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Query-Log Aware Replicated Declustering
Ata Turk, K. Yasin Oktay and Cevdet Aykanat

Abstract—Data declustering and replication can be used to reduce I/O times related with processing of data intensive queries.
Declustering parallelizes the query retrieval process by distributing the data items requested by queries among several disks.
Replication enables alternative disk choices for individual disk items and thus provides better query parallelism options. In general,
existing replicated declustering schemes do not consider query log information and try to optimize all possible queries for a specific
query type, such as range or spatial queries. In such schemes, it is assumed that two or more copies of all data items are to be
generated and scheduling of these copies to disks are discussed. However, in some applications, generation of even two copies of all
of the data items is not feasible, since data items tend to have very large sizes. In this work we assume that there is a given limit on
disk capacities and thus on replication amounts. We utilize existing query-log information to propose a selective replicated declustering
scheme, in which we select the data items to be replicated and decide on their scheduling onto disks while respecting disk capacities.
We propose and implement an iterative improvement algorithm to obtain a two-way replicated declustering and use this algorithm in a
recursive framework to generate a multi-way replicated declustering. Then we improve the obtained multi-way replicated declustering by
efficient refinement heuristics. Experiments conducted on realistic datasets show that the proposed scheme yields better performance
results compared to existing replicated declustering schemes.

Index Terms—Declustering, replication, parallel disk architectures, iterative improvement heuristics.

✦

1 INTRODUCTION
In this section we present related work about decluster-
ing and replication and briefly list our contributions.

1.1 Related work
Data declustering is a data scattering technique used
in parallel-disk architectures to improve query response
time performances of I/O intensive applications. The
aim in declustering is to optimize the processing time
of each query requested from a parallel-disk architecture.
This is achieved by reducing the number of disk accesses
performed by a single disk of the architecture while
answering a single query. Declustering has been shown
to be an NP-complete problem in some contexts [1], [2].

Declustering is widely investigated in applications
where large spatial data are queried. In such appli-
cations, queries are in the form of ranges requesting
neighboring data points, and hence, related declustering
schemes try to scatter neighboring data items into sep-
arate disks instead of exploiting query log information.
For a good survey of declustering schemes optimized for
range queries see [3] and the citations within.

There are some applications that also query very large
data items in a random fashion and in such applications
utilization of query log information is of essence for
efficient declustering [1], [2], [4]. In [1], the declustering
problem with a given query distribution is modeled as
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a max-cut partitioning of a weighted similarity graph,
where data items are represented by vertices and an edge
between two vertices implies that corresponding data
items appear in at least one common query. In [2] and [4],
the deficiencies of the weighted similarity graph model
are addressed and hypergraph models which encode the
total I/O cost correctly are proposed.

Data replication is a widely applied technique in
various application areas such as distributed data man-
agement [5] and information retrieval [6], [7] to achieve
fault tolerance and fault recovery. Data replication can
also be exploited to achieve higher I/O parallelism in
a declustering system [8]. However, while performing
replication, one has to be careful about consistency con-
siderations, which arise in update and delete operations.
Furthermore, write operations tend to slow down when
there is replication. Finally, replication means extra stor-
age requirement and there are applications with very
large data sizes where even two-copy replication is not
feasible. Thus, if possible, unnecessary replication has to
be avoided and techniques that enable replication under
given size constraints must be studied.

When there is data replication, the problem of query
scheduling has to be addressed as well. That is, when a
query arrives, we have to decide which replicas will be
used to answer the query. A maximum-flow formulation
is proposed in [9] to solve this scheduling problem
optimally. There are replicated declustering schemes that
aim to minimize this scheduling overhead [10], [11],
while minimizing I/O costs. A variation of this prob-
lem arises when replicas are assumed to be distributed
over different sites, where each site hosts a parallel-disk
architecture [12]. This variation can be modeled as a
maximum flow problem as well.
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Most of the existing replicated declustering schemes
proposed for range queries are discussed in [13], [14].
There are some replicated declustering schemes pro-
posed for arbitrary queries as well ([15]–[16]). All of
these schemes ([13]–[16]) assume items with equal sizes
and they also assume that all data items will be re-
quested equally likely and thus generate equal number
of replicas for all data items. Furthermore, they replicate
all data items two or more times.

