
Parallel Frequent Item Set Mining with
Selective Item Replication

Eray Özkural, Bora Uçar, and Cevdet Aykanat

Abstract—We introduce a transaction database distribution scheme that divides the frequent item set mining task in a top-down

fashion. Our method operates on a graph where vertices correspond to frequent items and edges correspond to frequent item sets of

size two. We show that partitioning this graph by a vertex separator is sufficient to decide a distribution of the items such that the

subdatabases determined by the item distribution can be mined independently. This distribution entails an amount of data replication,

which may be reduced by setting appropriate weights to vertices. The data distribution scheme is used in the design of two new parallel

frequent item set mining algorithms. Both algorithms replicate the items that correspond to the separator. NoClique replicates the work

induced by the separator and NoClique2 computes the same work collectively. Computational load balancing and minimization of

redundant or collective work may be achieved by assigning appropriate load estimates to vertices. The experiments show favorable

speedups on a system with small-to-medium number of processors for synthetic and real-world databases.

Index Terms—Parallel data mining, frequent item set mining, mining methods and algorithms, selective data replication, graph

partitioning by vertex separator.

Ç

1 INTRODUCTION

1.1 Frequent Item Set Mining Problem

A transaction database consists of a multiset T ¼
fXjX � Ig of transactions. Each transaction is an item

set, and it is drawn from a set I of all items. In practice, the
number of items, jIj, is in the order of magnitude of 103 or
more. The number of transactions, jT j, is usually larger than
105.1 A pattern (or item set) is X � I, any subset of I, while
the set of all patterns is 2I . The frequency function fðT; xÞ ¼
jfX 2 T jx 2 Xgj computes the number of times a given item
x 2 I occurs in the transaction database T , and it is
extended to item sets as fðT;XÞ ¼ jfY 2 T jX � Y gj to
compute the frequency of a pattern. We use just fðxÞ or
fðXÞ when T is clear from the context.

Frequent item set mining (FIM) is the discovery of patterns
in a transaction database with a frequency of support
threshold � and more. The set of all frequent patterns is
FðT; �Þ ¼ fX 2 2I jfðT;XÞ � �g. We use just F when T and �
are clear from the context. In our algorithms, two sets require
special consideration. F ¼ fx 2 IjfðT; xÞ � �g is the set of
frequent items, and F2 ¼ fX 2 FjjXj ¼ 2g is the set of
frequent patterns with cardinality 2. In general, Fk is the set
of frequent patterns with cardinality k. A significant property
of FIM known as downward closure states that subsets of a
frequent pattern are frequent, i.e., if X 2 FðT; �Þ then
8Z � X;Z 2 FðT; �Þ [1].

If all item sets in F are enumerated, the problem is
known as the all FIM problem. Since the size of F can be
large, smaller enumeration problems have been defined
such as closed [2] and maximal [3] FIM problems.

1.2 Related Work and Motivation

FIM comprises the core of several data mining algorithms,
such as association rule mining and sequence mining.
Frequent pattern discovery usually dominates the running
time of these algorithms, therefore much research has been
devoted to increasing the efficiency of this task. Since both
the data size and the computational costs are large, parallel
algorithms have been studied extensively [4], [5], [6], [7], [8],
[9], [10], [11], [12]. FIM has become a challenge for parallel
computing since it is a complex operation on huge
databases requiring efficient and scalable algorithms.

While there are a host of advanced algorithms for
parallel FIM, it is desirable to achieve better flexibility and
efficiency. We have been inspired by the Partition algorithm
[13] which divides the database horizontally and merges
individual results, as well as Zaki et al.’s Par-Eclat algorithm
[5] which redistributes the database into parts that can be
mined independently. Also of immediate interest are the
parallelizations of Apriori [1], most notably Candidate-
Distribution [4] which pioneered independent mining. We
ask the following questions. Can we design a parallel
algorithm that exploits data-parallelism and task-paralle-
lism? Can we find a model to optimize its performance? The
present paper gives an affirmative answer to these ques-
tions by introducing an algorithm that divides the database
into independently mined parts in a top-down fashion,
according to an optimized distribution of the item set.

A review of related work with emphasis on paralleliza-
tions of Apriori and Par-Eclat may be found in Appendix A,
which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TPDS.2011.32.

1632 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. 10, OCTOBER 2011

. E. Özkural and C. Aykanat are with Department of Computer
Engineering, Bilkent University, 06800 Ankara, Turkey.
E-mail: {erayo, aykanat}cs.bilkent.edu.tr.

. B. Uçar is with LIP, ENS Lyon, 69364 Lyon, France.
E-mail: bora.ucar@ens-lyon.fr.

Manuscript received 24 Dec. 2009; revised 7 July 2010; accepted 14 Oct. 2010;
published online 18 Jan. 2011.
Recommended for acceptance by K. Li.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2009-12-0666.
Digital Object Identifier no. 10.1109/TPDS.2011.32.

1. These numbers come from the parameters used for the synthetic data
generator in [1].

1045-9219/11/$26.00 � 2011 IEEE Published by the IEEE Computer Society

1.3 Contributions

We introduce two new coarse-grain data-parallel FIM
algorithms using a top-down data partitioning scheme with
selective replication. We propose a novel divide-and-
conquer strategy suitable for parallelization of the FIM task.
Our objective is to divide the whole transaction database
into parts that can be mined independently. It turns out that
we can distribute items so as to achieve our goal of
independent mining, while replicating some items selec-
tively, implying an amount of work that cannot be divided
further in the same fashion. This optimization problem is
cast as a Graph Partitioning by Vertex Separator (GPVS)
problem where the partitioning objective corresponds to
minimizing data replication or collective work (work that
requires collective communication) by setting appropriate
weights to vertices, and the partitioning constraint corre-
sponds to maintaining storage balance or computational
load by setting appropriate weights likewise. The transac-
tion database distribution is independent of the underlying
database representation and the serial mining algorithms
employed. Experiments show that our method has compe-
titive performance with respect to a state-of-the-art parallel
mining implementation.

