAG-109E019 and COST Action IC080 ComplexHPC.

REFERENCES

[1] A. Arasu, J. Novak, A. Tomkins, and J. Tomlin, “PageRank
Computation and the Structure of the Web: Experiments and
Algorithms,” Proc. 11th Int’l World Wide Web (WWW) Conf., Poster,
2002.

[2] C. Aykanat, F. Ozguner, and D. Scott, “Vectorization and
Parallelization of the Conjugate Gradient Algorithm on Hyper-
cube-Connected Vector Processors,” J. Microprocessing and Micro-
programming, vol. 29, pp. 67-82, 1990.

800 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. 5, MAY 2011

Fig. 18. Comparison of redistribution and parallel PageRank computa-

tion times for large data sets (on the large-memory cluster).

Fig. 19. Speedup curves for large data sets (on the large-memory

cluster).

[3] C. Aykanat, B.B. Cambazoglu, and B. Ucar, “Multilevel Hyper-
graph Partitioning with Multiple Constraints and Fixed Vertices,”
J. Parallel and Distributed Computing, vol. 68, pp. 609-625, 2008.

[4] C. Aykanat, B.B. Cambazoglu, F. Findik, and T. Kurc, “Adaptive
Decomposition and Remapping Algorithms for Object-Space-
Parallel Direct Volume Rendering of Unstructured Grids,”
J. Parallel and Distributed Computing, vol. 67, pp. 77-99, 2006.

[5] A.-L. Barabasi and R. Albert, “Emergence of Scaling in Random
Networks,” Science, vol. 286, pp. 509-512, 1999.

[6] P. Berkhin, “A survey on PageRank Computing,” Internet Math.,
vol. 2, no. 1 pp. 73-120, 2005.

[7] P. Boldi and S. Vigna, “The WebGraph Framework I: Compres-
sion Techniques,” Proc. 13th Int’l World Wide Web (WWW) Conf.,
pp. 595-602, 2004.

[8] P. Boldi and S. Vigna, “Codes for the World Wide Web,” Internet
Math., vol. 2, pp. 405-427, 2004.

[9] P. Boldi, B. Codenotti, M. Santini, and S. Vigna, “UbiCrawler: A
Scalable Fully Distributed Web Crawler,” Software: Practice and
Experience, vol. 43, pp. 711-726, 2004.

[10] P. Boldi, M. Santini, and S. Vigna, “Permuting Web Graphs,” Proc.
Sixth Int’l Workshop Algorithms and Models for the Web-Graph,
pp. 116-126, 2009.

[11] J.T. Bradley, D.V. De Jager, W.J. Knottenbelt, and A. Trifunovic,
“Hypergraph Partitioning for Faster Parallel PageRank Computa-
tion,” Lecture Notes in Computer Science, pp. 155-171, Springer,
2005.

[12] C. Brezinski, M. Redivo-Zaglia, and S. Serra-Capizzano, “Extra-
polation Methods for PageRank Computations,” Comptes Rendus
de l’Académie des Sciences de Paris, vol. 340, pp. 393-397, 2005.

[13] S. Brin and L. Page, “The Anatomy of a Large-Scale Hypertextual
Web Search Engine,” Computer Networks and ISDN Systems, vol. 33,
no. 3, pp. 107-117, 1998.

[14] B.B. Cambazoglu and C. Aykanat, “Hypergraph-Partitioning-
Based Remapping Models for Image-Space-Parallel Direct Volume
Rendering of Unstructured Grids,” IEEE Trans. Parallel and
Distributed Systems, vol. 18, no. 1, pp. 3-16, Jan. 2007.

[15] U.V. Çatalyürek and C. Aykanat, “Hypergraph-Partitioning-
Based Decomposition for Parallel Sparse-Matrix Vector Multi-
plication,” IEEE Trans. Parallel and Distributed Systems, vol. 10,
no. 7, pp. 673-693, July 1999.

[16] U.V. Çatalyürek, C. Aykanat, and B. Ucar, “On Two-Dimensional
Sparse Matrix Partitioning: Models, Methods and a Recipe,” SIAM
J. Scientific Computing, vol. 32, no. 2, pp. 656-683, 2010.