In [15], Random Duplicate Assignment (RDA) scheme
is proposed. RDA stores a data item on two disks chosen
randomly from the set of disks and it is shown that the
retrieval cost of random allocation is at most one more
than the optimal cost with high probability (when there
are at least two-copies of all data items). In [12], [17],
Orthogonal Assignment (OA) is proposed. OA is a two-
copy replication scheme for arbitrary queries and if the
two disks that a data item is replicated at are considered
as a pair, each pair appears only once in the disk alloca-
tion of OA. In [16], Design Theoretic Assignment (DTA)
is proposed. DTA uses the blocks of a (K, c, 1) design for
c-copy replicated declustering using K disks. A block
and its rotations can be used to determine the disks on
which the data items are stored. Even though both OA
and DTA can be modified to achieve selective replication,
they do not utilize query log information. However, with
the increasing usage in GIS and spatial database systems,
such information is becoming highly available, and it is
desirable for a replication scheme to be able to utilize this
information. A simple motivating example for utilizing
query-logs can be found in Section 1 of the Appendix.

1.2 Contributions
In this work we present a selective and query-log aware
replication scheme which works in conjunction with
declustering. The proposed scheme utilizes the query log
information to minimize the aggregate parallel query re-
sponse time while obeying given replication constraints
due to disk sizes. There are no restrictions on the repli-
cation counts of individual data items. That is, some
data items may be replicated more than once while some
other data items may not even be replicated at all.

We first propose an iterative-improvement-based
replicated two-way declustering algorithm. In this algo-
rithm, in addition to the replication operation that we
proposed in [18], we successfully incorporate unrepli-
cation operation to the replicated two-way declustering
algorithm to prevent unnecessary replications. We also
provide simple closed-form expressions for computing
the cost of a query in a two-way replicated declustering.
Utilizing these expressions, we avoid usage of expensive
network-flow based algorithms for the construction of
optimal query schedules. By recursively applying our
two-way replicated declustering algorithm we obtain a
K-way replicated declustering. Our unreplication algo-
rithm prevents unnecessary replications to advance to
the next levels in the recursive framework.

TABLE 1: The notations used in the paper

Symbol Description
D Dataset
Q Query set
K Total number of disks
Dk Set of data items assigned to disk k

Cmax Maximum storage capacity of a disk
di A data item in the dataset

s(di) Storage requirement for data item di

q A query in the query set
|q| Number of data items requested by q

f(q) Frequency of q in Q
r(q) Response time for q
tk(q) Response time of disk k for q

Sopt(q) Optimal scheduling for q
ropt(q) Optimal response time for q

RK A K-way replicated declustering
Tr(RK , Q) Parallel response time of RK for Q
Tropt(Q) Optimal parallel response time for Q

TrO(RK , Q) Parallel response time overhead of RK for Q
gm(d) In a two-way replicated declustering phase,

reduction to be observed in the overall query
processing cost, if d is moved to the other disk.

gr(d) In a two-way replicated declustering phase,
reduction to be observed in the overall query
processing cost, if d is replicated in both disks.

guX
(d) In a two-way replicated declustering phase,

reduction to be observed in the overall query
processing cost, if a replica of d is deleted
from disk DX .

vg(d) Number of queries requesting d such that the
disk(s) that d resides in serve(s) more than
optimal number of data items for these queries.

gm(d, k) In a K-way replicated declustering phase,
reduction to be observed in the overall query
processing cost, if d is moved to disk k.

gr(d, k) In a K-way replicated declustering phase,
reduction to be observed in the overall query
processing cost, if d is replicated in disk k.

We then propose an efficient multi-way replicated
refinement heuristic that considerably improves the ob-
tained K-way replicated declustering via multi-way
move and multi-way replication operations. In this it-
erative algorithm, we adapt a novel idea about multi-
way move operations and obtain an efficient greedy
multi-way move/replication scheme. We also present an
efficient scheme to avoid the necessity of computing
the optimal schedules of all queries at each iteration
of our multi-way refinement algorithm. The proposed
scheme enables us to compute the optimal schedules of
all queries just once, at the beginning of the multi-way
refinement, and then update the schedules incrementally
according to the performed operations.

The rest of the paper is organized as follows. Section 2
presents the notation and the definition of the problem.
The proposed scheme is presented in Section 3. In Sec-
tion 4, we experiment and compare our proposed ap-
proaches with two state-of-the-art replications schemes.
We conclude in Section 5.

2 NOTATION AND DEFINITIONS
We are given a dataset D with |D| indivisible data items
and a query set Q with |Q| queries, where a query q∈Q
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requests a subset of data items, i.e., q⊆D. Each data item
d∈D can represent a spatial object, a multi-dimensional
vector or a cluster of data records depending on the
application. s(d) indicates the storage requirement for d
and s(D′)=

∑
d∈D′ s(d) indicates the storage requirement

for data subset D′. Query information can be extracted
by either application usage prediction or mining existing
query logs, with the assumption that future queries
will be similar to older ones. In a few applications,
it is more appropriate to apply declustering such that
items that have common features are stored on separate
disks [19], [20], [21]. However, even in such applications,
each query can be considered as a set of features and the
discussions in the following sections still hold.