2 TRANSACTION DATABASE DISTRIBUTION

In this section, we describe our theoretical contributions
which will be developed into a parallel algorithm in Section 3.
We make heavy use of the GPVS problem, which is briefly
explained in the following.

The GPVS problem is to find a minimum weighted
vertex separator Vs, removal of which decomposes a graph
into components with roughly equal weights [14]. Let G ¼
ðV ;EÞ be a graph where wðuÞ is the weight of vertex u. Let
wðUÞ ¼

P
u2U wðuÞ be the weight of a vertex set U . Let

AdjðuÞ denote the set of vertices that are adjacent to u, i.e.,
AdjðuÞ ¼ fvjðu; vÞ 2 Eg. This operator can be extended to
vertex sets by letting AdjðUÞ ¼

S
u2U AdjðuÞ � U .

Definition 1 (n-way GPVS). �V SðGÞ ¼ fV1; V2; . . . ; Vn : Vsg
is a partition of the vertex set V intonþ 1 subsetsV1; V2; . . . ; Vn
and Vs such that for all 1 � i < j � n AdjðViÞ \ Vj ¼ ; (i.e.,
AdjðViÞ � Vs). The partitioning objective is to minimizewðVsÞ.
The partitioning constraint is, for all 1 � i � n, wðViÞ ffi
½wðV Þ � wðVsÞ�=n (parts have roughly the same weight).

The problem is NP-complete [15, ND 25 Minimum b-
vertex separator]. A separator Vs is said to be minimal if
there is no subset of Vs that is also a separator. The two-way
GPVS will be denoted as �V SðGÞ ¼ fA;B : Sg.

We introduce a distribution method that can be used to
divide the FIM task in a top-down fashion. The method
operates on the graph GF2

which is defined as follows:

Definition 2. GF2
ðT; �Þ ¼ ðF; F2Þ is an undirected graph in

which each vertex u 2 F is a frequent item and each edge
fu; vg 2 F2 is a frequent pattern of length two, for a given
database T and support threshold �. The parameters T and �
will be dropped when they are clear from the context.

We decode a two-way GPVS of the GF2
graph as a two-

way distribution of the transaction database such that the

two subdatabases obtained can be mined independently
and therefore utilized for concurrency. In order for this
property to hold, there is an amount of replication dictated
by the vertex separator of GF2

, which corresponds to the
partitioning objective of GPVS. In the following, we first
present the optimization aspects of our transaction database
distribution technique. Then, we expound on our GPVS
model for two-way transaction database distribution. After-
wards, we discuss minimization of data replication,
followed by minimization of collective work and load
balancing in the GPVS model. We then extend the two-way
distribution scheme to n-way (for n processors). Last, we
show that our method is applicable to maximal and closed
FIM problems.

2.1 Optimizing Parallel Frequent Item Set Discovery

Our objective of transaction database distribution is to
divide a transaction database such that each subdatabase
can be mined independently, while not inflating the data
prohibitively and keeping the computational load balanced
across subdatabases. Once such a distribution is obtained, a
coarse-grain parallel frequent item set mining algorithm
similar to Par-Eclat can be designed. Par-Eclat consists of a
redistribution phase and a following local mining phase
with no communication [5]. We present two algorithms:
NoClique features completely independent mining with no
communication just like Par-Eclat, while NoClique2 has a
collective phase in which the running time is minimized
and the rest of mining is independent. Since some data
mining tasks on the subdatabases are performed indepen-
dently in either algorithm, our method may be classified as
a data-parallel algorithm that adopts input data partitioning
with replication. This input data partitioning induces a task
partitioning according to the owner-computes rule [16,
Section 3.2.2], which states that the process assigned a
particular data item is responsible for all computation
associated with it.

We show that GPVS on GF2
is sufficient to designate such

a distribution on the transaction database. Our work
assumes that GF2

is sparse, because GPVS may not be
feasible on dense graphs. Note that a sparse GF2

does not
necessarily require the input database to be sparse.

We may begin formulating a problem for the coarse-

grain data-parallel frequent item set mining algorithm as

follows: Let a database T contain a smaller database Ti. Ti is

a subdatabase of database T if and only if, for every

transaction X 2 Ti, there is a distinct transaction Y 2 T such

that X � Y (recall that T and Ti are multisets). We will

denote this ordering relation with Ti 	 T . The input

database T is distributed to a number of processors such

that each processor has a subdatabase of the original

transaction database. We denote this distribution by

DðT Þ ¼ fTijTi 	 Tg, possibly with replication. Also, we

require the union of frequent patterns discovered in

individual processors to be the set of frequent patterns of

the entire data, i.e., FðT; �Þ ¼
S
Ti2DðT Þ FðTi; �Þ. We call this

the independent mining condition for a distribution DðT Þ.
In the following optimization problem, wð
Þ is any

sensible cost measure that relates to mining a database,
e.g., computational work, data size:

ÖZKURAL ET AL.: PARALLEL FREQUENT ITEM SET MINING WITH SELECTIVE ITEM REPLICATION 1633

minimize

� X
Ti2DðT Þ

wðTiÞ
�
� wðT Þ; ð1Þ

subject to Ti 	 T; for all Ti 2 DðT Þ; ð2Þ
FðT; �Þ ¼

[
Ti2DðT Þ

FðTi; �Þ; ð3Þ

wðTiÞ’s are approximately equal: ð4Þ

The objective in (1) seeks to minimize the total amount of
redundancy that the distribution DðT Þ entails. We subtract
the cost of the entire database from the sum of costs of
distributed subdatabases Tis to denote this. Equation (2) is
the distribution condition which states that the transaction
database is distributed in any fashion, e.g., transactionwise,
itemwise, or hybrid. Equation (3) is the independent mining
condition, which ensures that independent mining of the
subdatabases yields the frequent patterns of the entire
database. The balancing condition (4) ensures that all
processors share the cost fairly. At this stage, we do not
explicitly state whether we are minimizing data redun-
dancy or parallel overhead. However, some amount of data
replication is often necessary for the independent mining
condition to hold.