[17] U.V. Çatalyürek and C. Aykanat, “A Multilevel Hypergraph
Partitioning Tool, V. 3.0,” technical report, Dept. of Computer
Eng., Bilkent Univ., 1999.

[18] U.V. Çatalyürek, E.G. Boman, K.D. Devine, D. Bozdag, R.T.
Heaphy, and L.A. Riesen, “Dynamic Load Balancing for Adaptive
Scientific Computations via Hypergraph Partitioning,” J. Parallel
and Distributed Computing, vol. 69, no. 8, pp. 711-724, 2009.

[19] A. Cevahir, C. Aykanat, A. Turk, and B. Barla Cambazoglu, “Site-
Based Partitioning Tool for Parallel PageRank Computation,”
http://matsu-www.is.titech.ac.jp/~ali/pagerank.html, 2010.

[20] A. Cevahir, C. Aykanat, A. Turk, and B. Barla Cambazoglu, “Web-
Site-Based Partitioning Techniques for Reducing the Preproces-
sing Overhead before the Parallel PageRank Computations,”
Applied Parallel Computing. State of the Art in Scientific Computing,
Springer, June 2006.

[21] J. Cho and H. Garcia-Molina, “The Evolution of the Web and
Implications for an Incremental Crawler,” Proc. World Wide Web
Conf., pp. 200-209, May 1999.

[22] G.M. Del Corso, A. Gullı́, and F. Romani, “Comparison of Krylov
Subspace Methods on the PageRank Problem,” J. Computational
and Applied Math., vol. 210, pp. 159-166, 2007.

[23] G.M. Del Corso, A. Gullı́, and F. Romani, “Fast PageRank
Computation via a Sparse Linear System,” Internet Math., vol. 2,
no. 3, pp. 251-273, 2005.

[24] Web Graph Benchmark: http://hipercom.inria.fr/~viennot/
webgraph, 2010.

[25] D. Gleich, L. Zhukov, and P. Berkhin, “Fast Parallel PageRank: A
Linear System Approach,” Technical Report YRL-2004-038,
Yahoo!, 2004.

[26] J.-L. Guillaume, M. Latapy, and L. Viennot, “Efficient and Simple
Encodings for the Web Graph,” Proc. 11th Int’l World Wide Web
(WWW) Conf., 2002.

[27] Google Programming Contest: http://www.google.com/
programming-contest/, 2004.

[28] http://googleblog.blogspot.com/2008/07/we-knew-web-was-
big.html, 2010.

[29] Z. Gyongyi, H. Garcia-Molina, and J. Pedersen, “Combating Web
Spam with TrustRank,” Proc. 30th Very Large Data Bases (VLDB)
Conf., vol. 1, pp. 257-263, 2004.

[30] G.H. Golub and J.F.V. Loan, Matrix Computation, third ed. John
Hopkins Univ. Press, 1996.

[31] T. Haveliwala, “Topic Sensitive PageRank,” Proc. 11th Int’l World
Wide Web Conf., pp. 517-526, 2002.

[32] B. Hendrickson and E. Rothberg, “Improving the Run Time and
Quality of Nested Dissection Ordering,” SIAM J. Scientific
Computing, vol. 20, no. 2, pp. 468-489, 1998.

[33] B. Hendrickson and T.G. Kolda, “Graph Partitioning Models for
Parallel Computing,” Parallel Computing, vol. 26, pp. 1519-1534,
2000.

[34] E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms.
Computer Science Press, 1978.

[35] I.C.F. Ipsen and S. Kirkland, “Convergence Analysis of a
PageRank Updating Algorithm by Langville and Meyer,” SIAM
J. Matrix Analysis and Applications, vol. 27, pp. 952-967, 2006.

[36] I.C.F. Ipsen and T.M. Selee, “PageRank Computation, with Special
Attention to Dangling Nodes,” SIAM J. Matrix Analysis and
Applications, vol. 29, pp. 1281-1296, 2007.