In a given query set Q, two data items are said to
be neighbor if they are requested together by at least
one query. Each query q is associated with a relative
frequency f(q) which indicates the probability that q will
be requested. Query frequencies can be extracted from
the query log. We assume that all disks are homogeneous
and the retrieval time of all data items on all disks are
equal and can be accepted as one for practical purposes.

Definition K-Way Replicated Declustering: Given a set
D of data items, K homogeneous disks with storage
capacity Cmax, and a maximum allowable replication
ratio r, RK = {D1,D2, . . . ,DK} is said to be a K-way
replicated declustering of D, where Dk ⊆ D for 1≤k≤ K,
∪K

k=1Dk = D, and RK satisfies the following feasibility
conditions for 1 ≤ k ≤ K, when each decluster Dk is
assigned to a separate disk:
• Disk capacity constraint: s(Dk) ≤ Cmax

• Replication constraint:
∑

1≤k≤Ks(Dk)≤ (1+r)×s(D).

The optimal schedule for a query q minimizes the
maximum number of data items requested from a disk
for q. Given a replicated declustering RK and a query q,
an optimal schedule Sopt(q) for q can be calculated by
a network-flow based algorithm [9] in O(|q|2×K) time,
if we assume homogeneous data item retrieval times.
Sopt(q) indicates which replicas of the data items will be
accessed during processing q.

Definition Given a replicated declustering RK , a query
q and an optimal schedule Sopt(q) for q, response time
r(q) for q is:

r(q) = max
1≤k≤K

{tk(q)}, (1)

where tk(q) denotes the total retrieval time of data items
from disk Dk that are requested by q. Under homoge-
neous data item retrieval times assumption, tk(q) can
also be considered as the number of data items retrieved
from Dk for q.

Definition The total parallel response time of a repli-
cated declustering RK for a query set Q is:

Tr(RK , Q)=
∑
q∈Q

f(q)r(q). (2)

Definition A replicated declustering RK is said to be
strictly optimal for a query set Q iff it is optimal for every
query q ∈ Q, i.e., r(q) = ropt(q),∀ q ∈ Q, where

ropt(q) = �|q|/K�. (3)

Total parallel response time of a strictly optimal repli-
cated declustering is called Tropt(Q) and is:

Tropt(Q) =
∑
q∈Q

f(q)ropt(q). (4)

Definition The total parallel response time overhead of
a replicated declustering RK for a query set Q is:

TrO(RK , Q)=Tr(RK , Q) − Tropt(Q). (5)

Definition K-Way Replicated Declustering Problem:
Given a set D of data items, a set Q of queries, K
homogeneous disks each with a storage capacity of
Cmax, and a maximum allowable replication ratio r, find
a K-way replicated declustering RK of D that mini-
mizes the total parallel response time Tr(RK , Q). Note
that minimizing Tr(RK , Q) is equivalent to minimizing
TrO(RK , Q), since Tropt(Q) is a constant.

3 PROPOSED APPROACH
We propose a two-phase approach for solving the K-
way replicated declustering problem. In the first phase,
we use a recursive replicated declustering heuristic to
obtain a K-way replicated declustering. We should note
that, by allowing imbalanced two-way declusters in
this phase, we are able to obtain K-way declusterings
for arbitrary K values. In the second phase, we use a
refinement heuristic to improve the K-way replicated
declustering obtained in the first phase. In the following
two subsections we provide the details of operations
performed in these phases. The reader is referred to
Section 4 of the Appendix for a detailed complexity
analysis of the recursive replicated declustering and
multi-way replicated refinement phases.

3.1 Recursive replicated declustering phase
The objective in the recursive replicated declustering
phase is to evenly distribute the data items of queries
at each two-way replicated declustering step of the
recursive framework. That is, at each two-way step, we
try to attain optimal response time ropt(q) = �|q|/2�
for each query q as much as possible. This objective is
somewhat restrictive and it will not completely model
the minimization of the objective function for the K-way
replicated declustering problem. But it is expected to
produce a “good” initial K-way replicated declustering
for the multi-way refinement phase. The even query dis-
tribution obtained after the recursive replicated declus-
tering phase is assumed to avoid a bad locally optimal
declustering by providing flexibility in the search space
of the multi-way refinement scheme.
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3.1.1 Two-way replicated declustering
The core of our recursive replicated declustering algo-
rithm is a two-way replicated declustering algorithm. In
this algorithm, we start with a given (and possibly ran-
domly generated) initial feasible two-way declustering
of the dataset D, say R2 = {DA,DB}, and iteratively
improve R2 by three refinement operations defined over
the data items: Namely move, replication and unreplication
operations. In order to perform these three operations we
consider four different gain values for each data item d:
• move gain (gm(d)): the reduction to be observed in

the overall query processing cost, if d is moved to the
other disk,

• replication gain (gr(d)): the reduction to be observed
in the overall query processing cost, if d is replicated
to the other disk,