We will now expose our particular item redistribution
scheme using information in frequent item sets of length
two, which can be easily computed in parallel like in the
design of Par-Eclat [5]. First, we will show how we can
satisfy the distribution and independent mining conditions
by showing a two-way item distribution. We will then
analyze the objective and the balancing condition, explain-
ing how we can assign weights and achieve load balance so
that it becomes an acceptable solution to the coarse-grain
parallel FIM problem.

2.2 Two-Way Itemwise Transaction Database
Distribution

GF2
is relatively easy to compute with respect to the

complexity of the whole mining task, and its computation is
amenable to efficient parallelization. It contains information
that can be used to predict computational properties. For
instance, the maximal cliques in GF2

give us potentially
maximal patterns [5], which in turn can be used to achieve
task parallelism. Our data decomposition method, on the
other hand, does not require finding maximal cliques.
Instead, we use the GPVS of GF2

, which allows us to define
independent mining on the transaction database by finding
a particular distribution of the item set I. Our item
distribution identifies the absence of cliques across two
sets of items rather than enumerating all cliques as in [5].

We will start by observing the similarity of GPVS
objectives to ours. It turns out that we can use a GPVS of
GF2

to satisfy the independent mining conditions and to
optimize parallelism at the same time. FIM task can be
decomposed into mining two itemwise projections of the
transaction database using GPVS. We use the projection
operator � to explicitly show the vertical projections.

Definition 3. A transaction database projected from T over a set
of items X is �XðT Þ ¼ fY \XjY 2 Tg where Y is a
transaction in T .

Recall that a two-way GPVS is denoted as �V SðGÞ ¼
fA;B : Sg where S is the vertex separator; and A and B are

vertex parts. GPVS of GF2
corresponds to a certain two-way

distribution fA [S,B [Sg of the item set I. This distribution
induces a two-way transaction set distribution as follows:

Definition 4. A two-way transaction database distribution
DðT Þ ¼ fT1; T2g is induced by �V SðGF2

Þ ¼ fA;B : Sg,
where T1 ¼ �A[SðT Þ and T2 ¼ �B[SðT Þ.

We require S to be a minimal separator. If S were not
minimal, since the cost induced by the separator is included
in both projections, removing a vertex from the separator
would decrease the parallel cost. For that reason, it is better to
choose a minimal separator, in case the GPVS heuristic does
not find one. Fig. 1 depicts a sample transaction database and
itsGF2

graph. �V S of this graph and the transaction database
distributionDðT Þ induced by �V S is illustrated in Fig. 2. In the
following text, we show that mining the database parts
separately results in complete FIM of the original transaction
databaseT satisfying (3). The proofs are found in Appendix B,
which can be found on the Computer Society Digital Library
at http://doi.ieeecomputersociety.org/10.1109/TPDS.
2011.32.

Lemma 1. If there is a frequent pattern P in T , then there is a
corresponding clique in GF2

, with vertices corresponding to
items in P .

Lemma 2 (NoClique). There is no frequent pattern with items
in both A and B parts of �V S ¼ fA;B : Sg of GF2

.

Theorem 1 (Independent Mining). Independent discovery of
frequent patterns in projected databases T1 ¼ �A[SðT Þ and
T2 ¼ �B[SðT Þ results in discovery of all frequent patterns in T .

Theorem 1 can be improved slightly to suggest a more
efficient parallelization. The frequent item sets within S do
not have to be mined redundantly.

1634 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. 10, OCTOBER 2011

Fig. 1. (a) A sample database T with 15 transactions and 9 items.
(b) GF2

graph of T with a support threshold of 3. The vertices are labeled
with the number of times an item occurs in the database.

Corollary 1 (Collective Work). Consider the partition of items

in Theorem 1. All patterns in T can be mined by mining

frequent item sets that fall within S, independently mining A

and B, and then extending frequent item sets within S by those

item sets mined within A and B.

2.3 Minimizing Data Replication

Data replication in distribution DðT Þ ¼ fT1; T2g is deter-

mined by the vertex separator S. By definition of the two-

way distribution, for every transaction X 2 T , X \ S is

projected in both T1 and T2.

Lemma 3. The amount of data replication in two-way transaction

database distribution DðT Þ given in Definition 4 is equal toP
u2S fðuÞ.

The amount of data replication is related to the sparsity

of GF2
graph. We expect the replication to grow rapidly

beyond a certain edge density that is determined by the

support threshold.

Lemma 4 (Minimum Replication). GPVS of GF2
with item

frequencies as vertex weights minimizes the amount of data
replication.

Minimizing data replication is also correlated to mini-
mizing the total volume of communication during database
redistribution. If the database is to be provided from a
central server, then both objective functions are identical.
Moreover, for an initial random distribution of the
database, we are minimizing the upper bound of total
communication volume during the redistribution phase.
Note that the GPVS model will maintain storage balance
among processors due to the partitioning constraint.

2.4 Minimizing Collective Work

Here, we take a look at possible choices for wð
Þ to minimize
collective work. If the computational work estimate for a
projection over a set of items X is in the form of a
summation of individual load estimates lð
Þ for items:

wð�XðT ÞÞ ¼
X
u2X

lðuÞ; ð5Þ

then the proposed GPVS model will minimize collective work
instead of minimizing data replication. It will also balance
computational load due to the partitioning constraint.