[37] I.C.F. Ipsen and R.S. Wills, “Mathematical Properties and Analysis
of Google’s PageRank,” Bol. Soc. Exp. May. Apl., vol. 34, pp. 191-
196, 2006.

[38] S. Kamvar, T. Haveliwala, C. Manning, and G. Golub, “Extra-
polation Methods for Accelerating PageRank Computations,”
Proc. 12th Int’l World Wide Web Conf., pp. 261-270, 2003.

[39] S. Kamvar, T. Haveliwala, and G. Golub, “Adaptive Methods for
Computation of PageRank,” Proc. Int’l Conf. Numerical Solution of
Markov Chains, 2003.

[40] S. Kamvar, T. Haveliwala, C. Manning, and G. Golub, “Exploiting
the Block Structure of the Web for Computing PageRank,”
technical report, Stanford Univ., 2003.

[41] C. Kohlschtter, R. Chirita, and W. Nejdl, “Efficient Parallel
Computation of PageRank,” Proc. 28th European Conf. IR Research
(ECIR), pp. 241-252, 2006.

[42] G. Kollias and E. Gallopoulos, “Asynchronous PageRank Com-
putation in an Interactive Multithreading Environment,” Proc.
Seminar Web Information Retrieval and Linear Algebra Algorithms,
2007.

[43] G. Kollias, E. Gallopoulos, and D.B. Szyld, “Asynchronous
Iterative Computations with Web Information Retrieval Struc-
tures: The PageRank Case,” http://arxiv.org/abs/cs/0606047,
2006.

[44] A. Langville and C. Meyer, “Deeper Inside PageRank,” Internet
Math., vol. 1, no. 3, pp. 335-380, 2005.

[45] A. Langville and C. Meyer, “A Reordering for the PageRank
Problem,” SIAM J. Scientific Computing, vol. 27, no. 6, pp. 2112-
2120, 2006.

[46] A. Langville and C. Meyer, “Updating Markov Chains with an
Eye on Google’s PageRank,” SIAM J. Matrix Analysis and
Applications, vol. 27, no. 4, pp. 968-987, 2006.

[47] Larbin Home Page, http://larbin.sourceforge.net/index-eng.
html/, 2010.

[48] C. Lee, G. Golub, and S. Zenios, “A Fast Two-Stage Algorithm for
Computing PageRank,” technical report, Stanford Univ., 2003.

[49] K. Avrachenkov and N. Litvak, “Decomposition of the Google
PageRank and Optimal Linking Strategy,” technical report,
INRIA, 2004.

[50] B. Manaskasemsak and A. Rungsawang, “An Efficient Partition-
Based Parallel PageRank Algorithm,” Proc. 11th Int’l Conf. Parallel
and Distributed Systems, vol. 1, pp. 257-263, 2005.

[51] G. Karypis and V. Kumar, “MeTiS: Unstrctured Graph Partition-
ing and Sparse Matrix Ordering System,” technical report, Dept.
of Computer Science, Univ. of Minnesota, 1995.

[52] F. McSherry, “A Uniform Approach to Accelerated PageRank
Computation,” Proc. 14th Int’l World Wide Web (WWW) Conf.,
pp. 575-582, 2005.

[53] S. Matsuoka, Petascale Computing Algorithms and Applica-
tions—Chapter 14: The Road to TSUBAME and Beyond. Chapman
& Hall/CRC, pp. 289-310, 2008.

[54] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank
Citation Ranking: Bringing Order to the Web,” technical report,
Stanford Univ., 1999.

CEVAHIR ET AL.: SITE-BASED PARTITIONING AND REPARTITIONING TECHNIQUES FOR PARALLEL PAGERANK COMPUTATION 801

[55] J.X. Parreira, C. Castillo, D. Donato, S. Michel, and G. Weikum,
“The Juxtaposed Approximate PageRank Method for Robust
PageRank Approximation in a Peer-to-Peer Web Search Net-
work,” The Int’l J. Very Large Data Bases, vol. 17, pp. 291-313, 2008.