• unreplication-from-A gain (guA
(d)): the reduction to

be observed in the overall query processing cost, if a
replica of d is deleted from DA,

• unreplication-from-B gain (guB
(d)): the reduction to

be observed in the overall query processing cost, if a
replica of d is deleted from DB .

Unreplication gains are only meaningful for data items
that are replicated. Similarly, in a two-way declustering,
move and replication gains are only meaningful for data
items that are not replicated. Thus, for any data item,
only two gain values need to be maintained.

A two-way replicated declustering R2 = {DA,DB} can
be considered as partitioning the dataset D into three
mutually disjoint parts: A, B, and AB, where part A is
composed of the data items that are only stored in disk
DA, part B is composed of the data items that are only
stored in disk DB , and part AB is composed of the data
items that are replicated. In this view,

DA = A ∪ AB and DB = B ∪ AB. (6)

A variable State(d) is kept to store the part information
of each data item d.

For each query q, we maintain a 3-tuple

dist(q) = (|qA| : |qB | : |qAB |), (7)

where |qA|, |qB |, and |qAB | indicate the number of data
items of q in parts A, B, and AB, respectively. That is,

qA = q ∩ A , qB = q ∩ B and qAB = q ∩ AB. (8)

The total number of data items requested by query q is
equal to: |q| = |qA| + |qB | + |qAB |.

Using the above notation, the retrieval times of a given
query q from disks DA and DB can be written as follows,
without loss of generality assuming that |qA| ≥ |qB |:

tA(q) =

{
�|q|/2� if |qAB | ≥ (|qA| − |qB |) − 1
|qA| otherwise

tB(q) =

{
�|q|/2� if |qAB | ≥ (|qA| − |qB |) − 1
|qB | + |qAB | otherwise (9)

Here the “|qAB | ≥ (|qA| − |qB |) − 1” condition corre-
sponds to the case in which there are enough number
of replicated data items requested by q that can be
utilized to achieve even distribution of q among DA

and DB . The “otherwise” condition corresponds to the
case for which even distribution of q among the disks
is not possible. In the former case, the replicated data
items requested by q will be retrieved from DA and DB

in an appropriate manner to attain even distribution,
whereas in the latter case, all of the replicated data items
requested by q will be retrieved from DB to minimize
the cost of query q. Hence, for a two-way replicated
declustering R2={DA,DB}, the cost r(q) of q can be
computed with the following closed-form expression:

r(q) =

{
�|q|/2� if |qAB | ≥ (||qA| − |qB ||) − 1
max(tA(q), tB(q)) otherwise

(10)
The simple closed-form expressions given in Equa-
tions 8, 9, and 10 for computing r(q) enable us to
avoid constructing the optimal schedules for the queries
throughout the iterations of the two-way replicated
declustering algorithm. That is, r(q) in Equation 10 gives
the cost of query q that can be attained by an optimal
schedule for q, without constructing Sopt(q) through
costly network-flow based algorithms.

It is clear that optimizing the cost function given
below at each two-way replicated declustering step will
optimize the “goodness” criteria explained at Section 3.1:

cost(R2)=
∑
q∈Q

f(q)(r(q) − �|q|/2�) (11)

Our overall two-way replicated declustering algorithm
works as a sequence of two-way refinement passes
performed over all data items. In each pass, we start
with computing the initial operation gains of all data
items. Then, we iteratively perform the following com-
putations: find the data item and the operation that
produces the highest reduction in the cost; perform
that operation; update gain values of neighboring data
items; lock the selected data item to further processing
to prevent thrashing.

We perform these computations until there are no
remaining data items to process. We restore the declus-
tering to the state where the best reduction is obtained
during the pass and we start a new pass over the data
items if the obtained improvement in the current pass is
above a threshold or if the number of passes performed
is below some predetermined number. Once we obtain a
two-way declustering, we can recursively apply our two-
way declustering algorithm on each of these declusters
to obtain any number of declusters. A running example
demonstrating move, replication and unreplication gain
updates can be found in Section 2.1 of the Appendix.