Estimating the computational load is nontrivial, since we
cannot know in advance how many patterns are present in
the data. However, we can reason about the potential
number of item sets in the search space that the mining
algorithm will need to traverse. Although every algorithm
follows a different strategy for determining frequent
patterns, a measure of the portion of the search space
containing potentially frequent patterns gives us a good
estimate as in [4], [5]. In our method, however, computing
the maximal cliques in GF2

(like in [5]) will incur additional
overhead. Therefore, we use simpler functions for load
estimation such as the following:

w1ð�XðT ÞÞ ¼
X
u2X

fðuÞ; ð6Þ

w2ð�XðT ÞÞ ¼
X
u2X

dðuÞ
2

� �
; ð7Þ

w3ð�XðT ÞÞ ¼
1

2

X
ðu;vÞ2X2

fðfu; vgÞ: ð8Þ

For estimating computation time, we can use (6) which
calculates the data size within the projection over a given
item set X in a fashion resembling [4]. Equation (7) does not
take into account the actual complexity of the task. An
alternative approximation, which is inexpensive, can be
found in [5]. Equation (7) is based on Zaki et al.’s item set
clustering [5] where dðuÞ is the degree of vertex u in GF2

.
This estimate is an upper bound on the number of potential
frequent patterns of length 3 obtained by calculating the
number of 2-combinations of patterns with length 2.
Naturally, more advanced load estimate methods can be
used to improve the accuracy. An obvious choice among the
simpler functions is the total frequency of GF2

edges that fall
within a given item set X which gives us (8). Although w3ð
Þ
does not strictly conform to (5), it can be made so by evenly

ÖZKURAL ET AL.: PARALLEL FREQUENT ITEM SET MINING WITH SELECTIVE ITEM REPLICATION 1635

Fig. 2. (a) A GPVS of the GF2
graph of Fig. 1. Parts A, B, and separator

S are shown. (b) Distribution DðT Þ ¼ ðT1; T2Þ of transaction database.
(c) The GF2

graphs of T1 and T2.

distributing the weight of each edge among its incident
vertices, which yields an approximation to (8). In our
experiments, we have found that w1ð
Þ performed better or
as well as w2ð
Þ and w3ð
Þ perhaps because it tends to reduce
both data and task overhead.

2.5 Extension to n-Way Distribution and Any Level k
of Mining

We will now show means to extend two-way transaction
database distribution to an n-way distribution DðT Þ ¼
fT1; T2; . . . ; Tng, where the independent mining conditions
are generalized in the obvious way. The two-way transac-
tion database distribution can be applied recursively to
divide the two projected databases. Since the resulting
projected databases are transaction databases themselves,
we can apply the same method to divide them further.

In order to distribute the derived databases, one must
obtain the GF2

of the two parts. This can be accomplished by
simply running the same algorithm for the projected
transaction database, however, this can be costly. In the
following, we present facts that lead to an efficient
computational scheme to calculate an n-way distribution
directly over GF2

. By making use of this simple observation,
we avoid constructing intermediate projected databases.
There is no need to recompute F and GF2

, since they are
already known as shown by the following lemma:

Lemma 5 (GF2
of a Projection). For a given item set X � I,

GF2
ð�XðT Þ; �Þ is the subgraph of GF2

ðT; �Þ induced by the
vertex set X.

We thus observe that we do not need to construct
intermediate databases to calculate the GF2

s of the sub-
databases in DðT Þ.
Corollary 2 (Fast Recursive Distribution). Regarding the

dis tr ibut ion DðT Þ ¼ f�A[SðT Þ; �B[SðT Þg induced by
�V SðGF2

Þ ¼ fA;B : Sg, t h e GF2
ð�A[SðT Þ; �Þ a n d

GF2
ð�B[SðT Þ; �Þ can be calculated as vertex-induced subgraphs

of GF2
ðT; �Þ by vertex sets A [S and B [S, respectively.

The simplest way to obtain an n-way distribution is to
use an n-way GPVS directly. Independent mining results
extend to the n-way case in an obvious fashion. Thus, we
will not prove them separately. However, there are a few
differences from the two-way case, which we will now
portray. In an n-way GPVS �V SðGF2

Þ ¼ fV1; V2; . . . ; Vn : Sg
of the GF2

graph, we note that the projection of S [Vi will
result in independent mining. Although S is a minimal
separator (i.e., no subset of it is a separator), we observe that
not all S need to be replicated in all parts. In general, a
portion of S will have to be replicated on processor i (i.e.,
AdjðViÞ \ S) which may in the worst case correspond to S.
This implies that an item in S may be replicated in a
different number of projected databases than others in the
resulting distribution. The n-way GPVS model does not
encapsulate this fact. However, it is easier to implement
with an n-way GPVS tool.

Our formulation is also applicable to levels higher than
two in case GF2

is too dense. We define a graph GFk of k-
length frequent item sets as follows:

Definition 5. GFkðT; �Þ ¼ ðF;EÞ is an undirected graph in
which each vertex u 2 F is a frequent item. For each frequent
item set X of length k in Fk, we insert a clique of items in X
into this graph, i.e., one edge for each length 2 support of X.

This definition allows us to use all the relevant results
with no modification. The extension of results is trivial and
will not be detailed due to space considerations. However,
one property is important:

Lemma 6 (Sparsity of Higher Levels). GFkþ1
is not denser

than GFk .

2.6 Maximal and Closed FIM Problems

Our method is applicable to both variations of the FIM
problem that compute subsets of F . In maximal FIM, no set
that is a subset of a frequent item set is output [3], [17]. In
closed FIM, no set that is a subset of a frequent item set and is
supported by the same transactions is output [2]. For instance,
consider frequent item set X ¼ fa; b; cg. In maximal FIM, no
subset ofX like fb; cgwill be output, and in closed FIM, fb; cg
will be output if and only if it occurs in a different set of
transactions thanX. After item distribution, if a processor has
a set of frequent itemsX, it also has all transactions belonging
to all subsets of X. Thus, both maximal and closed item set
mining can be parallelized with our method.

3 TWO DATA-PARALLEL ALGORITHMS

In this section, we present NoClique and NoClique2, which are
coarse-grain data-parallel algorithms based on the theore-
tical observations of Section 2. Our algorithms compute the
set of frequent item sets and their frequencies for a given
global transaction database T and a support threshold � on n
processors. The implementation of NoClique2 is built upon
our new vertical serial FIM algorithm Bitdrill.