[56] A. Trifunovic and W.J. Knottenbelt, “Parkway 2.0: A Parallel
Multilevel Hypergraph Partitioning Tool,” Lecture Notes in
Computer Science, pp. 789-800, Springer, 2004.

[57] B. Ucar and C. Aykanat, “A Library for Parallel Sparse Matrix-
Vector Multiplies,” technical Report BU-CE-0506, Dept. of
Computer Eng., Bilkent Univ., 2005.

[58] B. Ucar and C. Aykanat, “Encapsulating Multiple Communica-
tion-Cost Metrics in Partitioning Sparse Rectangular Matrices for
Matrix-Vector Multiplies,” SIAM J. Scientific Computing, vol. 25,
pp. 1837-1859, 2004.

[59] The Stanford WebBase Project Home Page, http://dbpubs.
stanford.edu:8091/~testbed/doc2/WebBase/, 2010.

[60] Y. Wang and D.J. DeWitt, “Computing Pagerank in a Distributed
Internet Search System,” Proc. 13th Int’l Conf. Very Large Data Baes
(VLDB), vol. 30, pp. 420-431, 2004.

[61] R.S. Wills and I.C.F. Ipsen, “Ordinal Ranking for Google’s
PageRank,” SIAM J. Matrix Analysis and Applications, vol. 30,
pp. 1677-1696, 2008.

Ali Cevahir received the BSc and MSc degrees
from the Computer Engineering Department,
Bilkent University, in 2004 and 2006, respec-
tively. He is currently working toward the PhD
degree at the Tokyo Institute of Technology. His
research interests include parallel scientific
computing and GPU computing.

Cevdet Aykanat received the BS and MS
degrees from the Middle East Technical Uni-
versity, Ankara, Turkey, both in electrical en-
gineering, and the PhD degree in electrical and
computer engineering from Ohio State Univer-
sity, Columbus. He was a Fulbright scholar
during the PhD studies. He worked at the Intel
Supercomputer Systems Division, Beaverton,
Oregon, as a research associate. Since 1989,
he has been affiliated with the Department of

Computer Engineering, Bilkent University, Ankara, Turkey, where he is
currently a professor. His research interests mainly include parallel
computing, parallel scientific computing and its combinatorial aspects,
parallel computer graphics applications, parallel data mining, graph and
hypergraph theoretic models for load balancing, high-performance
information retrieval systems, parallel and distributed databases, and
grid computing. He has (co)authored about 60 technical papers
published in academic journals indexed in ISI and his publications
received about 400 citations in ISI indexes. He is the recipient of the
1995 Young Investigator Award of The Scientific and Technological
Research Council of Turkey and the 2007 Parlar Science Award. He
was appointed as a member of the IFIP Working Group 10.3
(Concurrent System Technology) in April 2004, as a member of the
EU-INTAS Council of Scientists in June 2005, and as an associate editor
of the IEEE Transactions on Parallel and Distributed Systems in
December 2008.

Ata Turk received the BSc and MSc degrees
from the Computer Engineering Department,
Bilkent University, in 2002 and 2004, respec-
tively. He is currently working toward the PhD
degree at the Bilkent University. His research
interests include parallel information retrieval
and algorithms.

B. Barla Cambazoglu received the BS, MS,
and PhD degrees from the Computer Engineer-
ing Department, Bilkent University, in 1997,
2000, and 2006, respectively, all in computer
engineering. He then has worked as a post-
doctoral researcher in the Biomedical Infor-
matics Department, Ohio State University. He
is currently a researcher in the Barcelona Lab of
Yahoo! Research. He has worked in several
research projects, funded by the Scientific and

Technological Research Council of Turkey, the European Union Sixth
and Seventh Framework Programs, and the National Cancer Institute. In
2007, he received Embodying the Vision Award as a developer of the
caBIG project. His research interests mainly include information
retrieval, machine learning, distributed computing, and algorithms. He
is the author or coauthor of various papers published in prestigious
journals including the IEEE TPDS, JPDC, and Information Systems as
well as top IR conferences, such as the SIGIR, the WWW, and the
WSDM.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

802 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. 5, MAY 2011