All operations are kept in priority queues keyed ac-
cording to their gain values. The priority queues are im-
plemented as binary heaps. For a two-way declustering,
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we maintain six heaps: Two heaps for storing the move
operations of data items from part A to B and from part
B to A, two heaps for storing the replication operations
of data items from part A to B and from part B to A,
and two heaps for storing the unreplication operations
of replicated data items from part A and from part B.

In our two-way replicated declustering algorithm, we
start with calculating the initial move, replication and
unreplication gains of all data items (Appendix, Algo-
rithm 2) . After initializing the gains, we retrieve the
highest gains and the associated data items for each
operation type and by comparing these gains we select
the best operation to perform. If there are any possible
unreplication operations which do not increase the total
cost of the system (i.e., with zero unreplication gain),
those unreplication operations are performed first. After
we finish possible unreplications, we compare the gains
to be obtained by move and replication operations. If
the gains are the same, we prefer to perform move
operations. Recall that each data item is eligible for two
types of operations and thus has two related gain values.
So, after deciding on the best operation to perform, we
remove the data item from the two related heaps by
extractMax and delete operations.

After performing an operation (move, replication or
unreplication) on a data item d∗ , we may need to update
the gains of operations related with the data items that
are neighbor to d∗ (Appendix, Algorithms 3, 4, and 5).
For any data item d, we have gr(d) ≥ gm(d), hence,
in a pass, the number of replication operations tend
to outweigh the number of move operations. A similar
problem had been observed when replication was used
for clustering purposes in the VLSI literature and one
of the solutions proposed was the gradient method-
ology [22]. We adopt this methodology by permitting
solely move and unreplication operations until the im-
provement obtained drops below a certain threshold and
only after that we perform replication operations.

3.1.2 Query splitting
At the end of a two-way replicated declustering R2 =
{DA,DB} of a dataset and query set pair {D, Q}, we split
the queries of Q among the obtained two sub-datasets as
evenly as possible so that split queries correctly repre-
sent the optimizations performed during that two-way
replicated declustering step. That is, an R2 is decoded as
splitting each query q ∈ Q into two sub-queries

q′ ⊆ q ∩ DA and q′′ ⊆ q ∩ DB , (12)

such that the difference ||q′|−|q′′|| is minimized. The split
queries q′ and q′′ are added to sub-query sets QA and
QB , respectively so that further two-way declustering
operations can be recursively performed on {DA, QA}
and {DB , QB} pairs.

Recall that the optimizations performed during a two-
way replicated declustering assume that queries will
have optimal schedules with regard to that of two-way

replicated declustering, and even splitting of queries
ensures that. Also recall that constructing the optimal
schedule of a query q in a replicated declustering system
requires network-flow-based algorithms. However, for
two-way replicated declustering this feat can be achieved
by utilizing the item distribution dist(q) of q and the
value of r(q), which can be computed via the closed form
definitions given in Equations 7–10. We know that in an
optimal splitting according to the optimal schedule, the
size of q′ should be |q′| = tA(q) and the size of q′′ should
be |q′′| = tB(q).

Consider the three-way partition of query q into qA,
qB , and qAB (according to Equation 8) induced by the
two-way replicated declustering. It is clear that data
items in qA will go into q′ and data items in qB will
go into q′′, so all that remains is to decide on the
splitting of the data items in qAB according to an optimal
scheduling. Let us call the replicated data items that will
go into q′ as q′AB and the replicated data items that will
go into q′′ as q′′AB . That is,

q′ = qA ∪ q′AB and q′′ = qB ∪ q′′AB , (13)
Since we want to enforce a splitting such that |q′| = tA(q)
and |q′′| = tB(q), we can say that

|q′AB | = tA(q)−|qA| and |q′′AB | = tB(q)−|qB | = |qAB |−|q′AB |.
(14)

Any splitting of the data items in qAB that respects
the size constraints given in Equation 14 satisfies the
optimality condition. In our studies we assign the first
tA(q) − |qA| items of qAB to q′ and the remaining items
of qAB to q′′. Other assignment schemes can be explored
for better performance results.

Fig. 1: Splitting of a query q according to a two-way
replicated declustering R2 = {DA,DB}.

A sample splitting of a query q with eight data items is
given in Fig. 1. According to Equation 9, for q, tA(q) = 4
and tB(q) = 4, hence |q′| = 4 and |q′′| = 4. Since, for q,
|qA| = 3, |qB | = 2, |qAB | = 3, by Equations 13 and 14,
we can say that |q′AB | = tA(q) − |qA| = 1 and |q′′AB | =
tB(q)− |qB | = 2. Any splitting of qAB according to these
size constraints satisfies the optimality condition, and
according to our assignment scheme q′AB = {d6} and
q′′AB = {d7, d8}. Hence, q′ = qA ∪ q′AB = {d1, d2, d3, d6}
and q′′ = qB ∪ q′′AB = {d4, d5, d7, d8}.