3.1 NoClique: The Black Box Parallelization

NoClique is a direct application of Theorem 1 and Corollary 2.
First, we compute GF2

. Then, we recursively apply the two-
way database distribution of Definition 4 until we have n
parts, using fast recursive distribution (Corollary 2). For
instance, assume n ¼ 4. Consider the two-level partitioning
that results in the GF2

graphs of T1 and T2 in Fig. 2. We have
parts A, B, and separator S at the top level; we take two
vertex-induced subgraphs ofGF2

overA [S andB [S. If we
apply GPVS recursively on GF2

ðT1Þ and GF2
ðT2Þ, we can

obtain four overlapping item sets that define an item
distribution such as DðIÞ ¼ ffb; c; f; gg; fb; e; gg; fa; d; e; gg;
fd; e; hgg. Now, each item set in DðIÞ can be assigned to a
processor. The database is redistributed to processors
according to this assignment. Afterwards, we can run any
given sequential FIM algorithm on each processor simulta-
neously and independently, with no further communication.
The main advantage of this parallelization is that any serial
FIM algorithm that starts from level 3 can be used. The
disadvantage is that, since some subgraphs of GF2

ðT Þ are
replicated, there is some redundant work. Therefore, this
algorithm is suitable only for sparse problem instances that
do not require much replication. The recursive application of
the two-way item distribution can be carried out in parallel,
and of course it is much better if a parallel GPVS algorithm

1636 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. 10, OCTOBER 2011

can be used. We have obtained extremely high superlinear
speedups in the parallelization of FP-Growth and AIM2
which prompted us to continue research in this direction. We
applied NoClique to parallelize kDCI [11], [18], [19], LCM [20]
(all FIM), DCI-Closed [11], AIM [21] (version 2), and FP-
Growth-Tiny [22].

3.2 Bitdrill: Our Sequential Mining Algorithm

Bitdrill is a new efficient sequential FIM code that we
developed as a basis for our NoClique2 algorithm. It uses
tries (prefix trees) to store sets of item sets, where each item
set is a string of items in decreasing order of frequency. It uses
tidlists (a tidlist is a list of transaction ids an item occurs in) to
store the database in memory; linked lists of items are used
for sparse items and bit vectors are used for dense items. The
algorithm proceeds in BFS order and affords fast candidate
generation in a fashion similar to kDCI (which is one of the
most efficient FIM algorithms together with LCM). We use a
regular tree data structure instead of prefix arrays as in kDCI.
Fast candidate generation relies on the fact that the prefix tree
already captures much of the proximity between two item
sets needed for generating a candidate. Let A and B be two
frequent item sets of length k that share a prefix of length
k� 1. Both will be the children of the same internal node in
the prefix tree. Thus, one can simply take their union and
generate a ðkþ 1Þ-length candidate item set. When we
consider the Downward Closure lemma, we will see that
all candidates can be generated in this fashion since any
subset of a candidate must be frequent and will have frequent
subsets with all possible ðk� 1Þ-length prefixes. Thus, we can
simply traverse the prefix tree and generate all candidates by
taking 2-combinations of the children of each internal tree
node that corresponds to a ðk� 1Þ-length prefix. After the
candidate is generated, it is subject to further pruning
employing the Downward Closure lemma. Since we use a
vertical representation, the frequency of candidates can be
calculated on the fly. To speed up the tidlist intersections, we
use a cache to hold all the tidlist intersections in the path to
the root, so that a single additional intersection is sufficient to
count the transactions in a candidate item set. The overall
algorithm is quite efficient; its performance is comparable to
kDCI for dense databases and is faster than kDCI for sparse
databases (due to the dynamic tidlist representation).

3.3 NoClique2 Algorithm

3.3.1 Assumptions

We assume that the number of items is much greater than n
(the number of processors). We assume that the database
has already been mined up to level l and a GPVS of GFl has
been computed. In the following, we use k as a variable
level and we start mining from level lþ 1. Our algorithm
will work better when GFl can be partitioned well. In many
cases, there is a suitable l.

3.3.2 Overview

Using our n-way GPVS-based item distribution/replication
scheme, we decompose the mining problem into a collective
work phase (with communication), and independent work
phase (with no communication) following the observations
in Corollary 1. The algorithm takes as input at each
processor a local transaction database Tlocal, and an absolute

support threshold �. We assume that T has been partitioned
transactionwise into Tlocals prior to the execution of the
mining algorithm. We also supply the set of frequent item
sets up to and including level l, the graph GFl correspond-
ing to level l, and a heuristic GPVS solution �V SðGFlÞ. The
algorithm is comprised of four phases:

1. Redistribute items with selective replication.
2. Mine replicated items in parallel.
3. Mine nonreplicated items independently.
4. Merge frequent item sets across replicated and

nonreplicated sets of items.

The phases of our algorithm are explained in the
following.

3.3.3 Redistribution of Items

Items are distributed according to an n-way GPVS of GFl .
The items in the separator Vs are replicated on each
processor. Every other part Vi in the partition contains
items collected on a distinct processor. Using the notation of
NoClique: DðIÞ ¼ fVi [VsjVi 2 �V SðGFlÞg.

The horizontal input databases are scanned and using
all-to-all personalized communication, each processor re-
ceives the parts of transactions that it requires according to
the item distribution. After that, each processor constructs
tidlists of those items.

3.3.4 Mining Replicated Items in Parallel

Since each processor has the tidlists of all the items in Vs, we
can parallelize candidate generation and testing steps fairly
well, starting from level lþ 1. Assume that for a previous
level k, we have the frequent item sets inserted in decreasing
frequency order into a prefix tree. On the prefix tree, we can
efficiently generate candidates for level kþ 1 using fast
candidate generation of Bitdrill. While traversing an internal
node for a k� 1 length prefix during fast candidate
generation (Section 3.2), for a children (all of which are
leaves) at most a2 candidates can be generated. Those
internal nodes are each given the just mentioned upper
bound of a2 as weight and we partition the prefix tree into n
subtrees of alphanumerically consecutive item sets, where
each subtree has a roughly equal sum of weights. Each
processor generates a distinct set of candidates with fast
candidate generation on the assigned subtree, and then
intersects tidlists to check their frequencies, simultaneously.
At the end of the iteration, the (locally output) frequent item
sets of length kþ 1 are gathered on all processors. The
iteration continues until frequent item sets are exhausted.
Since both candidate generation and testing steps are
parallel, and the subtree-based distribution of candidates
makes local tidlist caches useful, this phase works fairly fast.

3.3.5 Independent Mining

On each processor i, there is a distinct set of tidlists
corresponding to items in Vi not present on any other
processor. The frequent item sets within Vi are mined using
a levelwise vertical mining algorithm (Bitdrill) starting from
level lþ 1.

3.3.6 Merging Frequent Item Sets

As the last step, we mine frequent item sets that have items
in both the replicated Vs and the nonreplicated items Vi (for

ÖZKURAL ET AL.: PARALLEL FREQUENT ITEM SET MINING WITH SELECTIVE ITEM REPLICATION 1637

a processor i). We use the output of two preceding phases to
achieve this. We start with level lþ 1 again. For merging
frequent item sets in a level kþ 1, assume that we have the
frequent item sets in level k. We use both the frequent items
in level k and the already mined frequent item sets in Vs and
Vi to prune as many frequent item sets as possible. We
apply the well-known Downward Closure pruning.
Furthermore, any generated candidate must be combined
from already-mined two sets of frequent items that we are
merging. We have adapted fast candidate generation to
work with our item set merging logic. We have achieved
this in two complementary steps explained below.

First step. For any candidate item set that has at least 2
items in either part (Vs or Vi), we can use ordinary fast
candidate generation over the frequent item sets in levelk that
have items in both Vs and Vi sets. After that, we check for a
candidate C if C \ Vs is frequent in the replicated database,
which is the output of phase 2, and C \ Vi is frequent in
independent database, which is the output of phase 3.

Second step. Consider a ðkþ 1Þ-length candidate C with
one item x in one part and k items in the other part. Not all
of its k-length supports have at least one item in either part,
therefore, C cannot always be generated from the frequent
item sets between parts in level k with fast candidate
generation. We make use of the observation that if C is
frequent, Vs will have k k-length subsets that include x.
While traversing the ðk� 1Þ length prefixes in the prefix
tree, for each item x, we construct a set of conditional
ðk� 1Þ-length patterns that have items in only one part by
removing x. Then, for each item x, we generate k-length
candidates from the corresponding set of conditional
patterns using fast candidate generation. These k-length
candidates have items in only one part and are checked if
they are already frequent in that part. If so, then we add x
back to generate C and apply the Downward Closure
pruning restricted to k-length subsets across both parts.

After fast candidate generation, we use the ordinary
caching and intersection routines of Bitdrill to calculate
frequencies. Iteration continues until exhaustion of merged
patterns. Note that this step can be used for any distribution
of items, not just for our GPVS-based distribution.

3.4 Repl-Bitdrill Algorithm

The phase of mining replicated items in parallel can be
considered as a stand-alone parallel FIM algorithm, which
is similar to the second phase of ParDCI [10]. When used on
its own, we call it Repl-Bitdrill as it replicates the tidlists of
all frequent item sets on all processors, at the level that it
starts mining. Note that NoClique2 degenerates to Repl-
Bitdrill when partitioning is impossible, i.e., all items are
replicated. Repl-Bitdrill is used in Section 4 to experimen-
tally show the merits of partitioning in NoClique2.

3.5 Comparison with Par-Eclat

To put things in perspective, it may help to note the ancestry
of our algorithm. Our algorithm is close to Par-Eclat [5]. The
most important similarities between two algorithms are:
1) We use the same graph of two items when l ¼ 2. 2) We
also use graph theoretic observations to cluster items. 3) We
also distribute items so that each processor mines indepen-
dently with no further communication. On the other hand,
we highlight the following differences:

1. We propose a novel item set clustering method
based on GPVS.

2. Our item distribution method can minimize data
replication by setting vertex weights appropriately.

3. Our algorithm is fairly independent of the under-
lying serial mining algorithm (but needs further
work to implement phases 2 and 4 of NoClique2).

4. Work over replicated items is parallelized.

3.6 Implementation

Our implementations of Bitdrill, Repl-Bitdrill, NoClique, and
NoClique2 are written in C++ using MPI. The computation
of GPVS in NoClique2 is relevant to the experiments. We use
the hypergraph partitioning-based formulation for comput-
ing a GPVS of GFl [23], [24]. To that end, we use the
hypergraph partitioner PaToH [25], [26].

3.7 Applicability to Dense Data

We have indicated that our algorithm is not supposed to work
well with problem instances that give rise to a dense graph. In
dense databases, this is not necessarily the case, and we have
observed that our method works even with such databases.
When the graph is quite dense, a large number of items are
replicated, and our algorithm degenerates into an algorithm
like the second phase of kDCI that replicates all items. Often,
choosing a more suitable support threshold or a starting level
for our algorithm helps.

4 EXPERIMENTS

Here, we give a summary of our experiments; more detailed
experimental results are given in Appendix C, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPDS.2011.32. We
have run our algorithms NoClique2 and Repl-Bitdrill as well
as ParDCI on one synthetic (T60.I10.2000K) and three real-
world databases on a Beowulf cluster. In Table 1, NoClique2,
Repl-Bitdrill, and ParDCI are abbreviated as NC2, RBD, and
PDCI, respectively. As seen in Table 1, out of 16 parallel
mining cases, NoClique2 achieves considerably higher
speedup in eight cases, whereas NoClique2 and Repl-Bitdrill
attain close speedups in eight cases. ParDCI achieves the
highest speedup in two cases. For the trec database, ParDCI
unfortunately crashed, and we could not measure its
running time. We would expect it to have good perfor-
mance as in user-likesmovies which is similarly dense. For
the sparser database T60.I10.2000K, NoClique2 achieves

1638 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. 10, OCTOBER 2011

TABLE 1
Speedup Values

better speedups than the other algorithms. Only NoClique2
attains increasing speedup with increasing number of
processors for all the databases. Repl-Bitdrill and ParDCI
show this nice property only for two databases each.