3.2 Multi-way replicated refinement
Our multi-way replicated refinement scheme starts with
the K-way replicated declustering of the dataset D,
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say RK = {D1, . . . ,DK}, generated by the recursive
replicated declustering scheme described in Section 3.1.
We iteratively improve RK by multi-way refinement
operations K-way move and K-way replication. In order
to perform these operations we maintain the following
gain values for each data item d:
• K-way move gain (gm(d, k)): the reduction to be

observed in the overall query processing cost, if d
is moved to disk k,

• K-way replication gain (gr(d, k)): the reduction to be
observed in the overall query processing cost, if d is
replicated in disk k.

If we were to maintain the above gain values for all data
items, we would need approximately 2× (K − 1) gain
values for each data item, because a data item can be
moved or replicated from its current source disk(s) to
any of the disks that does not already store it. Instead of
this expensive schema, we adapt an efficient greedy ap-
proach that was proposed for unreplicated declustering
in [4] to support multi-way refinement and we develop
a multi-way refinement heuristic suitable for replicated
declustering. Our heuristic can perform multi-way move
and replication operations. The approach in [4] was
based on the observation that a move operation can
be viewed as a two-stage process, where in the first
stage the data item d∗ to be moved is assumed to
leave the source disk and in the second stage d∗ arrives
at the destination disk. The first stage represents the
decrease in the load of the source disk due to the relief
in processing of the queries related with d∗, resulting
with a decrease in the cost. The second stage represents
the increase in the load of the destination disk due to
the excess in processing of the queries related with d∗,
resulting with an increase in the cost. Here we extend
this efficient greedy approach to support both multi-way
move and replication selection operations. Our adapted
schema requires maintenance of only a single gain value
(virtual leave gain) for each data item d.

Virtual leave gain vg(d) indicates the number of
queries requesting d such that the disk(s) that d resides
in serve(s) more than optimal number of data items for
these queries. That is, the virtual leave gain of a data
item d that resides on disk Ds is:

vg(d) =
∑

q∈Q+(d,s)

f(q), where (15)

Q+(d, s) = {q ∈ Q : d ∈ q ∧ ts(q) > ropt(q)} (16)

That is, each query q that requests data item d contributes
f(q) to vg(d), if the number of data items in q that
are retrieved from disk Ds is greater than the optimal
response time ropt(q) of q. This means that it is possible
to improve the distribution of query q through moving
or replicating data item d to an appropriate destination
disk Dz . Thus, virtual leave gain is an upper bound on
the actual move or replication gain. We should note here
that our definition of virtual leave gain is different from

that of [4] in order to support correct computation of
multi-way move and multi-way replication operations.
A running example demonstrating virtual leave gain
updates can be found in Section 2.2 of the Appendix.

Our overall K-way replicated declustering refinement
algorithm works as a sequence of multi-way passes per-
formed over all data items. Before starting the multi-way
refinement passes, as a preprocessing step, we compute
the optimal schedules for all queries once and maintain
these schedules in a data structure called OptSched.
The process of initial optimal schedule calculation is
performed using network-flow based algorithms [9].
OptSched is composed of |Q| arrays, where the ith array
is of size |qi| and stores from which disks the data items
of qi are answered in the optimal scheduling. OptSched
is kept both to identify bottleneck disks for queries and
also to report the actual aggregate parallel response time
of the replicated declustering produced by the recursive
declustering phase. A bottleneck disk for a query q is
the disk from which q requests the maximum number of
data items (and hence determines response time r(q)).

In a multi-way refinement pass, we start with comput-
ing the virtual leave gains of all data items (Appendix,
Algorithm 6). At each iteration of a pass, a data item d∗

with the highest virtual leave gain is selected. The K−1
move and K−1 replication gains associated with d∗ are
computed (Appendix, Algorithm 7), the best operation
associated with d∗ is selected and performed if it has a
positive actual gain and if it obeys the given capacity
constraints, and then the virtual leave gain values of the
neighboring data items of d∗ are updated (Appendix,
Algorithm 8). Also the optimal schedules of each query
that requests d∗ is considered for update in constant time
by investigating possible changes in the bottleneck disk
of that query. We perform these passes until the obtained
improvement is below a certain threshold or we reach a
predetermined number of passes.