Appendix C, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPDS.2011.32, contains a detailed explanation of
the databases, experimental setup, speedup, partitioning
quality, running time dissection, speedups of NoClique
parallelizations, and discussion of observed superlinear
speedups in NoClique. With regards to partitioning quality,
we have examined expected versus actual load imbalance
and data replication ratio. We have seen that our heuristic
load estimates work but could be much improved. Data
replication is controlled well enough but it is better for small
number of processors. It turns out that in the sparse database,
independent mining phase dominates and in the dense
databases (user-likesmovies and trec) the collective work
phase dominates. For these databases, the replication
approach of Repl-Bitdrill and ParDCI is effective. However,
in an important other case (trec.lp.200000) which represents
the “long tail” in a real-world data set, there is a mixture of
both phases, and ultimately NoClique does much better than
Repl-Bitdrill and ParDCI, showing the true potential of our
approach. The trec.lp.200000 database contains items in the
trec with a frequency of 200,000 and lower. In the trec
database, it is not possible to mine frequent item sets beyond
a narrow set of items due to the power-law-like distribution
of items, however in such real-world databases we are
interested in relationships among a large number of items.

5 CONCLUSIONS

We have proposed an item distribution method that
depends on theoretical observations that identify lack of
cliques among two sets of items in GF2

. The mining problem
is decomposed into independent subproblems using a
GPVS model which encapsulates the minimization of task
or data redundancy as well as computational load or
storage balance. We showed that this model can be
extended to n-way distribution and any level of mining.
Based on our distribution model, we designed and
implemented two parallel FIM algorithms called NoClique
and NoClique2. Experiments with synthetic and real-world
databases on a Beowulf cluster showed considerable
speedups, thus affirming the validity of our model.

A discussion of future work is present in Appendix D,
which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TPDS. 2011.32.

ACKNOWLEDGMENTS

This work is partially supported by The Scientific and
Technological Research Council of Turkey under grant
EEEAG-109E019 and COST Action IC080 ComplexHPC.
Part of the experimental tests were carried out at the
TUBITAK ULAKBIM High Performance Computing Cen-
ter. The authors thank Claudio Luchesse for making ParDCI
available to them. The authors thank Bart Goethals for
providing the benchmark results of FIMI 2004 experiments.
Thanks to anonymous reviewers for recommending many
improvements.

REFERENCES

[1] R. Agrawal and R. Srikant, “Fast Algorithms for Mining
Association Rules in Large Databases,” Proc. 20th Int’l Conf. Very
Large Data Bases (VLDB ’94), pp. 487-499, 1994.

[2] M.J. Zaki, “Generating Non-Redundant Association Rules,” Proc.
Knowledge Discovery and Data Mining Conf., pp. 34-43, 2000.

[3] D.-I. Lin and Z.M. Kedem, “Pincer Search: A New Algorithm for
Discovering the Maximum Frequent Set,” Proc. Sixth Int’l Conf.
Extending Database Technology, pp. 105-119, 1998.

[4] R. Agrawal and J.C. Shafer, “Parallel Mining of Association
Rules,” IEEE Trans. Knowledge and Data Eng., vol. 8, no. 6, pp. 962-
969, Dec. 1996.

[5] M.J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, “Parallel
Algorithms for Discovery of Association Rules,” Data Mining and
Knowledge Discovery, vol. 1, no. 4, pp. 343-373, 1997.

[6] D.W. Cheung, V.T. Ng, A.W. Fu, and Y.J. Fu, “Efficient Mining of
Association Rules in Distributed Databases,” IEEE Trans. Knowl-
edge And Data Eng., vol. 8, no. 6, pp. 911-922, Dec. 1996.

[7] O. Zaı̈ane, M. El-Hajj, and P. Lu, “Fast Parallel Association Rule
Mining without Candidacy Generation,” Proc. IEEE Int’l Conf.
Data Mining (ICDM ’01), Nov.-Dec. 2001.

[8] A. Rudra, R.P. Gopalan, and Y.G. Sucahyo, “Scalable Parallel
Mining for Frequent Patterns from Dense Data Sets Using a
Cluster of PCs,” Proc. Sixth Int’l Conf. Information Technology, Dec.
2003.

[9] E.-H. Han, G. Karypis, and V. Kumar, “Scalable Parallel Data
Mining for Association Rules,” IEEE Trans. Knowledge and Data
Eng., vol. 12, no. 3, pp. 337-352, May 2000.

[10] S. Orlando, P. Palmerini, R. Perego, and F. Silvestri, “An Efficient
Parallel and Distributed Algorithm for Counting Frequent Sets,”
Proc. Fifth Int’l Conf. High Performance Computing for Computational
Science (VECPAR ’02), 2003.

[11] C. Lucchese, S. Orlando, and R. Perego, “Fast and Memory
Efficient Mining of Frequent Closed Itemsets,” IEEE Trans.
Knowledge and Data Eng., vol. 18, no. 1, pp. 21-36, Jan. 2006.

[12] H. Li, Y. Wang, D. Zhang, M. Zhang, and E.Y. Chang, “Pfp:
Parallel fp-Growth for Query Recommendation,” Proc. ACM Conf.
Recommender Systems (RecSys), P. Pu, D.G. Bridge, B. Mobasher,
and F. Ricci, eds., pp. 107-114, 2008.