4 EXPERIMENTAL RESULTS
In this section, we present the results of experiments con-
ducted to compare the performance of the proposed Se-
lective Replicated Assignment (SRA) scheme against the
state-of-the-art Random Duplicate Assignment (RDA)
and Orthogonal Assignment (OA) schemes. RDA and
OA are selected since they are known to perform good
for arbitrary queries. Also it is possible to modify these
approaches for selective replication. We modified both
RDA and OA to support partial replication, and im-
proved RDA such that it utilizes query logs and selects
the most frequently requested data items and replicates
them at random disks. We call this modified version the
Most Frequent Assignment (MFA) scheme.

In our comparisons we used 9 datasets: Airport, Bea,
Face, FR, HH, Ntar, Park, Place90, and State. The prop-
erties of these datasets are presented in Table 2. The
datasets are taken from [4] and divided into 4 groups.
Face is a collection of gray-scale face images which are
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TABLE 2: Properties of datasets.

Class D |D| |Q| Average
Dataset query size

Image Face 844 1024 23.1

Func. Approx. HH 1638 2000 43.3
FR 3338 10000 10.0

GIS (Point) Airport 1176 5000 22.8
Place90 3382 12000 17.9

GIS (Polygon) Park 1022 4000 20.1
Ntar 8952 10000 29.2
Bea 10674 20000 26.8
State 10827 10000 33.5

used to construct an image retrieval system using the
algorithm described in [21]. HH and FR consists of multi-
feature point data used for function-approximation ex-
periments [23]. These datasets are indexed into a grid di-
rectory with cell size restricted to 16 points as described
in [24]. A set of synthetic rectangular and diagonal
queries is generated assuming Gaussian distribution for
both query sides and centers for each data set. Other
datasets consist of GIS data collected from the National
Transportation Atlas Databases [25]. Airport contains
the public use airports and landing facilities in the US.
Place90 contains place locations from the 1990 Census
Master Area reference file. Park contains the national
parks, Ntar contains the national transportation analysis
regions, Bea contains the economic areas, and State
contains the US boundaries with integrated shorelines.
A set of synthetic rectangular and diagonal queries are
generated for the GIS data sets as for the function-
approximation data sets. Further details of the datasets
and associated query sets can be found in the Appendix.

While testing the performance of MFA and SRA, the
query sets for all datasets except Face are divided into
two equal parts. The first half is used for replication and
declustering and the second half is used for testing the
performance. The query set for Face is composed of all
possible queries so it is fully used while declustering and
testing of Face.

All of the algorithms used in the experiments are
implemented in C programming language, and experi-
ments are conducted on a 2GHz Intel Core Duo machine
with 2MB L2 cache and 2GB DDR2 667 MHz memory.

Query processing performances of the compared algo-
rithms are tested on K=16, 24, 32 disks and the allowed
overall replication ratio is varied from 10% to 100%.
With 9 different datasets, 3 different disk counts, and 10
different replication ratio values, we present the results
of 270 different experiment instances. For each SRA
experiment instance, we report the average of 10 runs,
since we use randomly generated initial feasible two-
way declusterings in our replicated declustering phase.

The query processing performance of a given algo-
rithm is evaluated in terms of the average retrieval
overhead per query induced by the resulting replicated
declustering. Here, average retrieval overhead per query

TABLE 3: Arithmetic averages of the arO values for
K=32 disks over the nine datasets.

percent distribution of replication ratio
among recursive replicated declustering

and multi-way refinement phases
w.out with
unrep. unreplication

% rep. 100–0 100–0 80–20 60–40 40–60 20–80 0–100
10% 0.40 0.31 0.29 0.27 0.24 0.23 0.21
20% 0.36 0.28 0.25 0.22 0.19 0.16 0.15
30% 0.32 0.22 0.23 0.19 0.15 0.12 0.11
40% 0.25 0.19 0.20 0.18 0.12 0.09 0.09
50% 0.19 0.15 0.15 0.14 0.10 0.06 0.07
60% 0.15 0.12 0.13 0.13 0.09 0.05 0.06
70% 0.12 0.09 0.11 0.11 0.09 0.04 0.05
80% 0.10 0.07 0.09 0.09 0.08 0.03 0.04
90% 0.07 0.05 0.07 0.07 0.08 0.03 0.03

100% 0.06 0.04 0.06 0.06 0.07 0.02 0.02

(arO) for a given replicated declustering of a dataset and
a query set is defined as total response time overhead
(Equation 5) divided by the number of queries. That is,

arO(Q) = TrO(RK , Q)/|Q|. (17)

In Table 3, we present the arithmetic averages of the
average retrieval overhead of SRA over the nine datasets
with increasing replication ratio, where the allowed
replication ratio is distributed between the recursive
replicated declustering and multi-way refinement phases
according to the percentage values displayed over the
columns. For example, the column header 80–20 indi-
cates that the recursive replicated declustering phase is
allowed to utilize 80% of the replications and the multi-
way refinement phase is allowed to utilize 20% of the
replications. The values in the table indicate the retrieval
overhead of the replicated declusterings obtained by
SRA under the given replication distribution.

The second column of Table 3 is introduced to jus-
tify the usage of unreplication operation in recursive
replicated declustering phase. Note that the 100%–0%
replication-distribution scheme provides an approach
where replication is only performed in recursive repli-
cated declustering phase. The third and second columns
of Table 3 show the performance of such a system where
unreplication operation is utilized and not utilized, re-
spectively. By comparing these two columns we can
observe that embedding unreplication operation always
improves the performance of the recursive replicated
declustering phase.

As seen in Table 3, especially for low replication ratios
(between 10% to 30%), the average results obtained by
SRA are best when the given replication amount is fully
utilized in the multi-way refinement phase (0%–100%
replication-distribution). However, for higher replication
ratios (between 40% to 100%), best results are obtained
in the 20%–80% replication-distribution scheme. These
results indicate that, for small allowed replication ratios,
performing replications at a later phase, that is dur-
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Fig. 2: Average retrieval overhead vs replication ratio figures for the datasets for K = 24.

ing the K-way declustering phase, brings more gain,
whereas for higher allowed replication ratios, perform-
ing a small percent of the replications at an earlier
phase, that is during the recursive bipartitioning phase,
has a more positive effect on the overall SRA perfor-
mance. Since 20%–80% replication-distribution scheme
has better results for more experiment instances, the
results reported for SRA in the following figures are
obtained with this replication-distribution scheme. The
good results observed for the 0%–100% and 20%–80%
replication-distribution schemes point to the success of
our multi-way replicated refinement algorithm. The fact
that 20%–80% replication-distribution scheme, which is
a combination of recursive replicated declustering and
multi-way replicated refinement schemes most of the
time outperforms the 0%–100% scheme, which is an
approach where replication and declustering is decou-
pled demonstrates the need for our recursive replicated
declustering algorithm.

Fig. 2 display the individual performances of the

algorithms for K=24 disks over the 9 datasets. Similar
detailed analysis for K=16 and K=32 disks can be found
in Section 5 of the Appendix. In the figure, variation of
the arO values of algorithms with increasing replication
ratio is presented. Closer points to x-axis mean better
average retrieval times. As seen in the figure, SRA has
better (smaller) average retrieval time than MFA and
OA for all experiment instances. While comparing MFA
with OA, MFA performs much better than OA in seven
of the nine datasets. Only in Face and Park datasets
OA performs slightly better than MFA. We observe that
with increasing replication amount, the deviation of OA
from the strictly optimal declustering decreases linearly,
whereas in both MFA and SRA we observe a quadratic
decrease. These results point to the importance of using
query logs in improving performance, since MFA also
makes use of query logs by replicating frequently re-
quested items. An analysis of Fig. 2 reveals that the per-
formance gap between the proposed SRA algorithm and
the state-of-the-art MFA and OA algorithms decreases
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with increasing replication amount. However, as also
seen in the figure, SRA still performs considerably better
then MFA and OA even for high replication amounts.

An analysis of the arithmetic averages of the average
retrieval overheads and the running times of the MFA,
OA and SRA over the nine datasets with increasing repli-
cation ratio reveals that, for K =16, 24 and 32 disks, even
with low replication ratios such as 10%, SRA achieves
very low overheads and to achieve similar overheads
MFA requires around 70%, whereas OA requires around
90% replication. Detailed experiments supporting these
deductions can be found in Section 5 of the Appendix.

5 CONCLUSIONS
In this work, we proposed an effective K-way repli-
cated declustering scheme that utilizes a given query
distribution. We first propose an iterative-improvement
based two-way replicated declustering scheme, which
iteratively improves the quality of a two-way replicated
declustering. We recursively apply this two-way scheme
to obtain a K-way replicated declustering. We then
propose an efficient and effective multi-way refinement
scheme that can perform multi-way move and replica-
tion of data items. With this scheme, we further improve
the quality of the obtained K-way declustering and
improve balance if possible. Obtained results indicate
the merits of utilizing query logs in partial and selective
replication. The proposed scheme achieves much better
results compared to state-of-the-art replicated declus-
tering schemes, many times achieving optimal overall
response time with less than 100% replication ratio.

In this work we assume homogeneous data item
retrieval times and homogeneous disks. Heterogeneity
in both aspects can be considered for further research
studies.
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