[13] A. Savasere, E. Omiecinski, and S.B. Navathe, “An Efficient
Algorithm for Mining Association Rules in Large Databases,”
Proc. 21st Int’l Conf. Very Large Data Bases (VLDB ’95), pp. 432-444,
Sept. 1995.

[14] J.W.H. Liu, “A Graph Partitioning Algorithm by Node Separa-
tors,” ACM Trans. Math. Software, vol. 15, no. 3, pp. 198-219, Sept.
1989.

[15] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-
Spaccamela, and M. Protasi, Complexity and Approximation:
Combinatorial Optimization Problems and Their Approximability
Properties. Springer, Jan. 1999.

[16] A. Grama, V. Kumar, A. Gupta, and G. Karypis, An Introduction to
Parallel Computing: Design and Analysis of Algorithms, second ed.,
Addison-Wesley, 2003.

[17] R.J. Bayardo Jr., “Efficiently Mining Long Patterns from Data-
bases,” ACM SIGMOD Record, vol. 27, no. 2, pp. 85-93, 1998.

[18] S. Orlando, C. Lucchese, P. Palmerini, R. Perego, and F. Silvestri,
“kDCI: A Multi-Strategy Algorithm for Mining Frequent Sets,”
Proc. Second IEEE Int’l Conf. Data Mining (ICDM) Workshop
Frequent Itemset Mining Implementations (FIMI ’04), 2004.

[19] S. Orlando, P. Palmerini, R. Perego, and F. Silvestri, “Adaptive
and Resource-Aware Mining of Frequent Sets,” Proc. IEEE Int’l
Conf. Data Mining (ICDM ’02), pp. 338-345, Dec. 2002.

[20] T. Uno, M. Kiyomi, and H. Arimura, “LCM ver. 2: Efficient
Mining Algorithms for Frequent/Closed/Maximal Itemsets,”
Proc. Second IEEE Int’l Conf. Data Mining (ICDM) Workshop
Frequent Itemset Mining Implementations (FIMI ’04), 2004.

[21] A. Fiat and S. Shporer, “AIM2: Another Itemset Miner,” Proc.
Second IEEE Int’l Conf. Data Mining (ICDM) Workshop Frequent
Itemset Mining Implementations (FIMI ’04), 2004.

[22] E. Özkural and C. Aykanat, “A Space Optimization for FP-
Growth,” Proc. Second IEEE Int’l Conf. Data Mining (ICDM)
Workshop Frequent Itemset Mining Implementations (FIMI ’04), 2004.

[23] Ü.V. Çatalyürek and C. Aykanat, “Hypergraph-Partitioning-
Based Sparse Matrix Ordering,” Proc. Second Int’l Workshop
Combinatorial Scientific Computing (CSC ’05), June 2005.

ÖZKURAL ET AL.: PARALLEL FREQUENT ITEM SET MINING WITH SELECTIVE ITEM REPLICATION 1639

[24] U. Catalyurek, C. Aykanat, and E. Kayaaslan, “Hypergraph
Partitioning-Based Fill-Reducing Ordering,” Technical Report
BU-CE-0904, Bilkent Univ. Inst. of Science and Eng., 2009.

[25] Ü.V. Çatalyürek and C. Aykanat, “PaToH: A Multilevel Hyper-
graph Partitioning Tool, Version 3.0,” technical report, Bilkent
Univ., Computer Eng. Dept., 1999.

[26] Ü.V. Çatalyürek and C. Aykanat, “Hypergraph-Partitioning-
Based Decomposition for Parallel Sparse-Matrix Vector Multi-
plication,” IEEE Trans. Parallel and Distributed Systems, vol. 10,
no. 7, pp. 673-693, July 1999.

Eray Özkural received the BSc and MSc
degrees from the Computer Engineering Depart-
ment of Bilkent University, Ankara, Turkey. He is
currently working toward the PhD degree from
Bilkent University. His research interests include
parallel computing, data mining, information
retrieval, algorithms, machine learning, algorith-
mic information theory, artificial general intelli-
gence, and philosophy of mind. He has worked
as a parallel computing researcher at the

European Union SEE-GRID project and Erendiz Süperbilgisayar Ltd.
Among his recent innovations is a memory system for artificial general
intelligence.

Bora Uçar received the PhD degree in computer
engineering from Bilkent University, Ankara,
Turkey, in 2005. He worked as a postdoctoral
researcher at the Mathematics and Computer
Science Department of Emory University, Atlan-
ta, and at the Parallel Algorithms Project,
CERFACS, France. Since January 2009, he is
conducting research activities at ENS Lyon,
France, as a research scientist of CNRS. His
research interests include combinatorial scien-

tific computing, parallel and high-performance computing, and sparse
matrix computations.

Cevdet Aykanat received the BS and MS
degrees in electrical engineering from Middle
East Technical University, Ankara, Turkey, and
the PhD degree in electrical and computer
engineering from Ohio State University, Colum-
bus. He was a Fulbright scholar during his PhD
studies. He worked at the Intel Supercomputer
Systems Division, Beaverton, Oregon, as a
research associate. Since 1989, he has been
affiliated with the Department of Computer

Engineering, Bilkent University, Ankara, Turkey, where he is currently a
professor and the associate provost. His research interests mainly
include parallel computing, parallel scientific computing and its combi-
natorial aspects, parallel computer graphics applications, parallel data
mining, graph and hypergraph-theoretic models for load balancing, high-
performance information retrieval systems, parallel and distributed
databases, and grid computing. He has (co)authored about 60 technical
papers published in academic journals indexed in ISI and his publications
received above 400 citations in ISI indexes. He is the recipient of the 1995
Young Investigator award of The Scientific and Technological Research
Council of Turkey and 2007 Parlar Science award. He was appointed as a
member of IFIP Working Group 10.3 (Concurrent System Technology) in
April 2004, as a member of the EU-INTAS Council of Scientists in June
2005, and as an associate editor of the IEEE Transactions of Parallel and
Distributed Systems in December 2008.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1640 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. 10, OCTOBER 2011

